lundi 20 juillet 2020

Mesurer les distances !

1. L'automne dernier, j'ai testé pour la première fois, avec des étudiants d'un master international,  un cours de gastronomie moléculaire conforme à cette analyse que j'avais faite l'été précédent, à savoir notamment que le cours était entièrement écrit,  que, professeur,  je m'étais donné comme rôle de donner de l'enthousiasme, d'indiquer ce qu'il était bon d'étudier, notamment à l'aide d'une carte de la matière, de faire des points d'étapes réguliers sur le chemin que mes jeune amis devaient emprunter.

2. Tout cela a assez bien fonctionné, mais j'ai observé que le temps réservé au professeur avait rapidement tendance à s'étendre à l'infini, au détriment du temps d'études par les étudiants, en autonomie. Entre le professeur qui cause, voyant l'immensité des notions indispensables à ses jeunes amis, & ces derniers qui aiment l'entendre causer, grappillant sans relâche des notions, méthodes, informations toutes indispensables, il y a tous les ingrédients pour faire déborder le vase.

3. J'ai conclu que le système élaboré nécessitait plus que ce que j'avais imaginé : il faut aussi que le professeur fixe des objectifs raisonnables, précis, notamment à propos de méthodologie ;  il y a lieu de laisser mille pistes ouvertes à côté des chemins que l'on aura effectivement parcouru. Pour le professeur, il y a ce  travail supplémentaire qui est, non pas seulement de baliser le chemin, mais aussi de bien mesurer le temps à accorder aux étapes que les étudiants doivent parcourir.

dimanche 19 juillet 2020

La très difficile question des diplômes


1. Faut-il donner les diplômes à tous les étudiants qui suivent un cours ? C'est ce qui a cours aujourd'hui pour le baccalauréat, qui ne fait plus qu'ouvrir sur l'université, où, là encore, chacun obtient la licence, ou la maîtrise, voire un doctorat, à condition de rester dans le système national (ce qui signifie d'avoir les moyens financiers de le faire).

2. Ce que je dis en (1) n'est que factuel. Et la conséquence est connue de tous : le baccalauréat, ou les autres diplômes universitaires français ne sont plus une garantie de compétence, de sorte qu'ils ne sont pas une garantie d'accès à des métiers, par des employeurs qui auraient confiance dans lesdits diplômes.

3. Je reste factuel -indispensable dans ces discussions politiquement minées- si j'observe que les institutions qui organisent des études (par exemple, les universités) reçoivent des étudiants, qu'ils doivent aider à étudier, et dont ils sont chargés (semble-t-il, mais je me trompe peut-être) de certifier les connaissances, compétences, savoir être, savoir faire...

4. Si on le décide collectivement, on peut vouloir supprimer la certification : supprimer la sélection, n'est-ce pas semblable à supprimer la certification ?

5. D'autant que coordonner des études et certifier sont des  choses indépendantes.

6. Mais cela n'empêchera pas qu'il y aura des étudiants ayant des connaissances, des compétences, des savoir faire, des savoir être, et des étudiants qui n'ont pas ces acquis.

7. Autre hypothèse : on conserve les diplômes comme des certifications de compétences (plus connaissances, savoir faire, savoir être...), et alors ils ne sont pas de simples certificats de participation à des cursus  que l'institution a organisés.

8. Mais avons-nous le droit de le faire ?  Dans notre monde moderne, il y a des mobilités des populations : nos diplômes sont contraints par des accords internationaux.

9. Et sans oublier également que les études conduisent à des emplois, pour lesquels les connaissances, compétences, savoir être ou savoir faire ne sont plus des mots abstraits, mais de réels, solides réalités : face à une tâche (considérons une synthèse moléculaire, ou bien la direction d'une équipe, ou encore la soudure de deux tuyaux), on sait le faire ou on ne sait pas le faire, et aucune démagogie ne supprimera ce fait.

10. Ce qui conduit à observer que, pour des métiers, il y a des obligations de résultats ou de moyens... mais la question des compétences est alors la même : on sait obtenir les résultats ou pas, on sait mettre en oeuvre les moyens ou pas. Et la présence à des cours n'est pas suffisante.

11. D'ailleurs, la présence à des cours n'est rien : on peut parfaitement y dormir, ou écouter sans rien comprendre, si l'on n'a pas les bases pour le faire. De sorte que de telles certifications de présence sont nulles et non avenues.

12. Surtout, je crois que nous devons réclamer des définitions claires : de quoi parlons-nous quand nous discutons des diplômes ?

samedi 18 juillet 2020

Savoir manger, c'est manger en gastronomie

1. Et si savoir manger, c'était manger de façon analytique ? Les dysfonctionnements alimentaires,  qu'il s'agisse d'obésité ou de d'anorexie, mais aussi les mille déviations possibles, semblent être associées un manque de réflexion  ou de rationalité : on mange, mais on ne se demande pas ce que l'on mange ni pourquoi l'on mange.

2. J'ai l'impression que l'on gagnerait, à ce propos, à évoquer,  analyser et synthétiser.

3. Analyser d'abord, bien sûr, parce que c'est seulement quand l'analyse a été faite que la synthèse peut l'être. L'analyse, c'est de ne pas manger, mais de s'interroger sur ce que l'on mange, par exemple si l'on est face à un œuf dur mayonnaise, suivi d'un steak avec des frites, puis de camembert avec du pain,  et d'une mousse au chocolat (pour ne pas évoquer le repas anthologiques des Barbouzes).
Pour chaque élément, on peut donc s'interroger : s'interroger sur le plat lui-même, puis, remonter de la préparation finale aux ingrédients, puis des ingrédients à leur production, sans oublier le raisonnement qui a conduit à utiliser certains ingrédients particuliers pour obtenir une telle préparation.

4. Considérons donc cet objet qu'est l'œuf dur mayonnaise. Quand est-il apparu  dans l'histoire de la cuisine ? Comment le produit-on ? Quelles sont les variations régionales, locales, particulières aux cuisiniers ? Et pour l'oeuf dur mayonnaise, il y a l'oeuf dur, et la mayonnaise. Pour chacun, à nouveau les questions précédentes... mais aussi mille questions "gastronomiques" : historiques, donc, géographiques, mais aussi chimiques, physiques, biologiques, littéraires, artistiques (au sens de l'art culinaire)... & j'en oublie ! Là, il est la question de la cuisson des oeufs durs & celle de la préparation de mayonnaise.

5. Pour la mayonnaise, par exemple, il y a lieu de s'intéresser aux circonstances de son apparition, sans doute empirique à partir de la rémoulade. Mais il faut aussi  considérer sa confection, et s'interroger sur sa redondance avec l' œuf dur.

6. Et puis, il y a les ingrédients qui la constituent : l'oeuf, mais aussi le vinaigre, ce qui suppose d'avoir du raisin et du vin. Et l'huile, qui suppose d'en disposer même dans les régions les oliviers ne sont pas présents.



Je m'arrête dans l'analyse, parce que ma démonstration est faite : manger, c'est manger en culture, en "gastronomie" !


vendredi 17 juillet 2020

Apprendre, c'est retenir


1. À propos des études, il y a cette question de savoir si recevoir une information est suffisant pour en disposer.

2. Par exemple, peut-on apprendre à partir d'un livre ? D'un film ? D'un podcast ? Combien de fois faudra-il voir le film, lire le livre, écouter le podcast  ?

3. La question est importante, car il est exact qu'on ne retient généralement pas tout d'un premier coup. Et j'ai entendu nombre de professeurs dire qu'il ne suffisait pas de comprendre, et qu'il fallait apprendre.

4. Dont acte, mais apprendre comment ? Pour des sciences de la nature, on m'a dit "refaire les démonstrations",  "faire des exercices", "faire des problèmes". Mais pour d'autre disciplines ?

5. Et puis, mes professeurs étaient-ils bien placés pour me conseiller ? Après tout, ils n'avaient ni le prix Nobel, ni n'étaient tous professeurs au Collège de France ! Bref, d'où sortaient-ils leurs conseils ? Sans "référence", j'invite les étudiants à ne pas gober n'importe quelle méthode.

6. Mais alors ? Pardon pour l'évocation d'idiosyncrasies, mais je suis de ceux qui, quand ils doivent apprendre quelque chose, le prennent, le triturent, l'ingèrent, le ruminent,  avant de le digérer, y reviennent, y reviennent encore.
Quand il s'agit d'un  calcul,  je le refais, je le réécris, je cherche à changer des paramètres... Quand c'est une poésie,  je la prends, je la divise en petits morceaux, je cherche  des associations,  & ainsi de suite.

7. Bref mon apprentissage est actif... mais mon apprentissage personnel n'est  pas la question, qui est  "Quelle est la bonne méthode ?".
Par exemple,  regarder un film est-il plus efficace que lire un livre, ou qu'écouter un podcast ? Etudier en marchant est-il mieux qu'en restant assis à une table ?

8. Je n'ai aucune idée de la réponse à ces question, et j'ajoute que je ne veux surtout pas recueillir  le sentiment personnel de chacun. Nous avons besoin de données fiables, sur lesquelles nous pourrions trouver une méthode qui soit digne d'être propagée... & que je puisse éventuellement m'appliquer à moi-même,  changeant ma propre méthode  empirique, puisqu'elle n'est  peut-être pas la plus efficace.

9. Efficace ? Un adjectif  : on se souvient que j'invite  mes amis et moi-même à les remplacer par la réponse à la question "Combien ?"... et cela se mesurera au fait que je me souvienne de ce que j'ai appris !




jeudi 16 juillet 2020

L'étude

1. Mes billets précédents m'ont largement montré que l'essentiel, c'est donc l'étude. Pas l'enseignement ; pas les professeurs ! Non, les étudiants, l'étude.

2. Et la clé de l'apprentissage, c'est l'étude. On n'apprend que si l'on étudie, & l'on n'étudie bien que si l'on aime cela.

3. Ce qui a comme conséquence que nos institutions d'études doivent en priorité contribuer à développer ce goût de l'étude. 
Ce qui a des conséquences sur le métier de professeur. 

