Affichage des articles dont le libellé est ébullition. Afficher tous les articles
Affichage des articles dont le libellé est ébullition. Afficher tous les articles

lundi 8 mai 2023

Pourquoi l'eau dans un verre disparaît-elle ?

Des  amis s'interrogent : si on laisse de l'eau dans un verre, dans une pièce à la température de 20 degrés, l'eau s'évaporera-t-elle ? 

Mes amis me rassurent en me disant qu'ils savent que oui, l'eau s'évaporera, mais ils sont confondus par le fait que la température d'ébullition soit de 100 degrés, alors que, dans la pièce, il n'en fait que 20 environ.


Je ne suis donc pas dans je ne suis donc pas fou quand je dis que les notions élémentaires de physique ne sont pas bien fixées ! 

 

D'ailleurs, dans la discussion qui précède mes explications, j'entends de mes amis des mots de trois syllabes... que mes amis ne différencient pas bien   : vaporisation, évaporation, ébullition...

D'ailleurs, dans un autre billet, j'avais également discuté le fait que certains de mes  amis avaient imaginé que les routes sèchent après la pluie était que l'eau parce que l'eau se serait infiltrée dans le sol... ce que j'avais réfuté en expliquant que le bitume est une émulsion et qu'il ne laisse pas passer l'eau.
Raison pour laquelle des torrents s'écoulent sans pouvoir s'infiltrer en cas de grosse pluie. 

 

Finalement, comment expliquer l'ensemble des phénomènes ? 

 

À la réflexion, je crois je crois que, vu l'incompréhension qui résulte des cours de thermodynamique classique, où l'on fait des bilans avec des mots de plus trop trois syllabes et où l'on cherche à faire écrire des formes différentielles... sans y arriver, il vaut bien mieux discuter les phénomènes en termes moléculaires, et d'abord sans calculer. 

L'eau, ce n'est pas "H2O" ;  c'est d'abord une substance matérielle qui  se trouve à l'état liquide dans certaines conditions de température et de pression. D'ailleurs, il y a lieu de s'étonner que l'eau puisse être solide (glace) basse température, liquide aux températures ambiantes, et sous la forme de vapeur à température supérieure. Cela se comprend si l'on se représente les molécules d'eau comme des boules de billard animées de vitesses différentes, dans toutes les directions. 

Pourquoi ces molécules ne quittent-elles pas le liquide pour aller dans l'air ? En réalité, certaines -les plus rapides- le quittent, et cela conduit à la lente évaporation de l'eau à température ambiante.
Il faut imaginer un caillou, une fusée : dans les deux cas, on les lance vers le haut, mais le caillou retombe, car sa vitesse n'est pas suffisante, alors que la fusée, dont la vitesse est supérieure à la vitesse de "libération", parvient à quitter la Terre pour l'espace. 

Pour l'eau, il en va de même : les molécules d'eau les plus lentes sont retenues par les forces d'attraction exercées par les molécules du liquide (ces forces sont notamment les "liaisons hydrogène"), mais certaines molécules plus rapides parviennent à s'échapper. 

C'est d'ailleurs un exercice de physique élémentaire amusant que de que de calculer cette vitesse de libération: il suffit de connaître la notion de travail d'une force, d'une part,  et la notion dénergie cinétique, d'autre part. 

 

Donc oui, dans un bol qui contient de l'eau, il y a des molécules plus ou moins rapides et les molécules les plus rapides, celles qui ont une vitesse supérieure à la vitesse de libération, peuvent quitter le bol pour partir dans l'atmosphère. En revanche, si le bol est fermé, par exemple par un film de cuisine transparent,  alors s'établira un équilibre entre l'eau liquide et l'air qui la surmonte, chargé de vapeur d'eau. D'ailleurs, on voit des gouttes d'eau sous le film  : n'est-ce pas une belle indication que la vapeur d'eau s'est alors recondensée. 

