Affichage des articles dont le libellé est huile. Afficher tous les articles
Affichage des articles dont le libellé est huile. Afficher tous les articles

mardi 12 décembre 2023

Beurre nantais ? Beurre blanc ? Non, sauce blanche !

 Ce matin, une question à propos de "beurre nantais"

 

Bonjour Monsieur This,

Je suis  nantais d'origine et  adepte de la sauce au beurre blanc (parfois appelée beurre nantais).
Je m'adresse à vous car je pense que vous êtes à même d'expliquer le pourquoi du comment quant à la réussite ou le ratage de cette sauce. Je la rate plus souvent (à mon grand désespoir) que je ne la réussis ! Et j'aimerais ne pas la rater pour les fêtes de Noël...

Après moult essais et recherches sur internet, je ne trouve pas d'explications scientifiques poussées.
Chacun a son explication ou son astuce mais sans trop pouvoir la justifier :

- couper menu les échalotes ??
- réduire très lentement le mélange échalotes + vinaigre + vin ??
- ajouter systématiquement du vin au vinaigre ( pb d'acidité ? acidité du vin moins importante que celle du vinaigre ? )
- laisser refroidir complètement la réduction d'échalotes avant d'incorporer le beurre ??
- ajouter de la crème avant d'incorporer le beurre ??
- ajouter un filet d'eau froide ??
- incorporer le beurre froid  ou très froid ( il y a apparemment un consensus là dessus) ??      en petits morceaux ??
- mélanger le beurre sans jamais cesser de fouetter délicatement en formant des 8 et à feux doux ??
- beurre clarifié ??
- difficile de la réchauffer au bain-marie ??

Quelles sont dans toutes ces manipulations, les vrais gestes à faire et surtout pour quelles raisons je suis un?

Je vous ai connu par le biais de vos articles très intéressants dans la revue Pour la Science ( et gastronomie)
J'ai une formation scientifique ( baccalauréat C). J'aimerais comprendre le ou les phénomènes physico-chimiques inhérents à l'élaboration du beurre blanc.

Je crois avoir compris que le beurre est une émulsion inversée  "eau dans huile" .

Est-ce qu'une question de température (froid au départ, pas trop chaud ensuite mais quels seraient alors les seuils à ne pas dépasser)  et/ou d'acidité (vinaigre, vin), ou bien autre chose encore ?

En résumé, que se passe-t-il chimiquement pour que cette sauce au beurre blanc soit si instable ?

Je suis tombé sur ce podcast, certes intéressant, mais ne fournissant pas suffisamment d'explications ( il est question du beurre blanc des minutes 10 à 18) :
https://www.franceinter.fr/vie-quotidienne/le-beurre-blanc

J'espère que vous comprendrez mon interrogation et que vous pourrez y répondre malgré votre temps précieux.

Merci d'avance.
Bien gastronomiquement.

 

Et voici ma réponse
 
Merci pour votre message.
La première des choses que je fais, quand je discute d'une recette, c'est de savoir vraiment ce dont je parle... et cela m'a conduit à faire, chaque semaine, une recherche historique que je publie dans les Nouvelles gastronomiques... avec de nombreuses surprises !
Et pour le "beurre blanc" : https://nouvellesgastronomiques.com/beurre-blanc-non-sauce-blanche/. 

Voici en clair : 

Beurre blanc ? Non : sauce blanche

Hervé This s’interroge sur l’appellation de cette sauce que tout le monde connaît… Le beurre blanc ? Ces billets terminologiques ont déjà plusieurs fois signalé des attributions erronées de termes, et il vient d’en trouver un nouveau…

Wikipédia signalait que, en 1890, au restaurant La Buvette de la Marine, dans le hameau de La Chebuette, lieu-dit de la commune de Saint-Julien-de-Concelles, situé sur les bords de la Loire, à quelques kilomètres en amont de Nantes, une certaine Clémence Lefeuvre aurait inventé le beurre blanc, pour le marier avec les poissons de Loire. On dit même que cela aurait résulté d’un ratage d’une béarnaise… mais c’est être bien ignorant de l’histoire de la cuisine que de propager cette idée, car on trouve déjà une sauce tout à fait analogue dans l’auteur du 17e siècle (deux siècles et demi avant cette cuisinière nantaise!) qui signe seulement de ses initiales « L.S.R », peut-être pour « le sieur Robert ».

Plus précisément, LSR, en 1643, propose de faire une « sauce blanche » avec beurre, bouillon, sel, poivre, qu’il sert sur du brochet, et qui insiste pour dire que l’émulsion doit être bien faite, sans « tourner en huile ».

Bref, Clémence Lefeuvre n’a rien inventé… d’autant que l’on retrouve encore cette « sauce blanche » chez Pierre François La Varenne : « faites une sauce avec du beurre bien frais, peu de vinaigre, sel, muscade, & un jaune d’oeuf pour lier la sauce. » Là, il détourne la sauce blanche de LSR, puisqu’il lie aux œufs. Massialot, en 1705, détourne encore davantage en proposant une sauce faite de persil, sel, poivre blanc, jaunes d’oeufs, filet de vinaigre, un peu de bouillon :cette fois, c’est une suspension, une sauce qui doit son épaisseur à la coagulation des jaunes d’oeufs plutôt qu’à l’émulsion du beurre fondu dans le bouillon dans le vinaigre.


 

A noter que tout cela se retrouve ensuite dans le "Glossaire des métiers du goût" : https://icmpg.hub.inrae.fr/travaux-en-francais/glossaire/glossaire-des-metiers-du-gout
(il me faut parfois un peu de temps pour rectifier le glossaire)

 

Cela étant, si votre recette consiste à faire revenir des échalotes avec du vinaigre et du vin, puis à ajouter de la crème et du beurre, alors je ne l'ai jamais ratée, considérant les principes sains suivants :
 

1. "Il faut au moins 5 % d'eau pour faire tenir une émulsion".

2. "Il faut des composés tensioactifs (protéines par exemple) pour assurer la dispersion stabilisée des gouttes de matière grasse dans l'eau". 


Ici, l'eau vient du vinaigre, du vin, de la crème, du beurre... mais elle s'évapore, et c'est souvent la cause du ratage.

Couper menu les échalotes ? C'est seulement une question de goût, mais il est vrai que plus vous coupez finement, plus vous libérez le contenu des cellules.

Réduire lentement le mélange échalotes+vinaigre+vin ? A ma connaissance, personne n'a encore comparé la réduction lente ou rapide, analytiquement en tout cas. Une expérience à faire... assortie d'un test triangulaire, comme je l'explique dans l'avant dernier numéro de Pour la Science
 

Ajouter du vin au vinaigre ? Je crois que la question de l'acidité est très secondaire. C'est la présence d'eau qui compte.
 

Laisser refroidir les échalotes ? Aucun intérêt."Il faut au moins 5 % d'eau pour faire tenir une émulsion".
 

Ajouter de la crème ? La crème apporte de l'eau, ce qui permet de mettre ensuite plus de beurre. Elle apporte aussi des tensioactifs, et cela est important (voir plus loin). 

Ajouter un filet d'eau froide : certainement, quand on met beaucoup de beurre, on risque de dépasser les 95 % fatidiques, et, tout comme on met du jus de citron ou du vinaigre dans une mayonnaise qui épaissit, un filet d'eau fait son office... mais dommage, car l'eau n'a pas de goût : pourquoi pas vin, vinaigre, jus de citron, thé, jus de légume, fond, jus de fruit, etc. ?

Le beurre froid, en morceaux : aucun intérêt, car il finit toujours par fondre et s'émulsionner.

Beurre clarifié : apporte moins d'eau, et le petit lait a un goût différent, donc une question de choix artistique (gustatif). Mais attention : pour un sauce sans crème, le petit lait devient essentiel, par les protéines qu'il apporte.
 

Réchauffer au bain marie ? Moi je réchauffe autant que je veux, et à plein feu, sans me fatiguer à faire un bain marie.

Bref rien de plus simple :
- le beurre fond, et fait "huile"
- il libère du petit lait (de l'eau et des protéines) quand il n'est pas clarifié
- et il faut 5% d'eau pour faire tenir l'émulsion, qui est d'ailleurs une émulsion de type huile dans eau.

Non, le beurre n'est pas une émulsion eau dans huile, comme cela est prétendu et fautivement enseigné jusque dans les écoles d'ingénieurs agronomes : voir à ce sujet mon livre Mon histoire de cuisine (fait pour des personnes comme vous), ou bien le Handbook of Molecular Gastronomy.

Les températures ? Peu importe... mais attention que plus on chauffe et plus l'eau s'évapore : pensons à nos 5%.

Instabilité de la sauce ? Les tensioactifs proviennent de la crème, du beurre... mais si l'on broie les échalotes, on peut aussi en extraire de ces dernières.
Car une émulsion, c'est de l'eau (phase continue), des gouttes d'huile, des tensioactifs pour les couvrir et les disperser.
Dans la crème et le beurre, il y a des tas de protéines, parfaitement tensioactives. Mais dans le beurre clarifié, elles ne sont pas présentes, d'où l'intérêt de la crème. A noter qu'on peut aussi ajouter des tensioactifs insipides : un quart de feuilles de gélatine, ou n'importe quel tissu végétal ou animal broyé finement (même du gazon), qui libérera des phospholipides et des protéines.