3. Et "sélectionner" sur cette capacité d'étudier.
Mais je me hâte d'ajouter que ce mot de sélection va pour moi avec celui d'orientation : il s'agit moins de classer (ce serait bien impossible) que de ne pas laisser des étudiants perdre leur temps à faire quelque chose qu'ils n'aiment pas. Si l'on aime étudier la chimie, on est à sa place dans un cursus de chimie ; mais si l'on aime étudier autre chose, alors on est à la place ailleurs qu'en chimie... et l'on voit que c'est le goût pour une matière qui peut être à la base d'une sélection positive !

4. L'étude se fait-elle seul ou à plusieurs ? Pourquoi ne pas penser que les deux solutions sont possibles. Le tout est d'être dans un position active de recherche : on doit prendre plutôt que recevoir... ce qui a des conséquences sur le métier de professeur.

A suivre, évidemment !

mercredi 15 juillet 2020

Plus que jamais, mettre en garde

1. Lors d'une formation académique, un samedi matin dans un lycée parisien, j'avais montré un oeuf (entier, dans sa coquille, tenu entre deux doigts, le gros bout en bas), & j'avais demandé à plus de 400 professeurs réunis où se trouvait le jaune.
Comme dans n'importe quelle assemblée, environ 80 pour cent de personnes ont répondu qu'il était dans la partie inférieure, 15 pour cent ont répondu qu'il était au centre, & reste ne savait pas.
Puis, j'avais ouvert l'oeuf en décalottant la partie supérieure, & on avait bien vu que le jaune flottait : le jaune d'oeuf est dans la partie supérieure, parce que, constitué de 50 pour cent de lipides, il flotte dans le blanc, lequel est une solution aqueuse de protéines (dix pour cent).

2. Cette présentation me servait à introduire la discussion sur la position du professeur devant sa classe, & nous avions eu un débat : doit-on dire aux élèves que l'on ignore la réponse à une question, quand on l'ignore ? Peut-on faire état de son ignorance, à propos d'une question même simple ? Moi qui répond évidemment que c'est la meilleure des solutions, j'avais été étonné de voir la moitié de l'assistance ne pas adhérer à l'idée. Et je n'ai toujours pas compris les arguments de ceux qui n'étaient pas de mon avis (si vous avez une idée pour m'aider, merci de me la donner).

3. Car se poser en sachant est très téméraire : n'est-ce pas, notamment s'exposer à se faire réfuter ? Et n'est-ce pas mentir, en quelque sorte ? En tout cas avoir une prétention... indue ? Je ne sais pas bien pourquoi (j'y réfléchis), mais je vois le même mécanisme que dans les publications de science & technologie des aliments, quand s'alignent à l'infini ces textes  qui nous disent que tel ou tel composé est bon pour la santé.

4. Tiens, dans une table des matières qui m'arrive aujourd'hui même d'une revue scientifique internationale, je trouve :
- un nouveau mode d'encapsulation : évidemment une révolution dans le contrôle de la faim
- un nouveau pesticide : évidemment bien mieux que tous les précédents
- un nouvel antifongique : excellent (mais...  in vitro ; pour l'in vivo, un voile pudique est jeté)
- encore un système d'encapsulation : "nouveau", meilleur...
- encore un nouveau produit pour traiter le foie
- un nouvel antibactérien qui réglera la question
- et j'arrête là, car à lire cette table des matières, il y a lieu de penser que tous les problèmes de santé sont résolus, n'est-ce pas ?

5. Comment s'expliquer, alors, que nous soyons si démunis face au dernier coronavirus ? Et que des maladies frappent encore ? Puisque tout ou presque est "bon pour la santé" ou "mauvais pour la santé", comment est-il possible, avec nos certitudes, nous ayons encore à explorer ces questions ? C'est évidemment que les publications scientifiques sont bien excessives, dans leurs revendications.

6. Car c'est un fait que nombre de publications scientifiques imposent de "vendre" les manuscrits, au point qu'elles demandent aux auteurs de préparer des résumés qui attirent les lecteurs. Oui, dans les milieux scientifiques ! Et comme pour les professeurs qui hésitaient à se dire ignorants (d'un sujet), certains d'entre nous ne résistent pas à la pression sociale, & acceptent de faire croire qu'ils ont trouvé la panacée.

7. En matière de saveurs, la question du glutamate  est du même type : à en croire certains qui étudient la question, c'est la clé parfaite du goût... mais alors, pourquoi l'industrie alimentaire ne cesse-t-elle d'ajouter d'autres composés à ses bouillons cubes : inositides et autres ? Pourquoi la question n'est-elle pas résolue depuis longtemps ? Le glutamate, finalement, ne serait-il pas non plus un Graal ? On nous aurait donc menti ?

8. La réponse à cette dernière question est évidente : un composé ne fait pas le goût à lui tout seul, fut-il soutenu commercialement et publicitairement par des lobbys industriels puissants. Et mieux encore, c'est une naïveté immense que de croire qu'elle pourrait être résolue : on ne progressera qu'en pensant le contraire.

9. Bref, tout cela est à dire aux étudiants : rien n'est résolu ! La lutte contre les champignons est à peine entamée ; la connaissance des effets biologiques des composés des aliments reste très rudimentaire ; les saveurs sont extrêmement mal connues, &, en tout cas, les théories des quatre ou des cinq saveurs sont fausses ; & ainsi de suite.

10. Bref, il y a de la place pour :
- de la belle recherche scientifique et technologique
- une lutte contre les prétentions, même dans le milieu scientifique
- une recherche didactique de qualité, afin de permettre aux étudiants de mieux apprendre.


mardi 14 juillet 2020

Enseigner à manger aux enfants ?

1. Enseigner à manger aux enfants ? Encore faudrait-il savoir nous-mêmes manger : savoir quoi manger, savoir comment manger (pas trop vite), savoir quand manger... 

2. Oui, la science qu'est la nutrition progresse, mais il y a tant à faire, encore, pour qu'une diététique du bien portant dépasse le "Il faut manger de tout, en quantités modérées, et faire de l'exercice modérément" que les plus raisonnables de mes amis nutritionnistes m'ont tendu.

3. Enseigner aux enfants ? Si enseigner est impossible (voir d'innombrables billets à ce propos), ne devons-nous pas plutôt poser la question différemment : "Comment aider les enfants à apprendre à manger ?"  Et la question conduira à leur faire découvrir ce qu'est manger, au delà du geste animal de bouger les mâchoires.

4. Alors, enseigner aux enfants ? Quel que soit l'état de la nutrition ou de la diététique, il y a lieu de les aider à dépasser cette animalité qui leur fait la même mimique, le jour de la naissance, que des singes à qui l'on met sur les lèvres des composés sucrés, acides, amers, salés ou autres.

5. Oui, manger, cela doit d'abord être manger en humain, manger avec l'esprit autant qu'avec le corps. Cela doit être d'éviter les déviances nutritionnelles qu'engendrent nos modes de vie citadins dans des systèmes d'abondance.

6. Oui, manger, cela doit être manger socialement, en oubliant sa petite personne, en se préoccupant du groupe, de l'humanité, de la Terre.

7. Aider les enfants à apprendre à manger ? Encore faudrait-il que les parents le sachent  !

8. Aider les enfants à apprendre à manger ? Les enfants étant exposés à des parents et à des professeurs, cela peut venir des professeurs, si les parents sont incompétents. Mais les professeurs sont-ils plus compétents ? S'ils ne le sont pas, nous avons en France l'Education nationale pour les aider à le devenir. 

9. Oui, ce sont les professeurs avec qui les spécialistes doivent dialoguer, ces mêmes professeurs qui, comme tous les citoyens, sont exposés aux discours des marchands de cauchemars... de sorte qu'une partie d'entre eux adhère aux fadaises.

10. Or je crois bien inutile de chercher à réfuter des idées fausses : il y a lieu de chercher une stratégie pour les combattre, et, le mieux, c'est quand même de poser les faits et de les assortir de questions, afin que chacun se fasse son idée.

11. Et les faits ne sont jamais si forts que portés par des expérimentations : ce sont des expérimentations qu'il faut proposer, assorties de questionnements. C'est cela qu'il faut faire :  colliger un groupe d'expérimentations et d'observations à propos d'alimentation et les mettre largement à la disposition des professeurs... et des élèves.

lundi 13 juillet 2020

Pourquoi transmettre des faussetés ?

1. Discussion amusante avec des étudiants : pourquoi, me demandent-ils, les systèmes d'études  montrent-ils l'atome sous la forme d'un système planétaire alors que cette représentation est erronée ?  Et ma réponse immédiate est "Imaginez-vous que l'on doive enseigner à des enfants les fonctions d'onde et l'équation de Schrödinger ?".




2. C'était une façon de me débarrasser rapidement d'une question importante, à un moment où j'avais autre chose à faire, mais manifestement la question demeure : oui, est-il vraiment souhaitable de donner à des étudiants des représentations erronées, qui seront "rectifiées" ultérieurement ?

3. A cette question, répondons à nouveau à côté, en observant que toutes les représentations sont fautives. D'ailleurs, les particules ont un comportement corpusculaire et un comportement ondulatoire, de sorte qu'il faudrait donner d'emblée les deux descriptions, chacune insuffisante.

4. Ce qui est évident, c'est que, vu le niveau mathématiques général (et de ceux qui m'ont posé la question en particulier), une présentation mathématique ne convient pas. Que dire, alors ?

5. La question de l'atome n'est pas particulière, et tous les objets scientifiques sont de ce type. Que pouvons-nous dire des molécules, du courant électrique, de la lumière, du mouvement ? Les molécules ? Assemblages d'atomes, elles ne sont pas des lettres fixes reliées par des traits. Le courant électrique ? L'effet Hall quantique montre que ce n'est pas un écoulement d'électrons analogue à un courant de liquide. Le mouvement ? La relativité restreinte suffit pour comprendre que les vitesses ne s'additionnent pas. Bref, chaque "théorie", associée à une "représentation", est insuffisante, à perfectionner, et l'apprentissage se fait lentement,  en passant par des étapes qui sont ensuite dépassées.

6. D'ailleurs, un peu à la manière de l'ontogenèse qui récapitule la phylogénie, on pourrait penser que l'histoire des sciences nous donne un chemin à retracer, évidemment sans nous fourvoyer, comme cela fut fait.

