Affichage des articles dont le libellé est triglycérides. Afficher tous les articles
Affichage des articles dont le libellé est triglycérides. Afficher tous les articles

vendredi 6 octobre 2023

Pourquoi il n'y a pas d'acides gras dans l'huile, pourquoi il n'y a pas d'acide aminé dans les protéines

 Pourquoi il n'y a pas d'acides gras dans l'huile ? pourquoi il n'y a pas d'acide aminé dans les protéines ?
Le monde des médias, comme celui de la publicité, ne cesse de nous parler d'acides gras, pour les huiles. Il y aurait des acides gras saturés, des acides gras insaturés, des « oméga trois », des « oméga six », certains seraient mauvais pour la santé, et d'autres bons... de sorte qu'il faudrait évidemment acheter ces derniers, et ceux-là seulement. 

 

Pourtant, il n'y a pas d'acides gras dans l'huile ! 

 

Expliquons calmement, en partant de quelque chose de simple : la synthèse de molécules d'eau, à partir de molécules de dioxygène et de dihydrogène. A l'aide d'une étincelle ou d'un catalyseur, on obtient le réarrangement des atomes ces molécules, et la formation de molécules d'eau, qui comportent chacune un atome d'oxygène lié à deux atomes d'hydrogènes. Regardons bien : dans les molécules d'eau, il n'y a plus de molécules de dioxygène, ni de molécules de dihydrogène.  Ainsi, lors d'une réaction, tous les atomes initiaux sont réorganisés, de sorte que les composés initiaux n'existent plus. 

Passons aux « triglycérides », qui sont les composés présents dans les matières grasses alimentaires, et en tout dans les huiles. Ces triglycérides ont une structure  faite de trois tentacules souples attaché à un "corps".  Un chimiste qui observe la molécule retrouve, certes, des groupes d'atomes qui font presque des acides gras, mais des atomes sont absents. Et c'est la raison pour laquelle on parle -on doit parler- de "résidus d'acides gras". 

Pourquoi ? Parce que si l'on synthétisait ces molécules de triglycérides à  partir d'acides gras et de glycérol,  des atomes d'hydrogène et d'oxygène seraient perdus, et ils formeraient des molécules d'eau, de sorte que le glycérol et les acides gras ne seraient plus présents, mais sous la forme de "résidus". 

D'ailleurs, on peut aussi procéder d'innombrables façons différentes. Quant à dégrader la molécules, cela peut, également, se faire de tas de façons différentes. Bref, il n'y a pas de glycérol et d'acides gras dans l'huile, mais seulement des triglycérides.

samedi 3 juin 2023

Pourquoi ce n'est pas une fioriture tatillonne de recommander de ne pas parler d'"acides gras" dans les huiles

Pourquoi ce n'est pas une fioriture tatillonne de recommander de ne pas parler d'"acides gras" dans les huiles ? 

 

1. Dans les huiles, il n'y a pas d'acides gras, mais des composés nommés triglycérides. 

2. Et, dans les molécules des triglycérides, il n'y a pas d'acides gras, mais des parties qui ressemblent à des acides gras, et que l'on doit nommer "résidus d'acides gras". 

 

J'ai fait valoir cela à des collègues, qui allaient jusqu'à enseigner que les triglycérides auraient été faits d'acides gras et de glycérol, et ils m'ont répondu que la distinction était sans intérêt, ou encore que le mot "résidu" étant connoté péjorativement dans "résidus de pesticides", il ne fallait pas le prononcer devant le public, ou bien que parler de "résidus d'acides gras" allongeait inutilement, et ainsi de suite. 

Mais je ne sais pas pourquoi, je pressens... que ces gens-là comprennent mal la chimie (qu'ils enseignent !), et qu'ils ne comprennent même pas pourquoi ce qu'ils disent est faux. 

Et, comme beaucoup de personnes insuffisantes, ils masquent leurs faiblesses derrière la mauvaise foi : c'est une erreur que de chercher à les convaincre, puisque, précisément, ils ne le veulent pas. J'ajoute que, il y a quelques années, une Grande Représentante Nationale d'une profession que je ne nommerai pas, mais pour laquelle le mot "acide gras" est quotidien a été obligée de m'avouer qu'elle ne savait pas construire une molécule d'acide gras, à l'aide de ces modèles d'atomes en plastique que l'on utilise au collège : j'ai ainsi constaté, avec autant de stupeur que de naïveté, qu'une même personne pouvait utiliser toute la journée un mot qu'elle ne comprenait pas ! 

 

Mais revenons à la question, en dépassant la mauvaise foi de certains interlocuteurs : pourquoi n'est-ce pas une fioriture tatillonne de recommander de ne pas parler d'"acides gras" dans les huiles ? 

 

La réponse tient en quatre points, que voici : 

1. parce que c'est faux. 

2. parce que c'est trompeur 

3. parce que cela ne fait pas grandir nos interlocuteurs. 

4. parce que cette négligence fait paraître pointilleux ceux qui parlent plus justement.

 

Expliquons plus en détail.

 

Premièrement, c'est simplement faux de dire qu'il y aurait des acides gras dans les triglycérides. 