 

A tout cela, il faut ajouter la notion de "pression de vapeur saturante" : sous le film, la pression partielle de vapeur d'eau dépend de la température, augmentant avec la température jusqu'à atteindre pression atmosphérique quand la température atteint la température d'ébullition. 

D'ailleurs, dans une casserole d'eau que l'on chauffe, on voit bien les phénomènes : si on plonge un thermomètre dans l'eau, on voit la température augmenter, puis une fumée bleutée, puis blanche : c'est de la vapeur qui se recondense : la "fumée", ce n'est pas de la vapeur mais des gouttelettes d'eau recondensée, parce que la vapeur avait atteint l'air plus froid. 

Puis on voit des bulles au fond de la casserole, alors que la température n'est pas de 100 °C : ce sont les gaz dissous qui dégazent. 

 

Et l'on atteint la température de 100 °C : là, les bulles qui se forment au fond de la casserole sont des bulles de vapeur, et, ce qui est merveilleusement intéressant, c'est que, malgré l'énergie apportée, la température n'augmente plus. En effet, il faut beaucoup d'énergie pour permettre aux molécules d'eau de quitter l'eau, de vaincre les forces qui les retenaient. Et cette énergie a pour nom la "chaleur latente de vaporisation"

 

Tout cela me fait penser que l'on aurait dû commencer par expliquer avec les mains les phénomènes avant de calculer à l'aide de la thermodynamique classique. Sans quoi nos amis non seulement échouent à décrire les phénomènes mais en plus à les comprendre. Oui, comprenons le monde en termes moléculaires : vive la chimie !

dimanche 26 juillet 2020

Une solution qui bout


J'ai évoqué l'ébullition de l'eau, laquelle (l'eau, pas l'ébullition) est un composé pur, mais je n'ai pas considéré les solutions que sont l'eau salée ou l'eau sucrée.

Commençons par mettre du sel dans l'eau, et l'on voit la température descendre un peu, d'environ 1 degré : l'agitation de l'eau a diminué, parce qu'une partie de l'énergie de mouvement des molécules d'eau a été dépensée, pour séparer les atomes du sel.

Si l'on chauffe, la température augmente comme quand on chauffer de l'eau, mais cette fois, on peut  dépasser 100 °C, et atteindre une température légèrement supérieure de quelques degrés (deux ou trois), notamment quand la solution est saturée en sel.

En tout cas, ce n'est pas en mettant du sel dans l'eau que l'on obtiendra les  130 degrés qu'un cuisinier triplement étoilé a écrit que l'on atteindrait !

Bref, quelques degrés en plus de 100 °C, ce n'est pas grand-chose... mais évidemment on évitera de calibrer un thermomètre dans l'eau salée.

Bref une fois que cette température d'ébullition est atteinte, l'eau s'évapore régulièrement ,et rien ne change plus jusqu'au moment où la sursaturation apparaît, et où le sel se met à cristalliser, mais la température ne change pas.

Avec le sucre, c'est différent, car si le sel ne se dégrade pas la chaleur, le sucre lui, se transforme chimiquement : si l'on chauffe une solution d'eau sucrée, on voit  la température monter jusqu'à 100 degrés, mais avec l'évaporation de l'eau, on voit la température qui continue d'augmenter 102, 103, 104..  D'abord, a solution reste claire, mais la couleur peut changer (jaunir) tandis que l'apparence des bulles évolue.

La température augmente parce que la quantité d'eau diminue,  et l'on est moins dans une solution d'eau sucrée que dans un système nouveau avec des molécules d'eau et des molécules de saccharose (le sucre de table).

Le léger jaunissement que l'on observe est le signe d'une dégradation chimique des molécules de  saccharose, alors même que le saccharose se dissocie notamment en glucose et en fructose.