7. De sorte que, finalement, apprendre, c'est peut-être utilement apprendre des représentations successives, toutes insuffisantes. En commençant par le plus ancien !


samedi 11 juillet 2020

Quoi, après la cuisine moléculaire ?


On m'interroge : qu'y aura-t-il après la gastronomie moléculaire ? Et la réponse est simple : la gastronomie moléculaire. Oui, car mon interlocuteur confond cuisine moléculaire et gastronomie moléculaire.

Je le répète : la cuisine moléculaire, c'est cette forme de cuisine modernisée qui utilise des ustensiles de cuisine modernes, venus des laboratoires de chimie. Introduit à partir des années 1980, elle est maintenant partout, avec des systèmes de cuisson qui ont considérablement progressé, quand la cuisson à basse température s'est imposée, que sont venus en cuisine des siphons, des filtres mieux pensés, des centrifugeuses, des sondes à ultrasons, des évaporateurs rotatifs, et j'en passe. Cela a engendré un nouveau style... et mon "oeuf parfait" est dans le monde entier.

La gastronomie moléculaire, introduite exactement en 1988, est bien différente : ce n'est pas de la cuisine, mais de la science, de la physico-chimie, et plus exactement l'étude scientifique des phénomènes qui ont lieu lors des transformations culinaires, que ces transformations résultent de cuisine classique ou de cuisine moléculaire.

Et après la gastronomie moléculaire ? La gastronomie moléculaire, puisqu'une science n'a pas de fin : il n'y aura pas plus de fin de la gastronomie moléculaire qu'il n'y aura de fin à l'astronomie, la biologie, la chimie...

Mais après la cuisine moléculaire ? Disons que, là, on parle de tendance, de mode. Et je fais tout ce qu'il faut pour que la prochaine tendance culinaire soit la cuisine note à note, cette cuisine qui est l'homologue de la musique de synthèse, en ce qu'elle utilise des ingrédients qui sont des "composés" (ce qui n'a rien à voir avec la lyophilisation, soit dit en passant).



Un plat de cuisine note à note par Erik Ayala-Bribiesca et Ismael Osorio, à Montréal, Canada, en 2012.




vendredi 10 juillet 2020

Les "jaunes brûlés"

On dit de jaunes d'oeufs qui ont été longtemps au contact du sucre, sans que l'on ait fouetté et "fait le ruban", qu'ils sont "brûlés". De quoi s'agit-il  ?
 
Commençons par donner une des explications fantaisistes (et FAUSSES) du phénomène (que je décris plus bas). Par exemple, j'ai trouvé l'élucubration suivante : 

"Pourquoi le jaune brûle si on ne remue pas en versant le sucre ?
Les cellules lipidiques sont attirées par les glucides et produit une réaction chimique avec dégagement de chaleur.
Cela suffit pour coaguler la surface du jaune dut au contact avec le sucre si l'on ne le remue pas tout de suite"



Il faut immédiatement observer que cette explication n'a aucun sens !

Mais commençons par examiner le phénomène : quand on mélange des jaunes d'oeufs et du sucre, notamment en vue de faire une génoise, ou une crème anglaise, on n'a pas besoin d'être très savant pour voir de petits grains de sucre dispersés dans la solution aqueuse qu'est le jaune d'oeuf. 

Il est conseillé dans les livres de cuisine de fouetter immédiatement la préparation.  A quoi bon ? Ce qui est clair, c'est que cette pratique contribue à dissoudre le sucre dans l'eau du jaune. 

Lors de cette dissolution, le fouet fait blanchir la préparation parce qu'il introduit des myriades de bulles d'air, et l'on obtient alors une préparation couleur crème jaune, lisse, foisonnée.
 
Toutefois, quand on laisse le sucre et les jaunes sans fouetter, il est exact que l'on a ensuite plus de mal à le faire. Ce n'est pas impossible, mais difficile. Et il y a donc un fondement à désigner cela par une expression : on dit classiquement que les "jaunes sont brûlés"... mais il n'y a évidemment pas de combustion.

Examinons maintenant l'explication que j'ai donnée plus haut, et que j'ai trouvée sous la plume d'un professeur de cuisine : il faut immédiatement signaler que les "cellules lipidiques" n'ont aucune existence, et même que cette expression n'a pas de sens ! 

Je crois que l'auteur de cette phrase confond
-  les tissus vivants, faits de cellules, 
- les jaunes d'oeufs, composés de granules dispersés dans un plasma, 
-  et les émulsions, faites de gouttelettes (pour le lait, on parle de "globules") de matière grasse. 

Reprenons tout cela plus lentement, puisque des correspondants m'ont dit avoir du mal à bien comprendre

Commençons avec les tissus vivants, végétaux par exemple, 

Ainsi, une plante est un être vivant fait de divers "tissus végétaux" : une feuille diffère d'une tige, par exemple. Mais tous les tissus végétaux sont des assemblages de "cellules" (pas de "globules", pas de "particules"...), qui sont comme des sacs principalement emplis d'eau. 
Au microscope, voici ce que l'on voit : 



Ces sacs, les "cellules", sont dont des structures (il y a une organisation, n'est-ce pas ?) qui ont un intérieur et une "peau". 
Pour l'intérieur, j'ai dit plus haut que c'était de l'eau, mais en réalité, en y regardant mieux, c'est plutôt une sorte de gel, avec différentes structures intracellulaires qui sont dispersées... mais je ne veux pas entrer dans les détail. 
Pour la "peau", c'est  une "membrane cellulaire", et les cellules végétales sont "cimentées" (collées entre elles) par une "paroi cellulaire" (laquelle est faite de cellulose, pectines, protéines..., mais c'est une autre affaire).

Pour les animaux, maintenant, les muscles (la "viande") sont comme des faisceaux de fibres allongées : ces "fibres" sont des cellules, qui atteignent jusqu'à plusieurs dizaines centimètres de longueur... mais de très petit diamètre : il faut un microscope pour les voir. 
Et, là encore, il y a une peau et un intérieur. L'intérieur est principalement fait d'eau et de protéines (pensons à du blanc d'oeuf), tandis que la peau est ce que l'on nomme le "tissu conjonctif" (il réunit les cellules), fait majoritairement de protéines qui ont pour nom "collagène" (ce qui explique que l'on parle aussi de "tissu collagénique"). 

Et, pour terminer, tout cela est fait de molécules variées. Ces molécules sont bien trop petites pour apparaître au microscope, et il y en a des tas de sortes, dans les cellules. 


Mais dans une émulsion, pas de cellules ! 

Oublions maintenant les fruits, légumes, viandes, poissons, et pensons à des sauces, telle la sauce mayonnaise. 

On se souvient que l'on obtient celle-ci en utilisant du jaune d'oeuf, du vinaigre, de l'huile. 
Pour l'huile, elle est principalement faite de molécules de triglycérides. Pas de "cellules" dans de l'huile. 
Pour le vinaigre, il est fait principalement de molécules d'eau et de molécules d'acide acétique. Pas de "cellules" dans l'eau. 
Pour le jaune d'oeuf, il n'y a pas de cellules non plus, mais des molécules d'eau, des molécules de protéines, et des molécules "lipidiques", avec une organisation en "granules" dans un "plasma". 

Là, je dois insister un peu pour le jaune d'oeuf, et dire que ce "liquide" (oui, le jaune coule quand l'oeuf est cru) est fait d'un "plasma", lequel est une solution de protéines : cela signifie que des molécules de protéines sont dispersées dans de l'eau. Et, quand on regarde le jaune d'oeuf au microscope, on voit des "granules", comme de petits grains, qui sont des assemblages de molécules. Il n'y a pas de cellules, dans cette affaire ! 

Quand on mélange du jaune d'oeuf avec du vinaigre, on dilue le plasma, on l'étend, et les granules restent dans ce liquide. 

Puis, quand on ajoute de l'huile en fouettant, on obtient une "émulsion", qui est faite de gouttelettes de matière grasse dispersées dans une solution aqueuse (pensons à de l'eau), ce qui apparaît au microscope ainsi : 


Observons que, ici, les formes rondes sont des gouttes d'huile microscopiques. Pas des granules, qu'on ne verrait qu'avec un grossissement bien supérieur du microscope. Pas des cellules.

Ainsi, parler de "cellules lipidiques" est complètement faux.

Ensuite, si l'on suppose que notre auteur s'est trompé de terme, et a utilisé le mot "cellules" pour "gouttelettes", dire que les gouttelettes d'huile  (on nomme ainsi toute matière grasse à l'état liquide) sont attirées par les glucides, c'est faux. Il n'y a aucune attraction, au contraire, car les grains de sucre (du saccharose, mais j'utilise un terme moins pédant que notre auteur, qui veut manifestement faire croire qu'il est savant) sont entourée d'eau, le sucre de table étant hygroscopique (je n'explique pas pourquoi pour alléger la discussion).

Quant à une réaction chimique entre sucre et graisse, où notre auteur a-t-il trouvé cela ? C'est bien impossible... comme on s'en apercevra en mettant du sucre dans de l'huile : des années après, rien  d'autre que du sucre et de l'huile  !
 
De sorte que le dégagement de chaleur annoncé est de la pure invention !

Enfin, la dernière phrase est grammaticalement et orthographiquement plus que discutable, mais, surtout, elle conclut sur de l'inexistant. J'espère que notre auteur ne s'est pas adressé à des apprenants !









jeudi 9 juillet 2020

Il faut rendre à César... et plus

Je m'aperçois que j'ai diffusé cette image  :







Il aurait fallu que j'ajoute que c'est tiré d'une vidéo excellente, que l'on trouve sur :
https://www.youtube.com/watch?v=x8Atqz5YvzQ
 Et désolé, je ne peux citer nommément l'auteur, puisqu'il n'apparaît pas.

Mais si vous voulez voir des molécules d'eau bouger, pourquoi pas celui-ci, aussi :
https://www.youtube.com/watch?v=Zl74NCVbA5A

On est bien d'accord : dans l'eau liquide, il y a des molécules d'eau (les objets rouges et blancs... mais entre lesquels il n'y a rien (pas d'air, mais du vide) !
Les "liaisons hydrogène" sont des attractions à distance, sans matérialité, comme quand des aimants agissent les uns sur les autres.