Bien cordialement, joyeuses fêtes


samedi 23 septembre 2023

Comment éviter l'huile dans les frites ?

 Les frites sont un mets merveilleux, bien sûr, mais elles sont déconseillées quand on fait un régime, parce qu'il est souvent bien difficile d'éviter l'huile qui les accompagne. 

Or dans un régime, la matière grasse est vraiment à éviter : c'est le composé le plus énergétique de notre alimentation, et, pis encore, plus on en mange, mieux on la stocke dans nos tissus adipeux. 

 

Combien y a-t-il d'huile dans les frites ? 

 

Essayons de le savoir par une expérience. 

Taillons un bâtonnet de pomme de terre et plaçons-le dans de l'huile très chaude, par exemple à la température de 180 degrés Celsius. Immédiatement, nous voyons des bulles sortir du bâtonnet, avec un bruit de crépitement qui correspond à l'éclatement des bulles. 

Si nous plaçons un verre froid dans la fumée blanche qui s'élève au-dessus de l'huile, nous voyons la fumée se condenser, former une buée sur le verre, un liquide, et nous pouvons, en goûtant, nous assurer que c'est bien de l'eau. Autrement dit, la chaleur évapore l'eau des pommes de terre, et parce que un gramme d'eau fait environ un litre de vapeur, le volume considérable de la vapeur formée éjecte les bulles en dehors du bâtonnet de pomme de terre, ce qui repousse l'huile. 

Autrement dit, pendant la cuisson, l'huile n'entre pas dans les frites. On peut corroborer cette observation avec l'enregistrement de la pression dans une frite : on voit la pression augmenter lentement, et, quand on sort la frite du bain, la pression cesse d'augmenter, avant de diminuer, après une minute environ. 

Diminuer ? Cela signifie donc que la vapeur se recondense, de sorte que la frite absorbe alors certainement l'huile qui adhère à la pomme de terre, en surface. 

D'où l'expérience qui consiste à prendre un des bâtonnets de pomme de terre, à les mettre dans l'huile chaude, puis à cuire comme on cuirait des frites.
Quand elles sont cuites, on les sort de l'huile et on les divise en deux lots.
L'un des lots est laissé en l'état, tandis que l'on éponge soigneusement les frites de l'autre lot, afin d'éliminer l'huile en surface.
A la suite de quoi on pèse... et l'on s'aperçoit que la quantité d'huile en plus ou en moins, est de 25 g pour 100 g de pommes de terre ! 

Vous avez bien lu : un quart de la masse des frites est de l'huile ! Décidément, il est judicieux d'éponger les frites au sortir du bain. Et nous savons maintenant que nous avons une minute pour le faire.

jeudi 7 septembre 2023

L'huile de pavot ?

 De l'huile de pavot ?
NULL;
On m'interroge à propos d'huile de pavot, et je ne comprends pas la question qui m'est posée : l'huile de pavot, et alors ?

Ne comprenant pas la question, je préfère répondre en interprétant, et surtout, répondre en observant que les huiles sont souvent faites par pressage de graines qui contiennent de l'huile.
Les graines des végétaux, ce sont des semences, c'est-à-dire des objets qui ont été façonnés par l'évolution biologique pour aboutir à la reproduction des plantes. A cette fin, il faut que les semences contiennent des composés qui permettront aux jeunes plantules de se développer avant que la photosynthèse ne puisse prendre le relais.

 C'est ainsi qu'il y a des graisses dans les graines et que le pressage de ces graines produit de l'huile.

Par exemple le colza :  le pressage des graines de colza produit de l'huile de colza.
Par exemple le tournesol : le pressage des graines de tournesol produit de l'huile de tournesol.
Mais on connais aussi l'huile de pépins de raisin, l'huile de  noix, l'huile de noisette, l'huile de pistache, et ainsi de suite.

D'à peu près n'importe quelle graine, on peut extraire une huile qui aura un goût particulier.

Et pour terminer concluons donc avec le pavot : il contient des graines, de sorte que l'on pourra faire une huile de pavot. Je n'en connais pas le goût.

mardi 6 décembre 2022

 Le monde (de la cuisine) est fait de molécules

Puisqu'il y a lieu d'expliquer la chimie commençons par les principales matières que nous rencontrons en cuisine : l'eau, l'huile, le sel, le sucre, la farine, le beurre.


Commençons donc avec l'eau


Pour l'eau, imaginons un verre d'eau devant nous. Nous percevons un liquide incolore et transparent, homogène.
Si nous le regardons avec une loupe, nous continuons à voir ce liquide incolore et transparent, apparemment homogène.
Il faut un microscope extraordinairement puissant pour finalement distinguer que l'homogénéité n'est qu'apparente et que, en réalité, l'eau est faite d'une myriade de petits objets tous identiques, qui bougent en tous sens et très rapidement (plusieurs centaines de mètres par seconde).

Il ne nous sera pas difficile d'accepter de nommer ces objets des "molécules d'eau", n'est-ce pas ?

Je propose ici de ne pas aller plus loin dans la description de ces molécules et de nous contenter de dire que l'eau est en réalité constitué de ces molécules d'eau entre lesquelles il n'y a rien, du vide.
La masse de l'eau, c'est la somme des masses de tous ces petits objets tous identiques.

Et la différence entre l'eau du robinet, ou  l'autre pluie, ou l'eau de mer, et cetera,  cela tient à la présence, parmi ces molécules d'eau, d'autres molécules de nature différente, ce que l'on pourrait nommer en quelque sorte des impuretés si l'on se réfère à l'eau parfaitement pure.
Il faut d'ailleurs ajouter que le mot "impureté" ne doit pas avoir de connotation péjorative, car la neige fondue , qui fait de l'eau très pure, et néfaste pour  notre organisme, et nous avons besoin de la présence de ce que l'on nomme des "ions",  parmi les molécules d'eau.

Mais là , avec le mot "ion",  je sais  que je suis allé trop trop loin, et je propose de passer à la seconde matière que j'avais annoncée,  à savoir l'huile.

L'huile est encore un liquide, également transparent, plutôt jaune... bien que cette couleur soit encore due à des "impuretés" : l'huile parfaitement purifiée serait incolore.  

À nouveau, à l'œil nu, l'huile paraît homogène ;  et, à la loupe, elle le paraîtrait aussi.
Et là encore, il faut un microscope extraordinairement puissant pour voir que l'huile est composée d'une myriade d'objets très semblables (pas parfaitement identiques),  et différents des molécules d'eau.
Nommons-les "molécules de triglycérides".

Avec ces deux exemples,  on voit  on comprend que la matière est souvent faite de molécules, et c'est exact  : nous avons déjà rencontré les molécules d'eau et les molécules de triglycérides.


Passons donc au sucre.

Cette fois, c'est un solide.
Si nous regardons les grains de sucre au microscope, nous voyons que ce sont des solides transparents, avec des faces planes.
Avec un très gros microscope, les grains sont encore homogènes, dans l'intérieur du grain.
Mais  si l'on prend maintenant un microscope extraordinairement puissant, alors, là encore, on s'aperçoit que le sucre est composé d'objets en très grand nombre, tous identiques : nous les  nommerons des molécules de saccharose.

Cette fois, dans le cristal, les molécules de saccharose ne bougent pas ou, plus exactement, elle se contentent de vibrer sur place, car elles sont empilées régulièrement. C'est d'ailleurs cela qui distingue un solide d'un liquide.


Passons maintenant au sel.

Cette fois, nous voyons encore, à la loupe, que le sel est fait de cristaux tous transparents. D'ailleurs pour le sel comme pour le sucre, la couleur blanche d'un tas de sel ou d'un tas de sucre n'est pas due aux grains, qui sont individuellement transparents et incolore, mais résulte de la réflexion de la lumière blanche du jour sur les faces de ces cristaux ; plus il y a le cristaux, plus le tas apparaît blanc, alors même que chaque cristal est transparent.

Pour le sel, si nous utilisions notre super microscope, nous verrions deux types d'objets : ces objets sont des "atomes de chlore" et des "atomes de sodium". Ils sont régulièrement empilés comme des cubes, et c'est leur liaison très forte qui assure la solidité du cristal de sel.

En réalité, ces atomes de chlore et les atomes de sodium, dans un cristal de sel, se sont échangés une petite partie qui est nommée "électron", ce qui a changé leur nom, d'atome en ion.
Mais c'est vraiment secondaire pour notre propos et je propose de rester à l'idée que  les cristaux de sel sont composés de ce qu'on nomme le chlorure de sodium, une entité où l'on imagine groupés un atome de chlore et un atome de sodium.


Avec le beurre, les choses se compliquent un peu.


Oui, le beurre est plus complexe... comme on le pressant quand on chauffe doucement du beurre : dans le beurre que l'on clarifie ainsi en chauffant très doucement et longtemps, on voit deux liquides se séparer, avec un liquide blanchâtre en bas et un liquide transparent et jaune par-dessus.

Le liquide blanchâtre du bas, c'est pratiquement de l'eau, et le liquide transparent et jaune par-dessus, c'est pratiquement de l'huile.
D'ailleurs on dit que le beurre fondu fait huile.

Effectivement, dans la partie inférieure, le super microscope montrerait essentiellement des molécules d'eau, tandis qu'il montrerait des molécules de triglycérides dans le liquide supérieur.
Dans le beurre lui-même, l'organisation de ces molécules est un peu compliquée, et je propose de garder ça pour une autre fois.