Puis, quand on atteint la température de 140 degrés environ,  la caramélisation a lieu. Cette fois, la dégradation est franche et elle correspond réaction très énergétique,  qui a été largement étudiée par notre collègue de Grenoble Jacques Defaye.

Mais je n'entre pas dans les détails,  puisque nous sommes ici dans un billet d'expérimentation. Et je me limite à dire ici que cette caramélisation est une réaction plus énergétique que ne le feraient des chimistes dans leurs laboratoires.

mardi 7 juillet 2020

L'ébullition


Parmi les changements d'état, il y a le passage de l'état liquide à l'état gazeux, qui a pour nom "évaporation". Et c'est ainsi que l'eau s'évapore à toute température, par exemple.

Cette évaporation diffère de l'ébullition, transition qui, elle, s'effectue à la température fixe  de 100 degrés.

 
Mais rien ne vaut l'expérience qui consister à chauffer de l'eau après y avoir mis un thermomètre.

On rappelle que l'eau est un composé pur, ce qui signifie qu'elle est fait d'une myriade d'objets tous identiques, qui sont des "molécules d'eau".

L'eau n'est pas "une molécule", comme certains le disent certains de façon erronée, mais c'est un composé fait d'un nombre immense de molécules. Et c'est parce que ces molécules sont identiques que l'eau est ce que l'on nomme un composé, ou espèce chimique.
Je parle bien sûr de l'eau pure, et non pas de l'eau du robinet, qui doit son goût à de nombreux "ions" et autres molécules, qui y sont dissous.

Soit donc une casserole d'eau que l'on chauffe, un thermomètre plongé dedans. On voit la température de l'eau passer lentement de 20 degrés à 21 degrés, à 22 degrés, à 23 degrés, etc.

Vers 50 degrés, on commence à voir une fumée bleutée : l'eau commence à s'évaporer notablement, et la vapeur se recondense en microscopiques gouttes de liquide, en arrivant dans l'air plus froid.

Et, finalement, on atteint des températures plus élevées :  70, 80, 90, 91, 92,  93... Et, dans les conditions habituelles, on ne dépasse pas 100 degrés : on a beau pousser le feu, l'ébullition se fait plus tumultueuse mais la température est toujours de 100 degrés, preuve qu'il faut beaucoup d'énergie pour arriver à évaporer l'eau.

En terme microscopiques, cela signifie que l'on a agité les molécules d'eau au point qu'elle puissent se détacher les unes des autres. Et il faut beaucoup d'énergie, car elles "collent" énergiquement.

Voilà pour l'ébullition. Et cette dernière engendre donc de la vapeur, à savoir un gaz, c'est-à-dire un ensemble de molécules d'eau assez éloignées les unes des autres. La vapeur est incolore, invisible... mais quand les molécules d'eau évaporées arrivent  dans l'air,  plus froid, elles n'ont plus assez d'énergie pour rester en phase liquide, et elles forment de petites gouttelettes,  qui sont la raison pour laquelle on voit cette fumée blanche au-dessus des casseroles.
J'insiste : ce que l'on voit, ce n'est pas la vapeur, mais des gouttes d'eau, comme dans les nuages.

Tiens, pour terminer, ajoutons quand même que, dans toute cette affaire, il n'y a pas de réarrangement d'atomes  : les molécules d'eau dans l'eau liquide sont les mêmes qu'en phase vapeur. Et il n'y aura pas d'usure à répéter évaporation et condensation, autant de fois que l'on voudra.