Et dans l'eau liquide, la distance entre deux molécules d'eau est d'environ trois diamètres moléculaires, alors qu'elle serait de l'ordre de 100 diamètres moléculaires dans la vapeur à la pression ambiante.

mercredi 8 juillet 2020

La fusion du beurre


A propos de changement d'état, nous avons précédemment considéré la cristallisation du sel,  mais pas la congélation de l'eau. Dans le cas le plus simple, de l'eau que l'on refroidit se transforme en glace solide à la température de zéro degré. On peut faire l'expérience de placer une casserole d'eau dans un bain d'azote liquide, à  -196 degrés, et de voir que l'eau dans la casserole congèle. Pas d'un coup, évidemment, mais un peu comme le sel dans la casserole d'eau salée que nous avions chauffée : il y a le même type de phénomènes, à savoir qu'un refroidissement rapide fait de tous petits cristaux, alors qu'un refroidissement lent fait des cristaux plus gros.
C'est la raison pour laquelle les sorbets à l'azote liquide sont si merveilleux : les cristaux sont tout petits, et la consistance est merveilleusement souple.

Cela étant, il y a deux précisions à apporter. La première, c'est que notre eau peut rester liquide à une température inférieure à zéro degré. Ce n'est toutefois pas un état stable : une poussière qui tombe dans cette eau  déclenche une congélation brusque, et tout prend en masse d'un coup.
En effet, il faut des espèces de "support" (on parle de "germes") pour que la cristallisation s'opère et ces supports peuvent être à peu près n'importe quoi : des poussières, du sel, des rayures de la casserole...

La deuxième précision qu'il faut apporter concerne la fixité de la température de fusion de la glace  : tant que de la glace solide est en présence d'eau liquide, la température est 0 degré, constante.
C'est là une propriété qui est utilisé pour l'étalonnage des thermomètres : on les plonge dans un mélange d'eau et de glace que l'on agite un peu pour que la température soit homogène, et la température es alors fixe, de 0 degrés

Avec le beurre, nous n'avons plus un composé pur, mais un mélange de très nombreux composés.
D'abord, le beurre contient une solution aqueuse, comme on s'en aperçoit en le clarifiant : on chauffe doucement, et l'on voit alors trois parties (si l'on fait l'opération dans un récipient transparent :
1. à la partie supérieure, on voit une petite écume
2. dessous, environ 80 pour cent de la masse fait une couche jaune liquide, qui est le beurre clarifié
3. à la base, il y a le "petit lait", qui est une solution aqueuse où sont dissous le lactose (le sucre du lait), des sels minéraux et des protéines (celles qui font noircir le beurre ordinaire quand on le cuit).

Préparer du beurre clarifié, clarifier du beurre, cela consiste à éliminer la couche supérieure, à décanter le récipient pour récupérer la couche liquide intermédiaire, et à séparer donc le petit lait qui est en bas du récipient.
 On notera que c'est dans la couche inférieure que se trouvent nombre de protéines qui peuvent être utilement employées en cuisine, d'autant que cette couche inférieure un goût remarquable.

Mais enfin, maintenant que nous avons clarifié le beurre, nous pouvons étudier expérimentalement le beurre clarifié.
La première des choses à faire, c'est de le refroidir, et nous le voyons reprendre une consistance solide et molle. Si nous refroidissons davantage, alors la consistance devient plus fermes et oui, il y a une évolution de la consistance entre les hautes températures et les basses températures, et inversement. Pour ce beurre clarifié, la fusion commence à - 10 degrés, et elle se termine à environ 55 degrés.

Car il a des composés du beurre qui fondent à -10 degrés, d'autres à -9 degrés, d'autres à moins 8 et ainsi de suite jusqu'à 55. Évidemment, plus il fait chaud, plus la proportion de  composés fondus dans la masse du beurre augmente, de sorte que le beurre devient de plus en plus mou.*







* Des collègues me font observer que les mélanges ne se comportent pas comme des sommes de composés isolés... mais c'est une naïveté de leur part de croire que j'ignore cela, car c'est un phénomène important pour la confection du chocolat. On lira avec intérêt : Kiyotaka Sato, Crystallization behaviour of fats and lipids ; a review,  Chemical Engineering Science 56 (2001) 2255-2265.
Et cela doit nous faire souvenir de la blague selon laquelle Dieu aurait créé le professeur d'université pour couronner la création... mais le Diable aurait créé le "cher collègue" ;-)

mardi 7 juillet 2020

L'ébullition


Parmi les changements d'état, il y a le passage de l'état liquide à l'état gazeux, qui a pour nom "évaporation". Et c'est ainsi que l'eau s'évapore à toute température, par exemple.

Cette évaporation diffère de l'ébullition, transition qui, elle, s'effectue à la température fixe  de 100 degrés.

 
Mais rien ne vaut l'expérience qui consister à chauffer de l'eau après y avoir mis un thermomètre.

On rappelle que l'eau est un composé pur, ce qui signifie qu'elle est fait d'une myriade d'objets tous identiques, qui sont des "molécules d'eau".

L'eau n'est pas "une molécule", comme certains le disent certains de façon erronée, mais c'est un composé fait d'un nombre immense de molécules. Et c'est parce que ces molécules sont identiques que l'eau est ce que l'on nomme un composé, ou espèce chimique.
Je parle bien sûr de l'eau pure, et non pas de l'eau du robinet, qui doit son goût à de nombreux "ions" et autres molécules, qui y sont dissous.

Soit donc une casserole d'eau que l'on chauffe, un thermomètre plongé dedans. On voit la température de l'eau passer lentement de 20 degrés à 21 degrés, à 22 degrés, à 23 degrés, etc.

Vers 50 degrés, on commence à voir une fumée bleutée : l'eau commence à s'évaporer notablement, et la vapeur se recondense en microscopiques gouttes de liquide, en arrivant dans l'air plus froid.

Et, finalement, on atteint des températures plus élevées :  70, 80, 90, 91, 92,  93... Et, dans les conditions habituelles, on ne dépasse pas 100 degrés : on a beau pousser le feu, l'ébullition se fait plus tumultueuse mais la température est toujours de 100 degrés, preuve qu'il faut beaucoup d'énergie pour arriver à évaporer l'eau.

En terme microscopiques, cela signifie que l'on a agité les molécules d'eau au point qu'elle puissent se détacher les unes des autres. Et il faut beaucoup d'énergie, car elles "collent" énergiquement.

Voilà pour l'ébullition. Et cette dernière engendre donc de la vapeur, à savoir un gaz, c'est-à-dire un ensemble de molécules d'eau assez éloignées les unes des autres. La vapeur est incolore, invisible... mais quand les molécules d'eau évaporées arrivent  dans l'air,  plus froid, elles n'ont plus assez d'énergie pour rester en phase liquide, et elles forment de petites gouttelettes,  qui sont la raison pour laquelle on voit cette fumée blanche au-dessus des casseroles.
J'insiste : ce que l'on voit, ce n'est pas la vapeur, mais des gouttes d'eau, comme dans les nuages.

Tiens, pour terminer, ajoutons quand même que, dans toute cette affaire, il n'y a pas de réarrangement d'atomes  : les molécules d'eau dans l'eau liquide sont les mêmes qu'en phase vapeur. Et il n'y aura pas d'usure à répéter évaporation et condensation, autant de fois que l'on voudra.


lundi 6 juillet 2020

À propos de distillation : prenons garde aux premières fractions



 Certains de mes amis qui distillent ont appris des anciens à ne pas conserver le liquide qui se condense immédiatement après le début de l'opération : on leur a dit que cette fraction contenait des composés toxiques, et, bien que cela apparaisse comme une "perte", ils ont à coeur de bien faire. Certains jettent un verre de liquide, et d'autres, qui veulent faire mieux, jettent jusqu'à un demi litre (d'accord, cela dépend de l'installation, mais je donne une indication pour fixer les idées).

Pour autant, je sais que beaucoup font cela parce qu'ils reproduisent des pratiques qu'on leur a montrées, et pas parce qu'ils comprennent le mécanisme de la chose. Or je crois que rien ne vaut une bonne explication, en plus de la démonstration de l'opération.

Commençons donc par un marc,  c'est-à-dire le résidu d'une fermentation de raisin pressé. Il y a une partie solide, et il y a une partie liquide, et, dans tout cela, il y a des composés odorants, des composés sapides, des composés frais ou piquants que l'on veut récupérer...  avec l'alcool : le but de l'opération, c'est de passer de 10 pour cent en volume d'alcool à 40 à 50 pour cent, en évaporant du liquide sans évaporer de l'eau.

Il faut immédiatement ajouter que l' "alcool" dont on parle ainsi est l'alcool éthylique, ou éthanol. On le nommait jamais "esprit de vin". On sait qu'il est toxique, mais on aime le boire parce qu'il engendre une sensation de bien être... quand c'est avec modération, en plus d'un goût remarquable.

A ne pas confondre avec un autre composés de la même famille des alcools, le méthanol (notons le m en début de mot), ou alcool méthylique, ou encore esprit de bois. Dans les jus fermentés, l'alcool éthylique (l'éthanol) est majoritaire, et il y a du méthanol en moindre quantité.

J'insiste un peu : l'éthanol est un composé merveilleux (avec modération toutefois), parce qu'il donne du peps à des breuvage. Il provoque un sentiment d'euphorie, à petite dose, la seule à laquelle un vrai gourmand le consomme.
En revanche, le méthanol est vraiment  terrible, et l'on n'insistera pas assez sur la différence entre l'éthanol et le méthanol même s'il n'y a qu'une lettre de différence pour la dénomination chimique.

Mais je m'arrête un peu à cette question de dénomination maintenant. Le premier alcool de la famille des alcools, c'est le méthanol, dont les molécules ne contiennent qu'un seul atome de carbone.
Ce méthanol, ou alcool méthylique, est aussi nommé esprit de bois, comme signalé précédemment, car on l'obtient notamment par la pyrolyse du bois : si on chauffe du bois à sec, se dégage du méthanol, et c'est ainsi qu'on l'a produit  pendant longtemps.

Le méthanol, répétons-le,  est toxique,  et l'on doit  absolument l'éviter dans les eaux-de-vie, blanches notamment, sous peine d'empoisonner ceux à qui on offre le breuvage. Il engendre, quand une dose commence à être un peu notable, une crispation des mâchoires, puis, à plus haute dose, il a des effets terribles.