Pour passer maintenant à la farine, plus compliquée que le beurre.

La farine s'obtient par mouture de grains de blé, dont on élimine d'abord les enveloppes, ce que l'on nomme les sons.
Il reste, quand on moud la farine, une poudre blanche, d'autant plus blanche d'ailleurs que l'on s'est plus approché du cœur du grain.

Cette fois, une expérience encore nous permet de voir que la farine n'est pas une matière homogène : cette expérience fut faite  pour la première fois au 18e siècle, par des chimistes, et elle a pour nom  "lixiviation" :  
- on part de farine,
- on ajoute un peu d'eau,
- on travaille beaucoup pour faire une pâte qui devient de plus en plus dure à mesure que l'on travaille,
- puis on met cette pâte dans une grande bassine d'eau claire
- et on la malaxe doucement : en sort une poudre blanche que l'on a nommé l'amidon, et il reste entre les doigts une sorte de chewing-gum jaunâtre que l'on a nommé le gluten.

Je me hâte de dire que ni l'amidon ni le gluten ne sont chacun composés de molécules toute identiques, et l'on pourrait continuer à fractionner comme on vient de le faire, pour séparer l'amidon en plusieurs types de molécules dites de polysaccharide ; de même, le gluten en plusieurs sortes de protéines.

Mais on retrouve encore notre même idée la farine est faite de molécules,  certes de plus de variétés que dans l'eau ou dans l'huile, mais quand même, des molécules.

Et c'est ainsi que  le monde matériel de la cuisine est essentiellement fait de molécules.
Dans la farine, nous sommes sur la piste d'une complexité croissante qui augmenterait encore par exemple avec les viandes, les poissons, les fruits ou les légumes... mais ce sera pour une autre fois.

jeudi 3 novembre 2022

Oui, l'huile se mélange avec l'huile, qu'elle soit solide ou liquide

 Oui, l'huile se mélange avec l'huile, qu'elle soit solide ou liquide

On m'interroge, et voici ma réponse :

Oui, et encore oui : les huiles sont miscibles les unes aux autres, et elles sont d'ailleurs également miscibles avec les matières grasses  solides à condition que l'on fonde celles-ci.

Commençons avec deux huiles : fixons les idées avec une huile de soja et une huile de tournesol, par exemple. Ces huiles se mélangent parfaitement, et leur propriétés chimiques,  physiques et gustatives sont intermédiaires entre celles de l'huile de soja et celles de l'huile de tournesol.

D'ailleurs c'est deux huiles se mélangeraient également très bien avec l'huile d'olive... et c'est d'ailleurs ce type de coupage qui est parfois pratiqué par les malhonnêtes qui font du frelatage (et vendent un produit qu'ils nomment illégalement "huile d'olive").

Mais on peut aussi ajouter de l'huile à du chocolat fondu, puisque ce dernier est  une dispersion de particules solides (du sucre ou des fragments végétaux) dans du beurre de cacao : si le beurre de cacao est fondu , il fait huile et une huile végétale qu'on lui ajoute ce mélange parfaitement à lui.

Mieux encore, on sait bien,  quand on fait une mousse au chocolat avec une recette classique,  que l'on peut mélanger deux matières grasses solides à condition de les fondre : du beurre et du chocolat chauffés "font huile".
D'ailleurs, on pourrait tout aussi bien mélanger du beurre à du saindoux, ou du saindoux à du chocolat. Ou, mieux, du beurre à du foie gras.

Bref, quand une mère grasse est à l'état liquide, elle se mélange à une autre matière grasse à l'état liquide. Pourquoi ? Parce que toutes les matières grasses sont faites de molécules analogue à des peignes à trois dents souples et que l'on nomme les triglycérides. Dans une matière grasse particulière, il y a de très nombreux très nombreuses molécules de triglycérides appartenant à de très nombreuses catégories différentes de triglycérides, et cela vaut pour les huiles comme pour les matières grasses solides à la température ambiante.

D'ailleurs, le fait d'être solide ou liquide n'est qu'une question de température et bien des graisses qui sont solides en hiver deviennent liquides en été.

Bref, on mélange très bien les matières grasses les unes aux autres et l'on hybride alors leurs propriétés.

C'est ainsi que le beurre ou l'huile amollissent le chocolat. C'est ainsi que de l'huile amollirait du beurre.

Et le goût, aussi, s'hybride.

mardi 1 mars 2022

Les molécules collent les unes aux autres



Partons d'huile : c'est un liquide jaune, mais avec des tas de particularités, à commencer par le fait que ce soit l'ingrédient alimentaire le plus énergétique... raison pour laquelle il n'y a pas lieu de craindre les "pilules nutritives" dont des idéologues nous menacent régulièrement, qui remplaceraient l'alimentation : si l'on ne mangeait que de la matière grasse, il faudrait environ 300 grammes pour se soutenir une journée, et 300 grammes d'huile, ça ne tient pas dans une pilule !

A propos de cette huile, on pourrait dire mille choses, discuter son rancissement éventuel, sa sensibilité à la chaleur, à la lumière, mais ici, je propose surtout de penser que,  si nous avions un super microscope, nous verrions qu'elle est faite de très petits objets,  par milliards de milliards de milliards...

Ces objets sont des molécules. Dans de l'huile bien raffinée, bien propre, ces molécules sont de différentes sortes, mais elles se ressemblent toutes avec  une apparence de petites pieuvres à trois bras.

Or les pieuvres ont des ventouses avec lesquelles elles collent un peu. Et, de même, les molécules d'huile collent un peu entre elles... ce qui évite que l'huile ne s'évapore.

Dans de l'huile, liquide, les molécules bougent en tous sens, comme des boules de billard, mais on comprend que la présence des trois "tentacules" complique le mouvement.

Quand on verse de l'huile, les molécules de l'huile s'écoulent, comme le feraient des grains de sable... mais du sable un peu adhérent, un peu collant : rappelons-nous les ventouses des pieuvres.

Les forces d'adhérence sont faibles, pour les molécules de l'huile, et elles seraient plus fortes pour de l'eau.

Et si l'on refroidit l'huile, leur mouvement qui diminue (c'est cela, la "température") fait que l'énergie de mouvement n'est plus suffisante pour rompre le collage. Bref, les molécules de l'huile s'attachent les unes aux autres... et l'on a un solide, de l'huile figée, comme on en voit dans les bouteilles d'huile que l'on met au froid.  

Ah, j'ai oublié de dire que les molécules de l'huile sont des "triglycérides". Pas des acides gras, comme le dit une certaine publicité trompeuse ! Mais je n'entre pas ici dans les détails, car c'est une autre histoire, pour une autre fois.

mercredi 16 février 2022

Une hypothèse : cela signifie que j'évoque une possibilité seulement

 

Il a bien longtemps, un chef m'avait signalé qu'il faisait de très bonnes frites en faisant jusqu'à 10 bain d'huile successifs.

À l'époque, je n'avais pas compris l'intérêt de la chose, et quand j'avais mesuré la pression et la température dans les frites, je n'avais pas vu d'effet particulier de ce procédé.

Mais je viens de me demander si l'intérêt du procédé n'était pas tout autre !

En effet, on se souvient de ces expériences lors desquelles j'ai mesuré la quantité d'huile dans les frites :  j'avais observé que quand on éponge les frites immédiatement à la sortie du bain, alors on évite l'absorption d'une quantité d'huile considérable : jusqu'à un demi gramme d'huile par frite !

Cette expérience condamne en quelque sortes le double bain, qui risque de faire venir dans les frites deux fois plus l'huile qu'un seul bain.

Mais si chaque bain s'accompagne de l'absorption de l'huile en surface, au sortir du bain, alors on peut imaginer que de très nombreux bains feront venir une quantité d'huile considérable, dans les frites.

Dans un séminaire de gastronomie moléculaire, nous avions montré que non seulement des dégustateurs reconnaissaient à l'aveugle des frites qui avait été épongées ou non, mais, surtout, qu'ils préféraient les frites avec de l'huile dedans.

D'où mon hypothèse : et des frites buvaient plus d'huile, avec de nombreux bains, les mangeurs ne les apprécieraient-ils pas, précisément, pour cette huile ?

Je rappelle en passant que l'huile chauffée n'est guère saine... maic mon hypothèse n'est qu'une hypothèse : qui la testera ?

mercredi 21 juillet 2021

Monter une mayonnaise



Quand on fait de la mayonnaise, on part de jaune d'œuf, de vinaigre, sel, poivre,  et l'on ajoute de l'huile en fouettant.
Je ne reviens pas sur le fait que l'utilisation de moutarde conduit à la confection d'une rémoulade et non plus d'une mayonnaise, car je veux arriver au fait : monter une mayonnaise provoque-t-il une augmentation de volume ?

La réponse et oui, puisque, parti d'un petit volume d'oeuf et de vinaigre, on ajoute de l'huile. Le vague espoir de mauvaise foi de certains cuisiniers est que l'on ajouterait également de l'air, et qu'une mayonnaise bien monté serait foisonnée, c'est-à-dire pas aussi grasse que nos bourrelets ne le supportent.

Désolé :  l'observation au microscope est absolument sans appel. Non, il n'y a pas de bulles d'air dans les mayonnaise, mais seulement des gouttelettes d'huile tassées les unes contre les autres dans la phase aqueuse faite du mélange de jaune d' œuf et de vinaigre. 