D'ailleurs, puisque "acide gras" et "triglycéride" sont des catégories, il faut préciser que ce serait bien faux de dire qu'il y aurait des molécules d'acides gras dans les molécules de triglycérides... et notamment parce que, dans une molécule, il n'y a pas d'autres molécules, mais des atomes liés par des liaisons chimiques. Une molécule n'est pas un simple "assemblage", au sens d'une juxtaposition. 

Et, d'autre part, dans une molécule de triglycéride, les atomes présents ne font pas des molécules d'acide gras, masi seulement des parties de tels acides. 

Donc, premier point : parler d'acides gras dans les triglycérides, c'est faux. Un point, c'est tout. 

 

Deuxièmement, dire quelque chose de faux à quelqu'un, c'est tromper, mentir. On m'objecte parfois que c'est pour le bien de ceux à qui l'on explique, mais nos amis sont-ils des enfants, en supposant même que l'on puisse mentir aux enfants (et de quel droit ?) ? 

 

Troisièmement, il y a cette question de ne pas faire grandir nos interlocuteurs, et qui a un rapport avec une certaine prétention, une certaine "autorité" qui veut garder ses prérogatives. J'y vois des relations avec ces enseignants qui disent "c'est compliqué", pour ne pas à avoir à s'expliquer, en supposant qu'ils en soient capables. Mais je vois surtout la volonté de conserver son propre petit savoir, au lieu de le partager, en montrant à nos amis qu'ils ont la possibilité de grandir, de mieux comprendre le monde où ils vivent. Bref, c'est une attitude un peu minable. Quatrièmement, dire que c'est tatillon de rectifier des erreurs, c'est reporter sur les autres ses propres fautes, et cela est détestable, n'est-ce pas ? 

 

Il faut dénoncer ces comportements honteux.

mardi 10 mai 2022

Ne parlons plus d'acides gras !

 

Ce matin, une question :

Outre les effets positif ou négatifs sur la santé que peuvent avoir les différents acides gras, y a-t-il une différence dans la pratique au niveau de l’utilisation et les propriété de ces acides gras ? Ou les influences dépendront surtout de quel type de matière grasses (huile ou graisse) nous utilisons ?

 

Commençons par le commencement, à savoir que l'on me parle d'effets positifs ou négatifs des acides gras : on trouvera dans au moins deux autres billets les raisons pour lesquelles je me refuse absolument à parler de nutrition ou de diététique en public, même si la question m'intéresse un peu et si je fais une bibliographie spécifique.
Voici :
http://hervethis.blogspot.com/2019/10/ni-nutrition-ni-toxicologie.html
et
https://hervethis.blogspot.com/2022/01/oblige-dy-revenir-en-mameliorant-un-peu.html

Mais je m'arrête surtout sur ces acides gras... car il n'y en a pas dans notre alimentation !

Je peux évidemment renvoyer un article que j'ai écrit sur cette question à propos de la rigueur terminologique de ceux qui parlent d'objets de chimie en public (https://www.academie-agriculture.fr/publications/notes-academiques/la-rigueur-terminologique-pour-les-concepts-de-la-chimie-une-base), mais il faut commencer par dire que les huiles et les autres graisses alimentaires ne contiennent pas d'acide gras !
Ces matières sont composés de triglycérides, qui sont des espèces chimiques dont les molécules sont faites chacune d'un résidu de glycérol et de trois résidus d'acides gras.
Entendons-nous bien : le mot "résidu" signifie que, dans ces molécules de triglycérides, les chimistes arrivent à distinguer des atomes organisés un peu comme dans la molécule de glycérol, un peu comme dans les molécules d'acides gras.
Mais il n'y a pas de molécule de glycérol ni de molécules d'acides gras dans mais la molécule de triglycéride ; et si l'on a synthétisé - chimiquement- un molécule de triglycéride à partir d'une molécule de glycérol et de trois molécules d'acides gras, les atomes se sont réorganisés, certains ont été perdus, et l'on n'a pas obtenu un simple assemble, au sens d'une juxtaposition, mais une nouvelle molécule.
Bref, arrêtons donc de parler des acides gras et parlons seulement de résidus d'acides gras si nous voulons décrire les parties lié au résidu de glycérol dans les triglycérides.


Allons, disons-en un peu plus sur le glycérol et sur les acides gras.

Le glycérol, pour commencer, est le composé qui fait la populaire "glycérine". Ses molécules sont formées d'un squelette de trois atomes de carbone enchaînés linéairement, avec, lié à chaque atome de carbone, un atome d'oxygène lié à un atome d'hydrogène ; plus des atomes d'hydrogène afin que chaque atome de carbone ait quatre liaisons chimiques.
Les acides gras, eux, sont des chaîne d'atomes de carbone plus ou moins longues, avec, à une extrémité, un groupe "acide carboxylique", avec l'atome de carbone lié, d'une part, à un atome d'oxygène, et, d'autre part, à un atome d'oxygène lié à un atome d'hydrogène.