Dans la famille chimique des alcools, après le méthanol, il y a donc l'éthanol, ou alcool éthylique, qui,  lui a 2 atomes de carbone dans sa molécule. C'est celui-là que l'on veut récupérer quand on distille :  dans un vin,  il y en a dix pour cent en volume environ,  et la distillation cherche à porter cette proportion à 40 ou 50 pour cent, ce que l'on nomme des degrés.

Mais, dans la famille des alcools, méthanol, puis éthanol, ne sont pas seuls : il y a aussi le propanol ou alcool propylique ;  le butanol ou alcool butylique ; pentanol, ou alcool pentylique ;  et ainsi de suite avec trois, quatre, cinq, six, sept, huit, etc.  atomes de carbone dans la molécule. Je fais simple, parce qu'il y a des complications : je veux seulement dire que la famille des alcools est immense.

Le distillateur empirique, "traditionnel",  se contente, pour un appareil donné, d'éliminer une certaine quantité du produit qui est distillé en début d'opération  : un verre, un demi litre... Et effectivement, le méthanol bout à une température  de 65 degrés, alors que l'éthanol, lui, bout à la température de 79 degrés.
Bref, si l'on conduit doucement la distillation, c'est bien le méthanol qui part en premier, puis ensuite l'éthanol, et enfin l'eau vers 100 °C.
Ce que je dis là n'est pas parfaitement juste, comme on s'en doute quand on sait que le diable est caché dans les détails, mais c'est une idée qu'il faut certainement avoir pour commencer.

Une conclusion merveilleuse : si l'on introduit un thermomètre dans le système, on verra d'abord la température augmenter, puis se stabiliser un peu tant que du méthanol passe dans les vapeurs, et c'est ensuite que la température réaugmentera pour atteindre un nouveau palier, pendant lequel l'éthanol distille... avant que la température n'augmente à nouveau, jusqu'à atteindre les 100 degrés auxquels l'eau s'évapore.
Autrement dit,  l'usage du thermomètre qui facilite considérablement la conduite des opérations.

Je termine sur cette observation essentielle, qui est à la base de la distillation fractionnée  : généralement, les composés s'évaporent à une température d'ébullition fixe, et tant que le composé présent, alors la température d'ébullition change ne change guère.

Il y a donc mieux que la technique empirique, à condition de comprendre ce que l'on fait. Et c'est là un des apports (anciens) de la chimie. Le fait que ce que j'expose plus haut ne soit pas connu de tous doit nous faire réfléchir aux études que la nation organise pour les citoyens.


dimanche 5 juillet 2020

Les gels trop collés perdent-ils du goût ?


Les gels trop collés perdent-ils du goût ? Il y a dans cette question le mot technique "collé", qui signifie chargé d'agent gélifiant : pectine, gélatine, agar-agar, alginate, protéines...

Autrement dit, les gels qui doivent leur consistance à beaucoup d'agent gélifiant ont-ils moins de goût que les gels fait du même agent gélifiant en moindre quantité ? La réponse est oui :  des gels trop collés perdent du goût.

Mais restons sur cette question des gels. On connaît classiquement les gels de gélatine, ou aspics, ou encore les gelées de fruit, pour lesquelles l'agent gélifiant n'est plus la gélatine, extraite des tissus animaux, mais la pectine, extraite des fruits ou des légumes.
Mais il y a bien d'autres "gels" : on désigne sous ce nom un liquide tenu par un "réseau" (comme un filet à trois dimensions), qui empêche le liquide de couler.
Dans les gels de gélatine, c'est la gélatine qui forme un tel réseau (pensons "échaffaudage"). Dans les confitures, marmelades ou gelées, c'est la pectine, comme dit précédemment. Dans le yaourt, ce sont les protéines ("caséines"). Dans le blanc d'oeuf qui a cuit sur le plat (par exemple), ce sont les protéines du blanc d'oeuf ; dans le jaune d'oeuf cuit, ce sont les protéines du jaune d'oeuf. Dans les terrines de viande ou de poisson, ce sont des protéines nommées actines ou myosines.
Et il y a encore bien d'autres possibilités : agar-agar, carraghénanes, etc.

On comprend que plus le réseau est "serré", plus le gel est ferme : le liquide est mieux tenu.
Par exemple, un blanc d'oeuf bien cuit est plus ferme que le même blanc d'oeuf additionné d'une fois son volume d'eau et cuit dans les mêmes conditions que le premier. Autrement dit, plus il y a d'agent gélifiant dans un gel, et plus il est ferme.

D'accord pour la fermeté, mais le goût ?

Il est dû à des composés sapides, à des composés odorants, et à des composés qui stimulent d'autres récepteurs, tels ceux du piquant ou du frais, par exemple.
Or pour agir, ces composés doivent être libérés, pour aller se lier à des récepteurs (des sortes de "serrures", à la surface des muqueuses de notre bouche ou de notre nez). Pensons que les molécules de ces composés sont comme des poissons au milieu d'une mer grouillante de molécules d'eau, le tout dans le "filet" formé par l'agent gélifiant.

Les "poissons" sont un peu tenus par l'eau, mais beaucoup par l'eau tenue elle-même par l'agent gélifiant.
Bref, les molécules qui ont une action gustative sont moins libres quand elles sont dans une gelée fortement collée. Le gel plus collé a moins de goût.

A cette première considération de liaison entre les molécules du goût et le réseau formé par l'agent gélifiant s'ajoute le fait que certains gels fondent quand on les chauffe, notamment dans la bouche. C'est le cas en particulier pour la gélatine dont les gels fondent vers 36-37 degrés. Mais bien sûr, la fonte se fait plus facilement quand il y a moins d'agent gélifiant, plus rapidement. Avec plus d'agent gélifiant, les fragments de gels formés par la mastication n'ont pas le temps de fondre avant de passer dans l'estomac... sans libérer leur charge gustative.

Et il y a encore d'autres mécanismes, mais ce serait entrer dans trop de détails.

Bref, ne collons pas trop les gels si nous leur voulons du goût, ou bien augmentons la charge gustative pour les gels fortement collés... et en tout cas, mastiquons lentement : c'est là le signe de la véritable gourmandise.

Dans un gel de gélatine, les molécules de gélatine forment un réseau qui piège les molécules d'eau... ainsi que les molécules qui donnent du goût. Plus sur cette question dans "Mon histoire de cuisine" (Belin, Paris)

samedi 4 juillet 2020

Sport et sciences de la nature


Il y a dans notre monde bien des phénomènes que je ne comprends pas, et l'un d'entre eux est le suivant :  il y a quelques années, dans une ville de France qui n'est pas Paris, une équipe de sport est devenue championne de France, et  l'école de chimie -une école d'ingénieurs- de cette ville est montée dans le classement national.

Mais commençons doucement, avec une incompréhension plus fondamentale : l'engouement pour le sport au point que la vie s'y centre. Je comprends que l'on puisse avoir envie d'avoir un corpore sano à côté d'un mens sana, un corps sain pour abriter un esprit sain, mais je vois une différence entre faire du sport, faire de la compétition, ou encourager des sportifs.

Faire du sport, je me suis exprimé : il est vrai que, parfois, on a besoin de prendre l'air, de bouger, respirer profondément... Il est vrai que l'exercice modéré évite l'obésité et son cortège de maladies.
Mais faire de la compétition ? Pour quoi ? Quel est l'objectif ? Et puis, je vois tant de personnes qui font cela sans avoir d'autre chance que d'être un "champion" tout à fait local... Oui, pourquoi ? Pourquoi s'engager avec insuffisamment d'engagement dans un voie où l'on restera médiocre ?

Supporter (encourager), enfin ? Je veux bien que l'on aille encourager des enfants, des amis... mais je crois voir surtout la force de la socialité, dans cette affaire. L'être humain étant un être social, il y a des mécanismes de récompense quand il est en groupe ;  et comment être plus en groupe que dans un stade,  à des milliers ? Or si l'humain est social, les fourmis le sont aussi : nous résignerons-nous à de l'animalité ?
Bien sûr, j'ai le sentiment d'être très "innocent", et  j'attends que mes amis m'éclairent un peu, corrigent mes analyses précédentes. D'ailleurs, à propos du sport, je me souviens avoir entendu des collègues professeurs me dire que le sport d'équipe renforce la cohésion et  contribue à enseigner le travail en groupe. Pourquoi pas, donc, mais mon collègue n'était-il pas en train d'habiller de mauvaises raisons un goût personnel ?

Je reviens maintenant à ma question initiale qui était d'observer cette promotion d'une école de chimie, dans une ville où une équipe sportive était devenue championne de France. En quoi  les capacités sportives d'une équipe d'une ville améliorent-elles l'école de chimie ? Les locaux n'ont pas changé, ni les professeurs... En quoi la carrière  ultérieure des étudiants sera-t-elle améliorée par le classement de l'équipe de sport ?
Je compte sur mes amis pour m'expliquer  : n'hésitez pas à mettre des commentaires sur ce blog.


vendredi 3 juillet 2020

Une amusante question à propos des rapports entre la science et l'industrie


Ailleurs, j'ai décrit un tableau à cinq colonnes pour mieux coordonner les relations de la science et de l'industrie.
En substance, j'y dis que la science doit produire des connaissances nouvelles,  et non pas faire le travail de l'industrie, même si on lui propose de l'argent pour cela. En revanche, il est inutile que l'industrie fasse de la science, puisqu'elle la subventionne par ses impôts, mais c'est un gâchis si elle n'utilise pas les résultats (publics) de la science pour faire de l'innovation.
Et dans le cadre de contrats particuliers, on peut t'imaginer que les scientifiques et les industriels se retrouvent pour imaginer ensemble des applications des résultats scientifiques. L'investissement en temps et compétence des scientifiques, lors de ces collaborations, doit  évidemment être assorti d'une rétribution du laboratoire par les industriels qui feront tout usage des connaissances et des compétences des scientifiques.