On ne dira jamais assez qu'une mayonnaise c'est de l'huile, d'abord de l'huile, encore de l'huile. De l'huile déguisée en sauce ! D'ailleurs, si la mayonnaise retombe, alors on voit bien l'huile  surnager, et personne ne mangerait cela !  C'est seulement parce que l'huile a été incorporée  sous forme d'une sauce onctueuse que l'on se permet de manger de la mayonnaise,  mais c'est quand même de l'huile, et pas de l'air.

Pour conclure, monter une mayonnaise, c'est augmenter son volume en dispersion de l'huile dans une phase aqueuse et le fort volume que l'on obtient est un volume d'huile, essentiellement. Un peu d'eau, pas d'air. De l'huile, de l'huile !


mardi 24 novembre 2020

Dégraisser l'huile ? Tout faux !



Je lis, dans le livre de cuisine de François Massialot intitulé Le cuisinier moderne (1705): "Pour dégraisser l'huile, vous faites chauffer de bonne huile d'olive bien chaude dans une terrine, vous y mettez le feu comme à de l'eau-de-vie, & le soufflez dans le moment, car elle brûlerait, ou bien pour l'éteindre, vous y jettez un filet de vinaigre.
D'autres pour la dégraisser font chauffer l'huile bien chaude, comme ci-dessus, la versent dans un peu d'eau froide & la fouettent, & s'en fervent à ce qu'ils en ont besoin."
Oui, on a bien lu : il s'agit de "dégraisser l'huile" ! Et en y mettant le feu ! Et en versant de l'eau sur de l'huile qui flambe ! Tout faux !

Tout faux, d'abord parce que l'huile est de la graisse, et n'est rien que cela, de sorte que l'on aurait bien du mal à la "dégraisser", à moins que, par ce terme, Massialot entende autre chose qu'enlever l'huile (par exemple des impuretés particulières, telles des cires).

Tout faux, parce que l'huile qui flambe s'oxyde, et devient malsaine. On sait aujourd'hui que, parmi les composés formés, il y a l'acroléine, particulièrement toxique.

Tout faux, enfin, parce qu'il ne faut surtout pas jeter un liquide aqueux sur de l'huile qui flambe, sous peine de provoquer une grave explosion : le liquide tombe au fond du récipient, sous l'huile, et,  là, il s'évapore, de sorte que la vapeur projette partout de l'huile enflammée.

Comment est-il possible de que telles âneries aient été écrites ?  

samedi 7 septembre 2019

Pas d'acides gras dans l'huile, mais des triglycérides


Vraiment, je m'étonne : alors que je venais de twitter que l'huile ne contient pas d'acides gras, mais des triglycérides, un collègue m'interroge, parce qu'il ne comprend pas. Certes, ce n'est pas un chimiste... mais qu'importe : je vois surtout qu'il y a lieu d'expliquer (merci de me dire ensuite si j'ai été clair).

Partons donc d'une bouteille d'huile : dans le récipient en verre ou en plastique, on voit un liquide jaune, un peu visqueux, transparent.
Si nous l'observons à l'aide d'une loupe, nous continuons de voir la même chose. Et également avec un microscope classique.
En revanche, si nous regardons avec un microscope bien plus puissant, nous voyons l'huile faite d'objets analogues à des  peignes à trois dents souples. Plein, qui grouillent... Ce sont des molécules, et ces molécules sont toutes comme des peignes à trois dents souples, de la catégorie que les chimistes nomment des triglycérides.
Dans les organismes vivants qui en synthétisent, ces composés sont obtenus par assemblage d'un composé nommé glycérol-3-phosphate et d'acide gras. Mais une fois que les atomes sont assemblés en molécules de triglycérides, il n'y a plus de glycérol ni d'acides gras.

Bien sûr, on sait aussi décomposer les triglycérides, afin de former, à partir d'eux, du glycérol et des acides gras, mais on sait aussi décomposer les molécules de triglycérides de mille autres manières. Et une huile décomposée, parce qu'elle a été exposée à la chaleur, ou à la lumière, ou à l'oxygène, est assez malsaine, rance, et la présence d'acides gras en abondance ne serait vraiment pas bon signe !

Donc voilà : pour ceux qui en avaient besoin, pas d'acides gras dans l'huile !




PS. A propos de ce billet, je reçois un remerciement d'un correspondant, qui me dit "Et concernant les oméga 3 (et autres AGPI) ce sont aussi des triglycérides ?". 
Ici, la question est l'usage généralisé d'un terme galvaudé par les réclames. "Oméga 3" est  une abréviation d'acide gras oméga 3. Et, en vertu de ce que j'ai expliqué plus haut, il n'y a donc pas d'acides gras oméga 3 dans les huiles, puisque les huiles ne sont faites que de triglycérides.
Mais certains triglycérides, surtout dans l'huile d'olive ou dans des graisses de poissons, ont des résidus d'acides gras (j'insiste, comme dit plus haut, sur l'expression résidus d'acides gras) qui sont des résidus d'acides gras oméga 3.

Mais, à ce stade, il faut considérer les résidus d'acides gras plus en détail. On trouvera, dans le Grand livre de notre alimentation, un chapitre bien détaillé sur ce point,  mais disons ici, simplement, que les résidus d'acides gras sont des enchaînements d'atomes de carbone, avec des atomes d'hydrogènes attachés à ces atomes de carbone.
A l'exception de l'atome de carbone de l'extrémité libre de la chaîne (l'autre extrémité est liée à un résidu de glycérol, le manche du peigne), chaque atome de carbone est lié à deux atomes d'hydrogène, dans les résidus d'acides gras saturés. En revanche, pour les résidus d'acides gras insaturés, deux atomes de carbone voisins ne sont liés chacun qu'à un seul atome d'hydrogène, tandis que ces deux atomes de carbone sont doublement liés : c'est ce que l'on nomme une "insaturation", car on peut chimiquement ajouter de l'hydrogène, auquel cas le résidu d'acide gras, d'insaturé, devient saturé.

Finalement, on aura raison de dire : il existe des triglycérides dont un ou plusieurs résidus d'acides gras sont insaturés, et, notamment, avec une insaturation de type oméga 3 (je n'explique pas plus en détail, voir le livre cité plus haut)


lundi 12 mars 2018

Croquettes d'huile parfumée

Notre cerveau est notamment une machine à reconnaître les proies, les prédateurs, les partenaires sexuels... Et, plus en détail, nos sens reconnaissent les contrastes. Par exemple, les neurones du cerveau, dans la partie qui traite l'information visuelle, repèrent les directions des discontinuités. Si l'on regardait un fond tout uni, on ne verrait rien, mais nous dépistons les bords. C'est la même chose pour les odeurs : nous sentons l'odeur d'une pièce quand on y entre, mais nous ne sentons plus rien après quelques instants. Idem pour les couleurs, les saveurs, les bruits...

Cela semble donc un bon principe que de cuisiner du contraste, et j'interpète donc que c'est la raison pour laquelle nous aimons tant le caviar, les oeufs de saumons... ou les croquettes. Par les préparations pour animaux, mais bien les boulettes d'un matériau tendre que l'on frit, afin de lui faire une coque dure... et de ménager un contraste avec le coeur. D'ailleurs, le succès universel des frites s'explique par la vertu du contraste : à la périphérie croustillante s'oppose la molle tendreté de la pomme de terre cuite "en purée" à l'intérieur.

Bien sûr, on peut faire mieux. Par exemple, si l'on congèle une ganache (du chocolat avec de la crème), puis que l'on panne à l'anglaise (oeuf battu, mie de pain) avant de frire, on obtient la croute croustillante, et un coeur de chocolat liquide. Merveilleux ! Ou encore, Edouard Nignon évoquait les bâtons royaux, que l'on obtenait en pannant et faisant frire du beurre refroidi, avant de vider la coque croustillante et de l'emplir avec une purée de foie gras. Au fromage, également, cela peut être délicieux. Au beurre noisette...
Mais avez vous essayé à l'huile ? Partons d'une belle huile : de noix, de noisette, de pistache, d'olive... Congélons-la, puis pannons et faisons frire : nous avons alors l'huile qui vient tapisser la bouche. Bien sûr, je crois que ce sont de petits objets délicats qu'il faut faire, mais quel bonheur !




Vient de paraître aux Editions de la Nuée Bleue : Le terroir à toutes les sauces (un traité de la jovialité sous forme de roman, agrémenté de recettes de cuisine et de réflexions sur ce bonheur que nous construit la cuisine)   

jeudi 1 mars 2018

Comment mettre en oeuvre...


Ce matin, une question technique à propos de la cuisine note : comment mettre en oeuvre les composés odorants préparés par la Société Iqemusu pour des plats note à note ?

Pour la première gamme vendue par la société Iqemusu, les produits sont des dissolutions de composés odorants dans de l'huile. Une deuxième gamme est annoncée, avec une dissolution dans l'éthanol... mais restons à la première, puisque c'est la seule dont on dispose à ce jour.

Soit donc un composé odorant dans l'huile. Comment l'utiliser ? Il suffit de l'ajouter à une préparation, comme on utiliserait un extrait de vanille, ou de l'eau de fleur d'oranger, ou encore une huile parfumée.