mardi 2 janvier 2018

La mise à l'ébullition d'eau salée

Ce matin, un message :
Nous sommes un groupe de TPE qui travail sur un mythe urbain : "Le sel élève le point d’ébullition de l’eau". 
Ce qui implique que lorsqu'on fait chauffer de l'eau pour une cuisson il faut mettre le sel lorsque l'eau est chaude.
Nous avons fait des expériences en laboratoire pour tester plusieurs sels, plusieurs eaux et 2 quantités de sels.
 Nous avons aussi pu voir que les eaux sans sel atteignaient le point d'ébullition de l'eau plus rapidement que les eaux avec du sel de table. Donc cela confirme le mythe, sauf lorsque nous mettons une importante quantité de sel (8% contre 0,2%), Auriez vous une idée pour expliquer cela ?
L'eau de source, l'eau du robinet, l'eau déminéralisée et l'eau minérale sont les quatre eaux que nous avons étudiées. Pourquoi l'eau déminéralisée est-elle l'eau la moins efficace que les autres ? Et pourquoi l'eau de source est-elle la plus efficace ? Est-ce que les substances chimiques contenu dans l'eau du robinet ont des impacts sur le temps d'ébullition de l'eau ?
Le sel de table, le sel de Gérande et le sel noir d'Hawaï, le sel rose d'Himalaya et le sel bleu de Perse sont les sels que nous avons étudiés. Sont-ils tous des sels de mer ? Et y a t-il une différence entre le sel de mer et le sel gemme ? Nous avons pu constater que le sel noir d'Hawaï était le plus efficace lorsque l'eau contenait 0,2% de sel mais nous nous demandons pourquoi. Savez vous si le charbon a un impact sur l'ébullition ?


J'ai répondu à nos jeunes amis que leur résultat m'étonne... d'autant plus qu'ils donnent des valeurs sans indiquer d'incertitudes, de sorte que, sans doute, les répétitions n'ont pas été faites. 
D'autre part, j'avais moi-même fait les comparaisons expérimentales de façon TRES contrôlée, et je n'ai pas vu de différence significative : parfois, l'eau salée avant d'être chauffée mettait plus de temps à bouillir que l'eau chauffée  pure, puis additionnée de sel ; parfois, c'était l'inverse. 

Surtout, ces expériences méritent d'être faites de façon très contrôlée. Dans le message de nos jeunes amis, de nombreuses précisions manquent, car les biais sont possibles partout. 
Par exemple, ils ne signalent pas que l'ajout de sel diminue la température de l'eau, et que l'ajout de sel augmente la température d'ébullition. 

D'autre part, il faut comparer des choses comparables, et s'il est logique que de l'eau salée mette plus de temps à bouillir que de l'eau pure (il y a, dedans, la masse du sel, qu'il faut chauffer aussi), il vaut mieux comparer les deux cas suivants : 
- on prend une casserole, on y met une masse d'eau pesée (précision de la balance ?), puis on pose la casserole sur un dispositif de chauffage et l'on attend l'ébullition ; on ajoute le sel (ce qui fait tomber l'ébullition), puis on mesure le temps à partir duquel on a formé de l'eau salée bouillante
- on prend une casserole, on y met la même masse d'eau que précédemment, la même masse de sel que précédemment, on pose la casserole exactement au même endroit du système de chauffage (ou mieux, on ne bouge jamais la casserole, afin que le contact soit  le même), puis on attend l'ébullition. 
Bref, le résultat de nos jeunes amis est douteux, d'autant que, pour comparer des expériences répétées, il faudra avoir donné une moyenne et un écart-type, et avoir comparé les résultats par un test statistique (ANOVA, Student...). 


Plus généralement, on voit bien, ici, la nécessité d'une description très détailles des matériels et des méthodes. Une "expérience de laboratoire", ce n'est pas le fait qu'elle soit faite dans un laboratoire : il faut surtout qu'elle soit faite sans biais ! 
Enfin, pour le sel  noir de Hawai, je ne suis certain qu'ilest noirci par du charbon. Les sites qui décrivent ce sel évoquent aussi des laves, ce qui me semble plus plausible.



















Vient de paraître aux Editions de la Nuée Bleue : Le terroir à toutes les sauces (un traité de la jovialité sous forme de roman, agrémenté de recettes de cuisine et de réflexions sur ce bonheur que nous construit la cuisine)