M'arrive aujourd'hui le cas amusant -mais ce n'est pas la première fois que je le rencontre et c'est pour cela que je l'évoque-  d'un étudiant qui est en stage de fin d'études dans une société industrielle et qui me consulte à propos du sujet -technologique donc- qui lui a été confié.
Cet étudiant ayant assisté à mes cours, il a compris que j'étais capable de résoudre le problème qui lui a été confié, même si c'est un problème technologique,  et donc en dehors du champ scientifique auquel je dois me consacrer.
Cet étudiant me demande de l'aider à résoudre le problème posé.


Bien sûr, mon bon cœur, et peut-être un atavisme d'enseignant, pour lequel une question d'un étudiant est un torchon rouge devant le taureau, me poussent à l'aider. Mais faut-il vraiment que je fasse cela ?
Si je résolvais son problème (et c'est facile pour moi), alors l'industriel qui emploie cet étudiant recevrait à titre gratuit l'information technologique que je lui donnerais... sans que mon laboratoire reçoive rien en échange : ce serait injuste... et l'argent de l'état serait mal employé, puisque mon temps et ma compétences seraient donnés dans un cadre non légal.

Il y a donc lieu de cadrer les choses  : puisque l'étudiant est mandaté par l'industriel, ce n'est plus un de mes étudiants, mais un personnel de la société qui l'emploie. D'ailleurs, l'étudiant ferait une faute professionnelle en me confiant les données du problème, car cela relève de la confidentialité industrielle à laquelle il s'est sans doute engagé !
Pour me donner de l'information, l'étudiant doit me faire signer un contrat de confidentialité... que je ferais assortir d'une rétribution (à mon laboratoire) de mes temps et compétences.
Bref, il y a lieu de ne pas nous comporter, ni moi ni lui, comme les professeur et étudiant que nous étions, parce que nous ne sommes plus cela. Il est maintenant un employé de l'industrie, et je suis un chercher, et non plus un professeur.

Moralité : parce que je suis "aimable", j'ai envoyé à l'étudiant des documents publics, à savoir ceux que je distribue lors de mes cours, et qui ont un rapport avec le problème posé, et j'ai engagé mon jeune ami à proposer à sa hiérarchie de me proposer un contrat de collaboration.
J'ajoute d'ailleurs que j'ai indiqué qu'il serait plus intéressant pour l'industriel de payer une thèse qu'une rémunération sèche : lors de la thèse, le doctorant sera formé, de sorte que l'industrie récupérera à la fois des résultats de la thèse et d'un personnel (bien) formé.

jeudi 2 juillet 2020

Répondre à une question

 Souvent, dans mon groupe de recherche, je discute la question de répondre à des questions. On pourra se reporter à un billet où j'avais discuté la question de répondre à un examinateur.
Dans les deux cas, il faut donc faire une réponse. Cela signifie que l'on part d'un point,  qui est celui qui correspond à l'énonciation de la question,  et que l'on doit arriver au point où la réponse à la question  est donnée.
Une fois l'objectif déterminer, il faut considérer le chemin et le mode de transport  :  à pied, en vélo, en train, en avion.. avec l'idée supplémentaire que  souvent le chemin et le mode de transport vont de pair, comme on le sait parfaitement quand on utilise une carte GPS qui vous propose un itinéraire différent selon qu'on est à pied, ce qui permet de prendre des sens interdits aux voitures, ou en voiture.

Mais imaginons le cas où l'on ne sait pas l'objectif, ce qui correspond au fait de ne pas savoir la réponse à une question :  par exemple, dans un examen, quand on ne sait pas répondre à un examinateur.

Il y a un type de personnes qui cachent leur ignorance, et cela est le pire, car il y a du mensonge dans cette façon de faire, de la malhonnêteté. Moi, examinateur devant donner une note entre 0 et 20, je mettrais volontiers - 5 ou - 10 selon le degré de malhonnêteté qui est employée.
L'humour, en particulier, ne vaut rien ; les mots approximatif non plus, et il y a beaucoup de naïveté à croire que l'on peut véritablement tromper l'examinateur avec les artifices de ce genre.

Un peu mieux, c'est l'honnêteté de dire "je ne sais pas". Mais ce n'est pas très malin, car on recueille un zéro sec. Certes,  cela ne porte pas à conséquence morale, et en tout cas on est pas ensuite crédité de  la réputation de malhonnêteté, ce qui est déjà beaucoup, mais quand même, on échoue.

Puis vient une méthode bien meilleure, qui consiste analyser à voix haute la question à laquelle on ne sait pas répondre, et, progressivement, à élaborer devait l'examinateur une réponse, en faisant état de ce qu'on sait.
Car, au fond, les examinateurs ont  bon cœur  : ils aimeraient tant  que les étudiants réussissent !  De sorte qu'ils sont à l'affût de la moindre possibilité de les aider, de leur donner des points.
Surtout, un étudiant qui, face à un problème, l'analyse, le décortique, cherche des ressources pour le résoudre, structure ce cheminement, sera immensément apprécié pour cette capacité précisément analytique, précise, un peu savante, de répondre à la question .
D'ailleurs, parfois il est moins important de répondre à la question que de cheminer de façon intelligente et c'est en réalité cela que je propose  : cheminer de façon intelligente, à haute voix, devant l'examinateur. Certes, on pourra peut-être ne pas répondre à la question, mais, en tout cas, on aura bien identifié à la fois une stratégie de réponse, des possibilités d'amélioration personnelle, et, peut-être même que dans certains cas, l'analyse aura conduit à l'invention de la réponse que l'on n'avait pas.
Ainsi, dans plusieurs dialogues de Platon, et notamment dans le Thététète, Socrate interrogeant un interlocuteur, lui fait "accoucher" d'une réponse que cet interlocuteur ne savait pas avoir. Cette méthode de la "maïeutique" peut se faire avec un interlocuteur,  mais nous pouvons aussi apprendre à nous la faire à nous-même à haute voix, devant un témoin, l'examinateur par exemple.


jeudi 25 juin 2020

C'est en ligne

La société Conférentia m'envoie pour diffusion le lien de ma conférence de lundi 22 juin 2020 :

https://www.facebook.com/watch/live/?v=735829623901313


bon visionnage

Un détail

Ce matin, un message de remerciements m'arrive :


Je vous remercie de m avoir accordé du temps, je ne serai peut-être pas sans reposer des questions. Je m'intéresse beaucoup à la science de mon métier et de nombreuses questions reste parfois sans réponses précises.

Et voici ma réponse très rapide :

Je trouve votre message avec le mot "science" au moment même où je retrouve un texte où je discutais Escoffier, qui prédisait à tort que la cuisine deviendrait un jour scientifique. Il avait tout confondu, parce que le mot science est ambigu : il y a du savoir de cuisinier, les cuisiniers peuvent avoir de la rigueur, mais cela ne suffit pas pour faire une "science de la nature", acception que vous utilisez très justement. 


Je crois avoir développé cela dans un texte des nouvelles gastronomiques, notamment. 

mardi 23 juin 2020

Mon petit marché

Je déteste l'à-peu-près, notamment terminologique, parce qu'il y a le risque que ma pensée soit flottante.

Et voici donc mon marché du jour :

critique

"Domaine des phénomènes physiol. ou naturels"
"Qui implique des suites de grande importance, dans un sens favorable ou défavorable. "
1762 « qui décide du sort de quelqu'un ou de quelque chose, qui amène un changement » (J.-J. ROUSSEAU, Émile, IV ds LITTRÉ);
"Qui a le don, le pouvoir de juger un être, une chose à sa juste valeur, de discerner ses mérites et défauts."
"Esprit critique. Esprit qui n'accepte aucune assertion sans contrôler la valeur de son contenu et son origine. "

peler

 Enlever (à quelque chose) sa partie superficielle.
Ôter la peau.


 
éplucher

Nettoyer en enlevant les déchets.


tronçon

Fragment, morceau coupé ou brisé d'un objet plus long que large.
Morceau tranché d'un animal au corps allongé et plus ou moins cylindrique.
du lat. pop. *trunceus « tronqué », dér. du lat. d'époque impériale truncus « id. ».


cylindre

Solide engendré par une droite qui se déplace parallèlement à un axe, en s'appuyant sur deux plans fixes

Hopla !

On me parle de respect...

... mais je n'oublie pas le sens des mots :

Empr. au lat. respectus (propr. « action de regarder en arrière ») « considération, égard » [respectu alicujus rei]

Si le respect, c'est du passéisme, cela ne me va pas. Et je n'oublie pas le "mandarinat" de l'université, pas encore si lointain !

Je "considère" ce qui en vaut la peine, pas la "position" (sociale), pas l'apparence, mais le contenu ! 

jeudi 18 juin 2020

La cuisson "idéale" de l'oeuf ? Hic et nunc !



Il y  a plusieurs décennies, j'avais inventé ce que j'avais nommé des "oeufs parfaits", et ces oeufs sont sur les tables du monde entier.
Non pas qu'ils soient "parfaits", car la perfection n'est pas de ce monde, et je me repens de ce nom, que mes amis acceptent, tout comme ils acceptent l'idéalité, par exemple. Je renvoie à Mon histoire de cuisine pour des discussions qui expliquent ce point, lequel remonte au moins au débat des philosophes grecs de l'Antiquité Platon et Aristote.



En revanche, je réponds aujourd'hui à une question technique, à propos de ces oeufs :

Pour avoir une cuisson parfaite d’œufs de pintade qui ne sont pas calibrés et avec des coquilles d’épaisseurs très différentes, quelle température serait idéale ?

Ma réponse rapide est la suivante

Pour les cuisson à basse température, le temps ne compte pas, tant qu'on atteint la température à coeur, soit 45 min pour un oeuf de poule. Et l'épaisseur de coquille ne joue pas : du moment que vous faites une cuisson d'environ 1 h, seule la température détermine le résultat.
Et l'Idéal n'existe pas : il y a un idéal par personne, et d'ailleurs changeant selon les circonstances, les accompagnements de l'oeuf, etc.