Ainsi, si on l'ajoute à une poudre solide, l'huile et le composé odorant dissout s'intégreront à la poudre par capillarité, et la poudre aura alors l'odeur du composé ajouté.  Un  peu comme du sucre vanillé, mais avec un goût sur mesure, qui sera celui du composé utilisé.
Si l'on ajoute le produit odorant à de l'huile, l'huile parfumée ira se dissoudre dans l'huile, qui sera alors parfumée (mais moins que le produit initial, puis que l'on aura fait une dilution.
Si l'on ajoute le produit à une solution aqueuse, alors l'huile parfumée flottera en surface, tout comme de l'huile de table versée dans un verre d'eau reste en surface.
En revanche, on peut "émulsionner" cette huile parfumée si on fouette après avoir ajouté des "tensioactifs", soit de la lécithine, soit des protéines, par exemple.
Mais on aurait intérêt à savoir que la majorité des aliments sont des "gels", avec de l'eau dispersée dans un réseau solide. Par exemple, une viande est formellement un gel, puisqu'elle est faite de tuyaux très fins (les "fibres musculaires") groupés en faisceau, chaque tuyau contenant de l'eau et des protéines. Cette fois, l'huile parfumée restera en surface.

Mais pour fixer les idées, examinons une recette de gibbs : on part de 3 cuillerées à soupe d'eau, on ajoute 1 cuillerée à soupe de protéines, on ajoute une ou deux cuillerées à soupe de sucre, puis 1 verre d'huile en fouettant. On obtient ainsi une émulsion blanche, comme une mayonnaise sans goût, blanche. On met alors une pointe de couteau de colorant, une pointe de couteau d'acide citrique, puis un quart de cuillerée à café de produit Iqemusi. Puis 30 secondes au four à micro-ondes, et l'on obtient un "soufflé" de dessert.
Tout simple, non ?
Et avoir quelques idées sur les proportions entre extraits/composés + odeurs-goûts-couleur + liant pour avoir une correspondance avec la cuisine classique.

Est-ce la bonne démarche pour une analphabète de la chimie ?

lundi 5 février 2018

Mélange de matières grasses

Les huiles alimentaires sont-elles toujours miscibles ? 

La question culinaire simple est en réalité d'une belle complexité physico-chimique, parce que l'idée classique d'énergie est battue en brèche... et que nous verrons que le problème est résolu d'emblée (autrement dit, tout ce que je vais expliquer pour commencer est parfaitement inutile en vue de répondre à la question posée ; désolé).

Au départ, il y a la question de la miscibilité. Pourquoi du vin se mélange-t-il à de l'eau, mais pas de l'huile ? La question est difficile, et elle n'a été élucidée qu'il y a une dizaine d'années.

Commençons par une idée simple : une bille en haut d'une montagne roule vers le bas. Pour expliquer ce fait d'expérience, les physiciens ont introduit une notion, l'énergie potentielle", et établi une "loi de la nature", à savoir que les systèmes évoluent vers les états où l'énergie potentielle est inférieure. Dit ainsi, on ne semble pas avoir gagné grand chose, à part rendre abstrait ce qui était concret... mais ce sentiment n'est pas juste : il résulte du fait que la vulgarisation scientifique veut donner les résultats avec des mots, de sorte qu'il n'est pas étonnant que les mots ressemblent  aux mots. En réalité, derrière l'idée de l'énergie potentielle, il y a des quantités, des équations dont je vous prive (oui, je dis bien : je vous en prive, parce que la beauté des équations est merveilleuse).

Pour les atomes, c'est un peu pareil que pour les billes et les montagnes : de même, les atomes s'associent en molécules quand il y a des possibilités de liaison chimique sont satisfaites, et les physico-chimiste ont introduit une sorte d'énergie potentielle chimique, ce que l'on  nomme aussi des forces de liaisons chimiques. Les liaisons les plus faibles sont nommées liaisons de van der Waals, et il y en a entre les molécules de l'huile (ce que l'on nomme des triglycérides, mais j'y reviendrai) ; puis il y a des "liaisons hydrogène", par exemple entre les molécules d'eau, plus fortes que les précédentes ; et puis, beaucoup plus fortes, les "liaisons covalentes", c'est-à-dire les liaisons qui lient les atomes entre eux pour former des molécules, au lieu simplement de faire coller les molécules entre elles, comme dans les liquides ; enfin les forces électrostatiques, pour les atomes ou molécules chargés électriquement, ce qui assure la solidité des cristaux de sel, par exemple.

Cette première description permet d'expliquer certains phénomènes : par exemple, s'il n'y avait pas de liaisons hydrogène entre les molécules d'eau, qui sont de petites molécules, l'eau s'évaporerait quasi instantanément. Les liaisons hydrogène sont comme une sorte de glu, entre les molécules d'eau.
De même, pour les molécules d'huile, les liaisons de van der Waals sont une colle, bien plus faible... mais l'huile ne s'évapore guère, parce que les triglycérides sont de très grosses molécules, bien plus lentes (à température ambiante) que les molécules d'eau.
Examinons maintenant la constitution de ces molécules. Pour l'eau, c'est simple : chaque molécule d'eau est faite d'un atome d'oxygène lié à des atomes d'hydrogène, en une structure en forme de V. A la température ambiante, la vitesse moyenne des molécules d'eau est de 650 mètres par seconde.
Pour les molécules de triglycérides, la structure des molécules est plus compliquée : il faut imaginer une sorte de peigne avec des dents souples. Le manche est fait de trois atomes de carbone enchaînés linéairement, et chaque atome de carbone est lié par un atome d'oxygème à une longue chaîne d'atomes de carbone qui sont eux mêmes liés à un, deux ou trois atomes d'hydrogène. J'omets volontairement des détails, pour signaler seulement que de telles molécules ont un nombre d'atomes de carbone total de l'ordre de 20 à 100, avec un peu plus d'atomes d'hydrogène, et six atomes d'oxygène. Bref, une telle molécule est bien plus grosse qu'une molécule d'eau, et bien plus lente, aussi : la vitesse moyenne est seulement de 90 mètres par seconde.
En quoi cela fait-il une différence ? Imaginons que nous avancions assez lentement, en ligne droite, et que nous passions près d'un ami, que nous cherchons à attraper seulement en fermant les doigts. Si notre énergie de vitesse est faible, alors nous pourrons en entraîner notre ami avec nous ; en revanche, si nous allons très vite, nous ne parviendrons pas à l'entraîner. De même, des molécules lentes sont très sensibles aux liaisons possibles, même quand elles sont faibles, comme dans l'huile. Et comme les molécules de triglycérides peuvent donc s'attacher les unes aux autres, elles ne s'évaporent pas, sauf à atteindre environ 300 à 400 degrés.

Avec cela, nous en savons assez pour revenir à la question initiale, sur la miscibilité. Considérons de l'eau, et imaginons que nous voulions y mettre une molécule de triglycéride. Quand la molécule de triglycéride arrive dans l'eau, elle établit des liaisons de van der Waals avec les molécules d'eau... ce qui nous conduirait à penser que l'huile peut se dissoudre dans l'eau... Mais cela est réfuté par les faits !

Pourquoi l'huile ne se dissout-elle alors pas dans l'eau ? Parce que, quand la molécule de triglycéride est introduite dans l'eau, elle oblige les molécules d'eau à se disposer autour d'elle d'une façon spécifique, déterminée par la structure moléculaire du triglycéride. Or c'est une découverte essentielle de la physique du 19e siècle que d'avoir compris que le monde évolue spontanément vers le désordre, pas vers l'ordre. Une molécule de triglycéride qui ordonnerait des molécules d'eau ferait évoluer le monde vers un état plus ordonné... ce qui "coûterait" de l'"énergie de désordre"... de sorte que cela n'arrive pas, en pratique.
Bref, si l'huile ne se dissout pas dans l'eau, c'est une question d'"énergie de désordre". Et nous avons maintenant les deux idées indispensables pour savoir si les huiles sont miscibles entre elles...

 A cela près que tout ce que je viens d'expliquer est inutile, comme je l'avais annoncé initialement. Nous aurions dû commencer par analyser que chaque huile est déjà un mélange d'un nombre parfois très grand de triglycérides différents. Et si on mélange deux mélanges, qui sont des mélanges de triglycérides distincts seulement par la proportion des divers triglycérides, pourquoi ne se mélangeraient-ils pas, alors qu'ils sont les mêmes constituants ?




Vient de paraître aux Editions de la Nuée Bleue : Le terroir à toutes les sauces (un traité de la jovialité sous forme de roman, agrémenté de recettes de cuisine et de réflexions sur ce bonheur que nous construit la cuisine)

dimanche 4 février 2018

Huiles et graisses

On entend mille choses, à propos des graisses  : 

- l'huile, ce serait mieux que le beurre ou la crème "pour la santé"

- les graisses végétales, ce serait mal (ou bien) dans le chocolat

- les matières grasses hydrogénées, ce serait très  mauvais

- et ainsi de suite. 

Je déplore que beaucoup de mes interlocuteurs qui font ainsi des déclarations à l'emporte pièce ne savent pas de quoi ils parlent, d'un point de vue physico-chimique. Manifestement, quelques données de base sont nécessaires pour se faire une idée. 


Commençons non pas par la chimie, ni par la physique, mais par la nutrition. Ce sera vite fait : je n'y connais rien, de sorte que je ne suis pas habilité à en parler ! 