Il faut quand même expliquer


Pour les oeufs, la découverte de mes "oeufs parfaits" s'explique plus facilement quand on considère le blanc. Ce dernier est fait de molécules d'eau, qui "grouillent", et de protéines, analogues à de minuscules colliers de perles tassés sur eux-mêmes, dispersés parmi les molécules d'eau.
Il y a une vingtaine de protéines différentes, dans le blanc, c'est-à-dire une vingtaine de sortes de colliers de perles. Mais, de même qu'il y a des milliards de milliards, etc. de molécules d'eau, dans un blanc d'oeuf, il y a des milliards de molécules de protéines pour chacune des sortes de protéines.
Quand on chauffe, on augmente la vitesse du grouillement, et les chocs des molécules d'eau contre les colliers de perles les déroulent. Et à chaque sorte de protéines, une température particulière à laquelle les molécules de cette sorte de protéines se déroulent. Autrement dit, il y a des températures différentes de "déroulement" des protéines.



Ce que l'on doit ajouter, c'est que pour certaines protéines, le déroulement permet ensuite que les protéines déroulées s'attachent, formant un "réseau" : pensons à une toile d'araignée dans tous les sens, dans une pièce. L'eau est piégée comme des mouches dans ce réseau. L'ensemble est dit "coagulé", et l'on obtient un solide mou.
De sorte que, quand on chauffe un blanc d'oeuf, à partir de la température ambiante, vient un moment (vers 62 °C pour le blanc d'oeuf de poule) où une première sorte de protéine coagule, et l'on obtient un solide blanc laiteux très mou. Puis, si l'on augmente encore la température, vient un moment où une deuxième sorte de protéines coagule, et le blanc d'oeuf, avec deux réseaux imbriqués, est plus dur. Et ainsi de suite.
On observe que, dans cette description, n'intervient que la température, et pas le temps ! Et voici la raison pour laquelle les oeufs à basse température doivent être cuits longtemps. C'est aussi un avantage, parce que si l'on règle bien la température, une heure de cuisson de plus ou de moins ne changeront rien... à condition que l'on ait atteint la température voulue à coeur, ce qui nécessite environ une heure pour des oeufs de poule.
Et évidemment, avec une telle durée, l'épaisseur de la coquille n'a aucune influence.

Et pour l' "idéalité" ?


Initialement, j'avais donc utilisé le mot "parfait" pour prendre le contrepied des mauvais oeufs durs : blanc caoutchouteux, jaune sableux, odeur soufrée, cerne vert horrible... Mais j'avais attribué ce qualificatif à des oeufs à 65 °C. Or je préfère aujourd'hui de loin les oeufs à 67 °C. Ou, disons plutôt que je choisis la température de cuisson en fonction des plats que je fais. Parfois, il faudra un oeuf à 65, comme pour dans une meurette ; parfois, il faudra à 68, comme quand on roule le jaune dans du parmesan salé et poivré ; parfois il faudra 82, comme quand on sert une mayonnaise ; etc. Chaque oeuf a  son intérêt, en fonction du contexte où il est utilisé.
Et puis, mon humeur peut changer ! Parfois, j'ai envie des oeufs à 63 °C, et parfois à 68 °C.
Et puis, le goût des convives peut différer, aussi.
Bref, pas de perfection absolue, pas d'idéalité !

Et c'est ainsi que l'art culinaire est merveilleux, n'est ce pas ?




dimanche 14 juin 2020

Du sel à partir d'un acide et d'une base

Note importante : 
Quand nous expérimentons, prenons garde à ne pas nous empoisonner, car à plus ample informé, nous n'avons qu'une seule vie.Oui :
1. ne surtout jamais boire d'acide chlorhydrique concentré !!!!!!!!!!!!!!
2. idem pour la soude caustique
3. ne faire l'expérience de boire de l'eau salée éventuellement obtenue par neutralisation de l'acide chlorhydrique par la soude, ou inversement, que si l'on est parfaitement sûr de ce que l'on a fait, si les réactifs sont tous "food grade", c'est-à-dire de qualité alimentaire, et si l'on a contrôlé la neutralisation avec papier pH ou pH-mètre.
Bref, être prudent !



Disons-le d'emblée : de la soude caustique à de l'acide chlorhydrique, cela fait du sel. Oui du sel, comme le sel de cuisine, ce que les chimistes nomment du chlorure de sodium puisque ces cristaux que l'on manipule quotidiennement, blancs parce qu'ils sont très purs, contiennent quasi exclusivement deux types d'atomes qui sont nommés sodium et chlore.

Bien sûr il y a des subtilités, et notamment le fait que le sodium et le chlore sous sont sous la forme d'ions, ayant échangé un objet que l'on nomme un électron, mais ne nous encombrons pas de cela maintenant.

La soude caustique, ce sont souvent des paillettes ou des petits granules, qui sont composé de trois sortes d'atomes :  des atomes de sodium, des atomes d'oxygène et des atomes d'hydrogène.
Les atomes d'oxygène et d'hydrogène sont attachés ensemble par paires, avec un atome d'hydrogène et un atome d'oxygène, ce qui forme des assemblages nommés ions hydroxyde.

Et dans un cristal de soude caustique, les atomes de sodium et les assemblages hydrogène+oxygène s'empilent  régulièrement, en en alternance.

Quand on met de la soude caustique dans de l'eau, les molécules d'eau viennent cogner le cristal d'hydroxyde de sodium, le desorganisant,  et l'on se retrouve avec de l'eau, une masse de molécules grouillantes au milieu desquelles sont dispersés des ions sodium et des ions hydroxyde.

Pour l'acide chlorhydrique, c'est un peu la même chose. On pourrait partir de deux gaz, le dichlore et le dihydrogène. Si on les fait réagir, on obtient  un  gaz un nommé chlorure d'hydrogène : https://www.youtube.com/watch?v=YXsFjHK7fJ0
Les molécules de chlorure d'hydrogène sont faites d'un atome d'hydrogène et d'un atome de chlore. Là encore, il y a l'échange d'un électron entre ces deux types d'objets, mais peu importe.
Et quand on met ce gaz en présence d'eau, alors il se dissout immédiatement, et l'on récupère une solution acide nommée acide chlorhydrique.

Et nous arrivons au point que je visais : quand nous mélangeons les deux solutions de soude et d'acide chlorhydrique, il se passe   la chose suivante  : les ions hydroxydes venus de la soude se lient aux atomes d'hydrogène apportées par le chlorure d'hydrogène et ils forment ensemble des molécules d'eau, qui s'ajoute à l'eau.
Dans cette eau, on trouve aussi des atomes de sodium, et des atomes de chlore... de sorte que si l'on évapore l'eau, il reste... du chlorure de sodium. Oui, du sel, mais du sel parfaitement pur, bien plus pur que les sels de mer ou les sel gemmes !

Et pour finir :
Note importante : 
Quand nous expérimentons, prenons garde à ne pas nous empoisonner, car à plus ample informé, nous n'avons qu'une seule vie.Oui :
1. ne surtout jamais boire d'acide chlorhydrique concentré !!!!!!!!!!!!!!
2. idem pour la soude caustique
3. ne faire l'expérience de boire de l'eau salée éventuellement obtenue par neutralisation de l'acide chlorhydrique par la soude, ou inversement, que si l'on est parfaitement sûr de ce que l'on a fait, si les réactifs sont tous "food grade", c'est-à-dire de qualité alimentaire, et si l'on a contrôlé la neutralisation avec papier pH ou pH-mètre.
Bref, être prudent !





samedi 13 juin 2020

A propos de vitrification des sirops



Dan la série des changements d'état, il y avait donc ce passage de l'état liquide à l'état solide, que nous avons considéré à partir d'eau pure, tout d'abord, puis à partir d'eau salée. Dans le premier cas, il était question de solidification de l'eau, et dans le second, il y avait la précipitation du sel.
Pour ce second cas, j'avais annoncé que le sel cristallise sous la forme d'objets ayant des formes  régulières, des facettes planes, que l'on peut d'ailleurs explorer avec des méthodes physique tel des rayons X,  et l'on voit alors que les cristaux sont des réseaux, des empilements réguliers, comme des jeux de cubes,  des différents atomes, en l'occurrence les atomes de sodium et les atomes de chlore.
Avec la vitrification, il y a encore une solidification à partir d'un liquide, mais cette fois, il n'y a pas de cristaux réguliers.

Commençons par le mot vitrification  : on entend le mot "vitre", qui évoque le verre,  et il est vrai que le verre à vitres s'obtient quand on chauffe un mélange de différents minéraux, essentiellement de la silice, puis quand on le fait refroidir : on obtient alors les verres des vitres. Ce sont des matériaux transparents, mais qui n'ont pas des faces régulières.

On peut faire de même avec du sucre et de l'eau. Si l'on prend de l'eau, et qu'on y met du sucre, le chauffage commence dissoudre le sucre dans l'eau : à ce stade, on a des molécules de saccharose au milieu des molécules d'eau. Et tout cela bouge à une vitesse qui augmente avec la température.

Si l'on verse un peu de ce sirop sur un plan de travail froid (le "marbre" des confiseurs), alors le sirop s'étale et il reste généralement mou, liquide avec un peu de viscosité.

Si l'on continue de chauffer le sirop, la température monte : 105, 110, 115... Et si on le verse à nouveau sur le marbre, il se forme, après refroidissement, un matériaux solide,  vitreux, sans arêtes régulières, transparent.

Et si l'on porte à plus que 127 °C,  on obtient encore le même type de sol, mais il y a alors une recristallisation  rapide.

Les yeux ne suffisent pas le pour le voir, mais les rayons X permettent de voir les empilements d'atomes : dans un cristal, ces empilements sont réguliers, mais dans les verres de sucre précédents,  on n'en voit pas. La solidification rapide des sirops ne permet pas aux molécules de saccharose de bouger assez vite pour se répartir régulièrement à la surface de cristaux, de sorte qu'elles restent piégées dans des positions aléatoires. De même, avec de la silice, de l'oxyde de silicium, on peut très bien obtenir soit des cristaux et ça nous rappelle alors les cristaux de roche,  ou bien nos vitres. Le phénomène est le même,  très général.

Pourquoi se préoccuper de ces vitrifications en cuisine ? On en rencontre lors de la confection des meringues italiennes, préparations où l'on mélange un sirop de sucre à du blanc d'oeuf battu en neige.
Quand le  sirop et léger, qu'il y a encore beaucoup d'eau,  son refroidissement conduit à une espèce de pâte molle, et le battage permet de disperser le sirop conversion lentement sur le blanc en neige.
En revanche, quand on a chauffé davantage, et que le sirop est au stade où il aurait vitrifié sur le marbre, alors le verser dans le blanc en neige conduit à cette vitrification, et l'on récupère des morceaux durs, cassants, dans l' œuf battu, ce qui n'est pas le but. Il faut donc cuire les sirop correctement pour faire des meringue italienne et une température de 120 à 125 degrés convient parfaitement.


vendredi 12 juin 2020

Pour les jours qui viennent


Mon cours de gastronomie moléculaire de 2020 sera une série d'expérience de physique et, surtout, de chimie, pour bien montrer des effets utiles à tous les cuisiniers.