Alors passons à la politique : on nous dit qu'on peut mettre des graisses végétales dans le chocolat, afin de régulariser les cours du cacao.
Pourquoi pas, mais le chocolat doit d'abord être et rester du chocolat, donc une matière dans la composition de laquelle ne viennent  pas d'autres corps gras que le beurre de cacao.
C'est là une question de loyauté. Et j'ai déjà déploré dans des billets cette possibilité donnée aux fabricants d'ajouter de la matière grasse végétale (quelle qu'elle soit)  en petite quantité au beurre de cacao.
Plus exactement, alors que le produit ainsi obtenu ne diffère probablement pas du chocolat (le mot que je conserve pour désigner le produit sans ajout de matières grasses autres que du beurre de cacao), je propose qu'on ait deux noms différents pour désigner les produits différents, sous peine de tromperie. Ce n'est pas la règle qui a été retenue,  mais il n'est pas impossible de changer la règle actuelle, en vue d'une plus grande loyauté. 

A propos d'huile de palme, aussi, il y a des débats : la question semble être politique, mais là, je n'y connais rien, et c'est en dehors de mon champ scientifique, de sorte que je ne dois  rien en dire. Et que je n'en dis rien.



La toxicologie, maintenant ? Il y a la question des matières grasses, et de leurs impuretés... Là, des explications de chimie sont nécessaires. Nous considérerons d'abord une huile, puis une matière plus complexe. 

Les huiles sont des matières, parfois jaunes, qui sont liquides à la température ambiante. Si l'on avait un microscope très puissant, on la verrait faite d'objets qui bougent en tous sens : des molécules. Ces molécules ont une construction particulière : elles sont comme des peignes à trois dents, et, mieux, avec trois dents souples, au point qu'elles peuvent  se mettre dans toutes les directions autour du manche. Les molécules de l'huile sont nommées "triglycérides", parce que le "manche", s'il était isolé, serait un composé nommé glycérol (le nom que les chimistes donnent à la "glycérine"), et qu'il y a trois dents. 

Et les acides gras, me direz-vous ? Si l'on ne dit pas n'importe quoi, il n'y en a pas dans l'huile. Oui, j'insiste : lorsque des "dents" isolées, qui sont alors des acides gras, réagissent avec un manche isolé, qui est donc du glycérol, pour former des triglycérides, des atomes sont échangés, perdus, etc., de sorte que le glycérol n'est plus du glycérol, et les acides gras ne sont plus  des acides gras. Finalement l'huile est faite, donc, de molécules de triglycérides. 

Et il y a beaucoup de sortes de molécules de triglycérides, parce qu'il y a de nombreuses sortes de "dents". Plus exactement, pour du lait, où de la matière grasse (qui fait ensuite le beurre) est dispersée dans l'eau, sous la forme de gouttelettes microscopiques, il y a 400 sortes de dents.
De sorte que le nombre de différents triglycérides est considérable. Partons en effet d'une molécule de glycérol, et faisons la réagir avec un acide gras : il y a 400 possibilités. Puis faisons réagir l'ensemble avec un autre acide gras : pour chacun des 400 résultats initiaux, il y a 400 possibilités, soit au total 400 fois 400, soit 160 000 possibilités. Et avec le troisièmc acide gras, cela fait donc des millions de molécules différentes. 

Pourquoi cela est-il intéressant ? Parce que les divers  acides gras déterminent le comportement physique des matières grasses. En gros, à une température fixe (par exemple la température ambiante), les grosses molécules bougent plus lentement que les petites.
Or quand les molécules ne peuvent pas bouger, elles restent sur place et forment un solide. De ce fait, les divers triglycérides, s'ils étaient purs, auraient des températures de fusion différentes. Pour les triglycérides du beurre, par exemple, les plus  fusibles fondent dès - 10 °C, et les moins fusibles  fondent à 50 °C. Dans le beurre de cacao, les moins fusibles fondent à 37 °C... comme le prouve l'expérience qui consiste à placer un carré de chocolat dans la bouche. 

Et ainsi, pour chaque  matière grasse, il y a un comportement de fusion différent... mais il y a une constante : aux  températures inférieures à la température de fusion des triglycérides les plus fusibles d'une matière grasse, cette dernière est à l'état solide ; aux températures supérieures à la température de fusion des triglycérides les moins fusibles, la matière grasse est entièrement liquide (l'huile à la température ambiante). 

Et aux températures intermédiaires ? Et bien, là, une partie est liquide, et elle est le plus souvent piégée dans la partie solide. Oui, dans une motte de beurre placée à une température comprise entre -10 °C et + 50 °C, il y a de la matière grasse liquide dans ce qui paraît solide. 

D'ailleurs, c'est une expérimentation amusante que d'ajouter de l'huile à du chocolat fondu, et à refroidir ensuite ; ou, inversement, à ajouter du beurre  de cacao à de l'huile (d'accord, c'est pareil ;-), mais on n'oublie pas qu'à côté de la dénotation, il y a  la connotation) : on change ainsi le comportement de fusion. 

Commençons par dire que le chocolat est fait environ pour moitié de matière grasse (le beurre de cacao, donc) et de sucre. Et pensons à un coulant au  chocolat, gâteau  avec un coeur qui coule quand on ouvre le gâteau. Comment le faire ? Il faut faire une sorte de mousse au chocolat additionnée de farine, et placer, au centre, un "noyau" fait de chocolat rendu plus  fusible par l'ajout de matière grasse liquide à la température du service. On n'oublie pas, évidemment, de congeler ce noyau  pour le manipuler. Lors de la cuisson, il fond, et, quand on coupe le gâteau, dans l'assiette, le chocolat fondu en sort. 

Et par la même technique, on change le degré de fusion des matières grasses, on mélange du beurre avec de l'huile, de l'huile de palme avec de la matière grasse laitière, du beurre de cacao avec de la matière grasse  de fois gras, que sais-je ? 

Tiens, j'ai évoqué l'huile de palme, qui fait débat. Qu'en penser ? D'un point de vue chimique, elle est faite de triglycérides, comme le beurre, comme l'huile, comme le beurre de cacao. Après, il y a -semble-t-il, car en réalité, je n'y connais rien- des questions politiques, environnementales, mais on comprend bien que ce n'est pas à un physico-chimiste d'en parler. Pour moi, un triglycéride est un triglycéride... Chaque matière grasse a son comportement de fusion particulier, son intérêt nutritionnel particulier...

Reprenons les questions initiales. L'huile d'olive "meilleure" que les autres ? Cela n'a jamais été établi correctement, et ce n'est sans doute pas vrai. Il faut de tout, en quantités variées... et faire de l'exercice, pour se donner des chances de rester en bonne santé... si l'on ne fume pas, boit pas, etc.  

Les matières grasses végétales dans le chocolat ? Ayant déjà évoqué le cas, je n'y reviens pas. 

Les matières grasses hydrogénées : là, il faut entrer dans le détail moléculaire des "dents" des triglycérides, et expliquer que certaines de ces "dents" (le vrai nom est "résidu d'acide gras") sont "insaturées", et d'autres sont "saturées". En effet, les "dents" sont des enchaînements d'atomes de carbone (pensons à -C-C-C-C..., où la lettre C représente un atome de carbone). Parfois les atomes de carbone peuvent s'attacher les un aux autres plus fortement, ce que l'on représente par deux barres, au lieu d'une : -C-C=C-C... C'est cela que l'on nomme une "double liaison", ou un "insaturation". Or les triglycérides dont des "dents" ont des doubles liaisons sont plus fusibles que les autres. Pour obtenir une matière grasse solide, à partir d'une huile, on a découvert que l'on pouvait "hydrogéner" les triglycérides. 

Les avantages ? Les inconvénients ? Je vous renvoie vers une séance de l'Académie d'agriculture de France, où nous avions discuté la question. Il faut quand même savoir que certaines matières grasses saturées sont indispensables à notre bon fonctionnement physiologique. 



Toutes les graisses se vaudraient-elles ? Ce n'est pas ce que j'ai dit... et je voudrais terminer cette causerie en signalant que certains  triglycérides ont plus de "goût" que d'autres. Oui, de goût, alors que les matières grasses semblent ne pas avoir de goût quand elles sont pures. Il y a une dizaine  d'années, une équipe de physiologistes, à Dijon, a découvert que les triglycérides sont "coupés" par des enzymes, à proximité des papilles : ainsi sont  libérés des acides gras. Or les acides gras  "insaturés", quand ils sont assez longs,  peuvent se lier à des récepteurs de la bouche, comme une clé vient dans une serrure... et un "goût" est identifié. On a ainsi longtemps dit qu'un acide gras, c'était un acide gras, mais ce n'est pas exact : certains ont un effet sensoriel, en plus de l'onctueux qu'ont tous les triglycérides. 