Nous terminerons par le plus important, ce que j'avais nommé les "14 commandements de la cuisine" dans mon livre Mon histoire de cuisine.

Que sont ces "commandements" ? Non pas des ordres, bien sûr, mais plutôt des idées très simples, essentielles, pour bien faire la partie technique de la cuisine.
Car on se souvient que la cuisine à trois composantes  : à savoir une composante technique, une composante artistique, une composante de lien social.

Dans ce cours de 2020, je ne discuterai que la composante technique, parce que là, déjà, il y a beaucoup pas dire... comme je m'en suis aperçu récemment lors d'un d'une conférence filmée de l'Académie de l'agriculture, puis d'un séminaire en ligne pour mon propre laboratoire.
Dans le premier, j'expliquais qu'il fallait arrêter de parler à tort et à travers de réaction de Maillard, et, dans le second, j'expliquais comment on peut utiliser la technique d'analyse qu'est la résonance magnétique nucléaire. Dans les deux cas, j'ai voulu faire du simple, du très simple, de l'extrêment clair... et j'ai eu le plaisir de constater, par de nombreuses réactions très positives, que j'avais bien plus rendu service que si je m'étais adressé à moi-même, que si j'avais voulu en imposer par mon savoir !

Oui, décidément, la clarté est la politesse de ceux qui s'expriment en public, comme disait l'astronome François Arago, mais mieux encore : c'est la condition de communications scientifiques réussies.

Et cela me conforte dans le choix que j'ai fait, pour le cours 2020 de gastronomie moléculaire : nous partirons d'expériences, qui nous conduirons à nos 14 commandements.

Reste à fixer la date, et prévoir de bien filmer tout cela, afin de le mettre en ligne.
Et puis, dans les jours qui vont suivre, faire des billets relatifs à chacune de ces expériences !

A propos de distillations



1. À propos de changement d'état, nous avons considéré l'évaporation mais nous ne sommes pas encore revenus à la liquéfaction d'un gaz.
Je le prends d'abord du point de vue de l'équilibre la système, puis dans une exception un peu différente.

2. Considérons d'abord un récipient en verre, empli à moitié d'eau (et le reste de l'air) que nos chauffons.

3. Progressivement, de l'eau qui s'évapore  entraîne l'air vers le haut, de sorte que le récipient sera bientôt pour partie plein d'eau et pour partie plein de vapeur d'eau.

4. Quand nous fermons le récipient, puis que nous cessons de chauffer, les molécules d'eau (il n'y a plus que cela dans le récipient fermé) se répartissent donc entre la phase liquide et la phase gazeuse.
Oui, dans le récipient, ce qui n'est pas de l'eau liquide est de la vapeur d'eau, et d'ailleurs sous une pression réduite, puisque, après avoir fermé le récipient, la vapeur s'est en partie recondensée en eau liquide, ce dont on pourra s'assurer en essayant de retirer le bouchon... et l'on n'y arrivera pas, car si l'on se souvient de l'expérience des sphères de Magdebourg, on saura qu'il faut deux attelages de chevaux puissants pour y parvenir. Voir par exemple : https://www.youtube.com/watch?v=mrXxHBi0F8U.
Pour ceux qui veulent le calculer, il y a la pression atmosphérique à vaincre, et à appliquer la relation entre la force et la surface. Ici, les chevaux doivent lutter contre la pression atmosphérique, dont on sait qu'elle est égale à  100 000 pascals.

5. La raison du "vide" fait dans notre ballon, c'est que l'eau liquide prend environ mille fois moins de place que la vapeur : quand on refroidit, après avoir bouché, tout le volume de vapeur se réduit ensuite à un millière de lui-même. Du vide est donc créé.
Ou, plus exactement, s'installe alors, à la pression qui est celle du récipient clos, un équilibre, entre le liquide et la vapeur : des molécules s'évaporent, et d'autres viennent se condenser.

6. Proches de ces liquéfactions ou évaporations, parce qu'elles y interviennent, il y a a diverses méthodes de distillation  : simple, fractionnée,  sous vide, par entraînement  à la vapeur d'eau... Mais je propose d'en rester à l'expérience la plus simple, qui consiste à us surmonter ballon en verre d'une colonne, laquelle conduit à un réfrigérant. Le liquide s'évapore, monte dans la colonne, arrive dans le réfrigérant, et retombe à côté  : évaporation, puis liquéfaction.

7. Avec de l'eau salée, par exemple, on peut ainsi récupérer de l'eau parfaitement pure, car le sel ne s'évapore pas... Raison pour laquelle il est inutile de saler l'eau dans un cuit-tout à la vapeur.

8. Mais avec un mélange d'eau et d'éthanol (l'"alcool"), alors l'éthanol s'évapore dès 76 °C, et c'est lui qui part le premier, pour aller se condenser, formant un distillat plus concentré en alcool.
Dans ce cas, le distillat contient encore un peu d'eau, puisque l'éthanol qui a été évaporé a entraîné l'eau qui était en phase vapeur (on se souvient de la première expérience qu'il y en a toujours).

9. Bref, bien difficile de faire de l'alcool absolu, parfaitement pur. Et, en pratique, on le fait en éliminant l'eau à l'aide de métaux (tel le sodium) que l'on met dans l'alcool absolu.

10. Avec un mélange de plusieurs composés, la distillation fait un fractionnement : on part d'un mélange, et l'on obtient des "fractions". C'est d'ailleurs ce que nous avons déjà évoqué à propos de sel et de sucre : leur cristallisation conduit à la formation de cristaux "purs", par "cristallisation fractionnée".

11. Et d'ailleurs, c'est le lieu de signaler que l'on peut aussi fractionner un mélange d'eau et d'éthanol en le refroidissant à des températures où l'eau congère : si l'on enlève le glaçon formé, il reste de l'éthanol concentré. C'est ce que font certains Canadiens... avec un résultat différent de la distillation dans du cuivre, où le métal réagit avec certains composés. Mais évidemment, on pourra aussi chauffer le mélange dans du cuivre, avant de le congeler... sans oublier que la loi interdit de faire ses petites distillations afin de produire de l'alcool.

mercredi 10 juin 2020

Cristallisation


Dans la série des changements d'état, il y a le passage d'une solution à un solide,  la formation de cristaux, ou cristallisation.
Rien de plus simple que d'explorer d'abord ce phénomène avec de l'eau salée. On met de l'eau dans une casserole ou dans une poêle, on ajoute du sel, et l'on chauffe :  l'eau chauffe d'abord doucement, s'évapore progressivement, et le sel se concentre. Quand la  concentration en sel dépasse la saturation, soit environ  300 grammes de sel par litre, le sel précipite sous forme de cristaux.  C'est cela la cristallisation du sel.

Cette définition donnée, nous pouvons  maintenant entrer plus dans les détails. Ainsi, si le chauffage est très lent, de l'ordre de l'évaporation de la solution en plusieurs heures, alors on obtient de gros cristaux, de forme parfaitement régulière. Parfois, ces gros cristaux peuvent être des monocristaux, avec une forme très simple, aux faces toutes planes.
En revanche, si l'on chauffe bien plus énergiquement, alors on obtient une myriade de tout petits cristaux, et pas cette belle cristallisation que nous avions précédemment : les atomes de chlore et de sodium qui étaient dispersés dans l'eau (le sel de table, c'est un assemblage de ces deux types d'atomes) n'ont pas eu le temps de diffuser dans la solution pour aller s'empiler correctement sur les cristaux déjà formés, et la cristallisation s'est faite un peu n'importe comment, partout dans la casserole, avec des cristaux en concurrence les uns avec les autres.

mardi 9 juin 2020

Pour les jurys de dégustation

Dans des jurys de dégustation, je suis régulièrement atterré par l'incohérence des grilles d'évaluation qui me sont proposés : tout est mélangé, saveur, goût, consistance, et j'en passe. D'ailleurs j'observe que les jurés qui sont à ma table ont des acceptions parfaitement différentes des mots du goût, et que les notations sont du grand n'importe quoi. C'est à la fois arbitraire, injuste, inutile puisque incohérent... et à réformer sans attendre !

Mais je propose quand même de partir de plus important avant d'arriver au détail. Le plus important, c'est d'observer que la cuisine, c'est du lien social, de l'art, de la technique. De ce fait, on devrait toujours commencer une évaluation séparée selon ces trois axes :  lien social, art, technique.
Ensuite, et seulement ensuite, il y a les perceptions, et celles-ci peuvent-être plus ou moins analytiques, mais, en tout cas, elles devront être fondées sur des données récentes de physiologie sensorielle humaine, ce qui signifie que le plat pourra être évalué de la façon suivante :
- d'abord l'aspect visuel, avec les couleurs, les textures visuelles (rugueux, lisse, et cetera)
- puis les odeurs anténasales : ce que l'on sent quand le plat est sous notre nez, sans que l'on déguste;
- puis je propose que les jurés commencent par se pincer le nez avant de mettre en bouche la première bouchée ; mastiquant le nez bouché, ils ne percevront que la saveur, qu'ils pourront noter ;
- et, libérant le nez, ils auront la sensation complémentaire de l'odeur rétronasale, due aux molécules odorantes libérées par la mastication de l'aliment ; à noter que l'odeur rétronasale peut être différente de l'odeur anténasale
- ils pourront aussi noter la consistance, qui n'est pas la texture : la consistance, c'est la consistance, alors que la texture est individuelle, puisqu'elle dépend de celui qui mastique
- il pourra y avoir une analyse du piquant et du frais, ce que l'on nomme les sensations trigéminales
- et on pourra, si l'on veut, évaluer les températures
 - et, enfin, la totalité, c'est le goût.

Les voilà, les cases d'une évaluation bien faite, dans des conditions d'évaluation culinaire !