Vient de paraître aux Editions de la Nuée Bleue : Le terroir à toutes les sauces (un traité de la jovialité sous forme de roman, agrémenté de recettes de cuisine et de réflexions sur ce bonheur que nous construit la cuisine)

vendredi 2 février 2018

Les valorisations de l'huile

Soit de l'huile, qu'en faire ?
On se propose ici de discuter des formulations de l'huile, afin de mettre cette dernière en valeur… quand elle en vaut la peine.
Partons du fait qu'un système matériel peut s'examiner du point de vue physique et du point de vue chimique. On peut donc changer le système de ces deux façons.
Commençons par la chimie, en observant qu'une huile « de terroir » est composée au premier ordre de triglycérides : l'huile est un mélange de très nombreux composés de ce type, différant par les résidus en acides gras. Chaque type de triglycéride a un point de fusion particulier, c'est-à-dire un comportement particulier. Par exemple, il y a des triglycérides solides à la température ambiante et solide dans la bouche, à la température de 37 degrés, et ils seront comme des solides. Mais il y a aussi des triglycérides solides à la température ambiante et liquides en bouche. Puis les triglycérides liquides à la température ambiante, et, donc, également liquides en bouches. Plus finement, la viscosité des liquides augmente avec la température. Et, surtout, le mélange des divers triglycérides donne à un mélange de ces derniers des comportements mécaniques ou rhéologiques particuliers. Puis, à des ordres bien supérieurs, l'huile contient des composés qui peuvent être odorants, sapides, ou avoir une action trigéminale (la fameuse « ardence » de certaines huiles d'olive).
Une première de diversifier l'huile initiale consiste donc à la fractionner, soit en séparant la partie odorantes/sapides/trigéminales de la masse des triglycérides, ce qui revient à faire une « huile essentielle d'huile », soit en fractionnant les triglycérides.
Comment faire un tel fractionnement ? On peut distiller, à pression atmosphérique ou sous vide, afin de limiter les dégradations, mais on peut aussi faire des « cristallisations fractionnées », comme quand on met de l'huile d'olive au réfrigérateur, ce qui permet de séparer des cristaux de triglycérides par filtration. Ainsi, on obtient des huiles différentes à partir de l'huile initiale… en répétant quand même que le terroir, c'est surtout la partie odorante/sapide/trigéminale.
Les traitements chimiques précédents conservent tous les composés, mais on peut aussi ne faire disparaître, ou bien en faire apparaître. La manière la plus simple est bien sûr le simple chauffage, qui fait des « goûts de cuits », mais il peut aussi chauffer en présence d'autres composés, comme par exemple avec des bases, pour faire des savons… ce qui me fait penser que, si l'on a séparé d'abord les composés non triglycéridiques et qu'on les remet ensuite dans les savons, on aura des « savons de terroir ».
Pour la question physique, les solutions découlent principalement de l'idée des « systèmes dispersés » : à l'aide d'autres produits, qui peuvent être des gaz, des liquides ou des solides, on peut faire des gels, des mousses, des émulsions, des suspensions. Les solides ? Par exemple, du sucre, du sel, mais aussi des acides citrique ou tartrique, des acides aminés, des grains d'amidon… ou des mélanges de tous ces produits. Pour les liquides, il peut s'agir de vin, de café, de bière, de thé, de bouillons, d'eau de pressage de l'huile… Les gaz ? C'est principalement l'air, mais le dioxyde de carbone, si utile pour l'effervescence des boissons gazeuses, ne doit pas être oubliée.
Pour faire une émulsion, on part d' « eau » (liste précédente), on y dissout des composés tensioactifs, et l'on disperse de l'huile, tout comme lors de la confection d'une sauce mayonnaise. Les composés tensioactifs ? Les plus courants sont les phospholipides et les protéines… que l'on trouve naturellement dans les matières végétales que l 'on a pressées pour obtenir l'huile : les tissus végétaux sont faits de cellules qui sont elles-mêmes limitées par des membranes faites phospholipides, avec des protéines incluses. Le procédé est exactement comme dans une mayonnaise, et le goût final dépendra du goût de l'huile et de celui de la phase aqueuse. La consistance de l'émulsion ? Elle dépend de la proportion d'huile et d'eau, mais aussi du procédé, les homogénéisations permettant de bien stabiliser les émulsions, comme le sait bien l'industrie du lait.
Pour les suspensions, la dispersion de solides dans l'huile peut inclure des solides cristallisés, ou amorphes, ou des gels simples ou complexes.
Le sucre, par exemple, est fait de cristaux, mais on sait faire un sirop concentré que l'on coule sur un plan de travail froid pour obtenir un « verre » que l'on peut diviser. Mais, pour faire plus évolué, on peut disperser un gel dans l'huile, ce qui permet d'obtenir des systèmes que j 'ai nommé des gerhardts. Partons par exemple d'une « eau » (le jus de citrons de Menton si nous voulons valoriser de l'huile d'olive) et gélifions-la à l'aide d'un gélifiant qui peut être la gélatine, l'agar-agar, etc. Une fois le gel pris, mixons-le gel dans l'huile, et nous obtenons alors un gerhardt hydrophobe.
Observons que nous aurions pu faire un peu plus complexe en dispersant un « gibbs », que l'on obtient en faisant une émulsion coagulée : on part d'eau, on ajoute des protéines thermocoagulantes, puis on émulsionne de l'huile, et l'on coagule les protéines par chauffage.
Mais nous avons grillé les étapes, car nous aurions aussi pu disperser de l'eau dans le gel, simplement. Ou bien évoquons les « gels d'huile », tel le gibbs précédent que l'on chauffe pour en évaporer l'eau.
Il existe bien d'autres solutions, mais la complexification risque de conduire à des procédés coûteux, alors que l'on sait bien que l'industrie alimentaire se limite au plus simple, tels les yaourts qui résultent seulement du stockage du lait avec des ferments… ce qui me conduit à évoquer les procédés microbiologiques qui conduisent éventuellement à d'autres solutions, pour l'huile.
Terminons avec les mousses. On peut partir d'eau et de protéines, fouetter pour faire une mousse, et disperser ensuite de l'huile dedans. Ou bien on peut faire de « l'huile Chantilly », en faisant une émulsion que l'on foisonne en la refroidissant, comme l'on fait pour une crème fouettée. A ce jour, je crois être le seul à avoir réalisé un tel produit (avec de l'huile d'olive). Un tel système n'est pas stable au réchauffement, mais on n'oubliera pas que l'on peut stabiliser une mousse comme dans ces « würtz » que j'ai proposés il y a longtemps.






Vient de paraître aux Editions de la Nuée Bleue : Le terroir à toutes les sauces (un traité de la jovialité sous forme de roman, agrémenté de recettes de cuisine et de réflexions sur ce bonheur que nous construit la cuisine) 

vendredi 29 décembre 2017

A propos d'émulsions

Une question ? Une réponse... mais pour tous !

Bonjour, je suis une élève de première S et je dois bientôt rendre mon TPE. Mais je ne comprend pas certaines informations à propos de l'émulsion huile-eau-œuf.
Je n'arrive pas à savoir s'il se forme des liaisons hydrogène entre la tête hydrophile de l'huile (composée elle même d'oxygène) et la molécule d'eau. Si il existe des liaisons hydrogène, se font-elles entre les atomes d'oxygène de la tête hydrophile de la molécule d'huile et les atome oxygène des molécules d'eau?
Je profite évidemment de l'occasion pour répéter que, en sciences de la nature, il est essentiel d'utiliser de mots appropriés, d'une part, et je propose, d'autre  part, de bien "ingurgiter les questions, les ruminer", avant de répondre. Pour ce second conseil, il s'agit de  reformulation, et c'est souvent l'occasion de s'apercevoir que la  question était  mal posée. 

Ici, que  mon interlocutrice soit une "élève de première  S" me va bien, et je comprends bien ce qu'est les TPE, puisque je répète que j'ai mis sur mon site une analyse du travail qui doit être fait dans ce cadre (https://sites.google.com/site/travauxdehervethis/Home/vive-la-connaissance-produite-et-partagee/applications-pedagogiques/second-degre/tpe-et-tipe). 
Puis notre jeune amie m'interroge sur "l'émulsion huile-eau-oeuf". Là, c'est bien moins clair, car les émulsions sont des systèmes où l'on disperse un liquide dans un autre liquide, non miscible avec le premier. 
Si notre jeune amie pense à la mayonnaise, ce n'est pas une émulsion huile-eau-oeuf, mais une "émulsion de type huile dans eau" (la terminologie est consacrée... et on pourrait conseiller de donner une référence). Et, pour faire une telle émulsion, de nombreux "composés tensioactifs" peuvent être utilisés. 
Composés tensioactifs ? Ce sont des composés qui abaissent l'énergie interfaciale eau/huile, comme indiqué dans un de mes cours en ligne d'AgroParisTech (https://tice.agroparistech.fr/coursenligne/main/document/document.php?cidReq=PHYSICOCHIMIEPOURLAF&curdirpath=/Des%20elements%20de%20cours/Cours_sur_des_points_particuliers). 
Bref, l'expression "émulsion huile-eau-oeuf" n'est pas claire, et je devine que notre jeune amie ne voit pas clairement comment une mayonnaise se construit : 
- on part d'un jaune d'oeuf, qui est une phase aqueuse (type eau), avec des protéines et des phospholipides dispersés ou dissous
- on ajoute du vinaigre, c'est-à-dire une solution aqueuse d'acide acétique (et de divers composés minoritaires), ce qui produit au total une solution aqueuse (de l'eau plus de l'eau, ça fait de l'eau ; pensons à un sirop de sucre mélangé à de l'eau salée)
- enfin, on disperse dans ce mélange aqueux de l'huile, en fouettant, pour obtenir une dispersion de gouttes d'huile  dans la phase aqueuse. 

Ouf, voilà la première étape faite  : comprendre le système. Passons  à "Je n'arrive pas à savoir s'il se forme des liaisons hydrogène entre la tête hydrophile de l'huile (composée elle même d'oxygène) et la molécule d'eau."
Là, si notre jeune amie est à la veille de rendre son TPE, elle doit se faire du souci. Des liaisons hydrogène entre la tête hydrophile de l'huile et la molécule d'eau ? 
Il faut commencer par expliquer que les liaisons hydrogène sont des liaisons qui s'établissent entre un atome d'hydrogène d'une molécule (par exemple une molécule d'eau) et un atome d'oxygène  d'une autre molécule, parce que cet atome  d'oxygène, qui a deux liaisons covalentes avec un ou deux atomes d'une molécule, a aussi une paire d'électrons, qui, négativement chargés, peuvent interagir avec l'atome d'hydrogène, si celui-ci est partiellement privé de  son électron, par l'atome  lié à lui. 

Je  vois que  tout cela est un peu confus, parce que général, et je propose donc de considérer l'exemple de deux molécules d'eau voisines, que je nommerai E1 et E2. 
Considérons un des atomes d'hydrogène de E1. Il est lié à un atome d'oxygène, mais l'oxygène a tendance à "tirer la couverture à lui"  : l'électrion de l'atome d'hydrogène  que nous considérions est plus attiré vers l'atome d'oxygène. De sorte que cet atome, partiellement chargé positivement, est attiré par l'atome d'oxygène de la molécule d'eau voisine E2. 

Ce qui est gênant, dans la question de notre jeune amie, c'est qu'elle évoque la tête hydrophile de l'huile... alors que cette fameuse tête n'existe pas ! 
Les molécules de l'huile sont des "triglycérides,"  avec un squelette qui est un résidu de glycérol, trois atomes de carbone, liés chacun à un atome d'hydrogène et à un atome d'oxygène qui fait le lien avec des résidus d'acides gras. Les acides gras ? Une chaîne d'atomes de carbone tous liés à des atomes d'hydrogène, mais avec, à une extrémité, un groupe acide carboxylique -COOH, avec un atome de carbone lié à un atome d'oxygène (=O), d'une part, et à un groupe hydroxyle (-OH), d'autre part. 
Parlons donc d'une molécule de triglycéride : elle n'a pas de "tête hydrophile" ! Et c'est bien pour cette raison que l'huile n'est pas soluble dans l'eau. Et, par conséquence, c'est pour cette raison que, pour disperser de l'huile dans de l'eau, il faut des molécules "tensioactives", telles celles de l'oeuf : les protéines, tout d'abord, et, ensuite, les "phospholipides" que sont les lécithines et leurs consines variées. 

Là, oui, pour les protéines ou les phospholipides, il y a une partie hydrophile (qui établit des liaisons, notamment  des liaisons hydrogène) avec les molécules d'eau, et des liaisons faibles avec les molécules d'huile. 
Par exemple, quand on fouette de l'huile dans une solution de protéines, on obtient des gouttes d'huile dispersées dans l'eau, avec les protéines déroulées à l'interface, les parties électriquement chargées ou hydrophile venant au contact de l'eau, et les parties non chargées et hydrophobes venant dans l'huile. J'ai mis des schémas de cela dans mes livres, par exemple "Les secrets de la casserole", ou "Révélations gastronomiques". 

Bref, pas de tête hydrophile des "molécules d'huile"... sans quoi il n'y aurait pas besoin de composés tensioactifs pour faire des émulsions !
















Vient de paraître aux Editions de la Nuée Bleue : Le terroir à toutes les sauces (un traité de la jovialité sous forme de roman, agrémenté de recettes de cuisine et de réflexions sur ce bonheur que nous construit la cuisine)

lundi 25 décembre 2017

Tué par une friteuse !

On m'envoie un lien : un homme est mort, "tué par sa friteuse".

A l'analyse, c'est l'huile qui s'est enflammée, et qui s'est renversée sur lui, sans doute parce qu'il tentait d'éteindre l'incendie. Au-delà du drame, qu'il faut déplorer, il y a la nécessité de donner quelques informations importantes, pour tous ceux qui font chauffer de l'huile.


1. Chauffer de l'huile à 180 °C, voire plus, c'est faire quelque chose de très dangereux, qu'on ne ferait sans doute pas dans l'environnement contrôlé d'un laboratoire, ou alors avec les plus grandes précautions  !
D'autant que, quand on utilise  des casseroles pour  faire chauffer de l'huile, on ne mesure pas la température, de sorte que la température peut monter bien plus qu'il n'est voulu.
Il y a donc le danger de brûlures, mais, aussi, le danger d'inflammation. Et s'il y a danger, il faut donc éviter les risques.


2. Quand l'huile est chauffée très fortement, elle peut s'enflammer spontanément. Et il faut donc absolument éteindre l'incendie.

3. Surtout, jamais d'eau pour éteindre un incendie de friteuse... sans quoi il y a en plus le risque d'une explosion, et de catastrophe absolue.
J'analyse :
- quand on verse de l'eau sur de l'huile (A NE PAS FAIRE !!!), elle est plus dense que l'huile, donc tombe sous l'huile
- mais quand l'eau est chauffée à plus de 100 °C, elle s'évapore
- or un petit gramme d'eau liquide  fait environ un litre de vapeur ; pour une quantité d'eau qui serait de l'ordre du kilogramme (un litre), l'évaporation conduirait à la formation de mille litres, soit un mètre cube
- l'apparition soudaine d'un tel volume de vapeur conduirait à la projection de toute l'huile qui serait sur la vapeur (on se souvient : de l'huile brûlante, et enflammée de surcroît)
- et la formation d'une grande quantité de gaz, soudainement, ferait un souffle  analogue à celui d'une explosion.
Bref, jamais d'eau sur de l'huile enflammée !

4. Que faire, alors ? Le mieux, prendre une grande casserole, ou un moule très large, et le poser sur la casserole enflammée, en même temps que l'on coupe la source de chaleur. Laisser l'objet posé au dessus de l'huile pendant quelque temps, sans toucher à rien. L'absence d'oxygène conduira à l'extinction des flammes, et l'on pourra alors attendre le refroidissement.


Bref, il y a des cas qu'il vaut mieux anticiper, et je me demande si tous les cuisiniers ne devraient pas bénéficier d'un exercice d'extinction d'huile enflammée (sur de très petites quantités), avant d'être autorisés à "conduire une cuisine".

A nouveau : quand il y a du danger, réduisons les risques !








Vient de paraître aux Editions de la Nuée Bleue : Le terroir à toutes les sauces (un traité de la jovialité sous forme de roman, agrémenté de recettes de cuisine et de réflexions sur ce bonheur que nous construit la cuisine)




dimanche 17 décembre 2017

Eviter l'huile dans les frites

Les frites sont un mets merveilleux, bien sûr, mais déconseillés quand on fait un régime, parce qu'il est souvent bien difficile d'éviter l'huile qui les accompagne.
Or dans un régime, la matière grasse est vraiment à éviter : c'est le composé le plus énergétique de notre alimentation, et, pis encore, plus on en mange, mieux on la stocke dans nos tissus adipeux. Combien y a-t-il d'huile dans les frites ? Essayons de le savoir par une expérience.


Taillons un bâtonnet de pomme de terre et plaçons-le dans de l'huile très chaude, par exemple à la température de 180 degrés Celsius. Immédiatement, nous voyons des bulles sortir du bâtonnet, avec un bruit de crépitement qui correspond à l'éclatement des bulles. Si nous plaçons un verre froid dans la fumée blanche qui s'élève au-dessus de l'huile, nous voyons la fumée se condenser, former une buée sur le verre, un liquide, et nous pouvons, en goûtant, nous assurer que c'est bien de l'eau. Autrement dit, la chaleur évapore l'eau des pommes de terre, et parce que un gramme d'eau fait environ un litre de vapeur, le volume considérable de la vapeur formée éjecte les bulles en dehors du bâtonnet de pomme de terre, ce qui repousse l'huile. Autrement dit, pendant la cuisson, l'huile n'entre pas dans les frites.


On peut corroborer cette observation avec l'enregistrement de la pression dans une frite : on voit la pression augmenter lentement, et, quand on sort la frite du bain, la pression cesse d'augmenter, avant de diminuer, après une minute environ. Diminuer ? Cela signifie donc que la vapeur se recondense, de sorte que la frite absorbe alors certainement l'huile qui adhère à la pomme de terre, en surface.


D'où l'expérience qui consiste à prendre un des bâtonnets de pomme de terre, à les mettre dans l'huile chaude, puis à cuire comme on cuirait des frites. Quand elles sont cuites, on les sort de l'huile et on les divise en deux lots. L'un des lots est laissé en l'état, tandis que l'on éponge soigneusement les frites de l'autre lot, afin d'éliminer l'huile en surface.

A la suite de quoi on pèse... et l'on s'aperçoit que la quantité d'huile en plus ou en moins, est de 25 g pour 100 g de pommes de terre ! Vous avez bien lu : un quart de la masse des frites est de l'huile ! Décidément, il est judicieux d'éponger les frites au sortir du bain. Et nous savons maintenant que nous avons une minute pour le faire.







Vient de paraître aux Editions de la Nuée Bleue : Le terroir à toutes les sauces (un traité de la jovialité sous forme de roman, agrémenté de recettes de cuisine et de réflexions sur ce bonheur que nous construit la cuisine)