Et les triglycérides, enfin, sont des composés dont les molécules sont comme des pieuvres à trois tentacules. La "tête", c'est le résidu de glycérol, et les trois tentacules sont les trois résidus d'acides gras.

 

A propos de la seconde partie de la phrase initiale de la question

Là encore, la question n'a pas de sens... car s'il n'y a pas d'acide gras dans les graisses ou huiles, il ne peut y avoir de particularités d'utilisation de ces derniers : ;-)

En revanche, on peut se poser la question à propos des triglycérides. Et là, oui, il y a de vrais différences de comportement physique des différents triglycérides.

Considérons d'abord un triglycéride où les trois résidus d'acides gras seraient petits, c'est-à-dire avec un petit nombre d'atomes de carbone. Les molécules de ce triglycérides seraient légères, donc animées d'une plus grande vitesse à une température donnée et elle s'empileraient plus difficilement que des molécules plus grosses, avec plus d'atomes de carbone dans les résidus d'acides gras.
D'ailleurs, la longueur des chaînes des résidus d'acides gras n'est pas la seule caractéristique moléculaire qui détermine la température de fusion : les "doubles liaisons" entre les atomes de carbone, ce que l'on désigne aussi par le terme d' "insaturation", font les molécules plus fusibles.

Et voilà pourquoi les triglycérides d'une huile sont liquides, aux températures ambiantes, alors que les triglycérides du beurre ou du lard ne le sont pas.
Pour ces derniers, il y a une proportion liquide, et une proportion solide. Pour le beurre, par exemple, tous les triglycérides sont solides à la température de -10 °C, et ils sont tous liquides au delà de 50 °C.

Ce qui est intéressant à savoir pour la cuisine ou la pâtisserie, c'est que les matières grasses se mélangent très bien : on peut parfaitement mélanger de l'huile à du beurre fondu, ou à du chocolat fondu.
On obtient alors des mélanges de triglycérides avec des comportements de fusion particuliers, intermédiaires, et, aux températures ambiantes, des différences de consistance intermédiaires aussi.

D'ailleurs, je ne dois pas oublier de renvoyer à une fiche de l'Encyclopédie de l'Académie d'agriculture à ce propos : https://www.academie-agriculture.fr/mots-clefs-encyclopedie/fusion

mardi 1 mars 2022

Les molécules collent les unes aux autres



Partons d'huile : c'est un liquide jaune, mais avec des tas de particularités, à commencer par le fait que ce soit l'ingrédient alimentaire le plus énergétique... raison pour laquelle il n'y a pas lieu de craindre les "pilules nutritives" dont des idéologues nous menacent régulièrement, qui remplaceraient l'alimentation : si l'on ne mangeait que de la matière grasse, il faudrait environ 300 grammes pour se soutenir une journée, et 300 grammes d'huile, ça ne tient pas dans une pilule !

A propos de cette huile, on pourrait dire mille choses, discuter son rancissement éventuel, sa sensibilité à la chaleur, à la lumière, mais ici, je propose surtout de penser que,  si nous avions un super microscope, nous verrions qu'elle est faite de très petits objets,  par milliards de milliards de milliards...

Ces objets sont des molécules. Dans de l'huile bien raffinée, bien propre, ces molécules sont de différentes sortes, mais elles se ressemblent toutes avec  une apparence de petites pieuvres à trois bras.

Or les pieuvres ont des ventouses avec lesquelles elles collent un peu. Et, de même, les molécules d'huile collent un peu entre elles... ce qui évite que l'huile ne s'évapore.

Dans de l'huile, liquide, les molécules bougent en tous sens, comme des boules de billard, mais on comprend que la présence des trois "tentacules" complique le mouvement.

Quand on verse de l'huile, les molécules de l'huile s'écoulent, comme le feraient des grains de sable... mais du sable un peu adhérent, un peu collant : rappelons-nous les ventouses des pieuvres.

Les forces d'adhérence sont faibles, pour les molécules de l'huile, et elles seraient plus fortes pour de l'eau.

Et si l'on refroidit l'huile, leur mouvement qui diminue (c'est cela, la "température") fait que l'énergie de mouvement n'est plus suffisante pour rompre le collage. Bref, les molécules de l'huile s'attachent les unes aux autres... et l'on a un solide, de l'huile figée, comme on en voit dans les bouteilles d'huile que l'on met au froid.  

Ah, j'ai oublié de dire que les molécules de l'huile sont des "triglycérides". Pas des acides gras, comme le dit une certaine publicité trompeuse ! Mais je n'entre pas ici dans les détails, car c'est une autre histoire, pour une autre fois.

samedi 10 octobre 2020

Pourquoi il n'y a pas d'acides gras dans les triglycérides ni d'acides aminés dans les protéines



On rencontre décidément parfois des personnes étranges : là, des scientifiques (pas chimistes) ne veulent pas admettre, sans avoir à m'opposer d'arguments autres que des usages anciens (et fautifs),  que les protéines ne sont pas faites d'acides aminés, ou que les triglycérides ne sont pas faits d'acides gras.

Expliquons, aussi simplement que possible, et en prenant des exemples.

Si l'on regardait de l'huile à l'aide d'une sorte de super-microscope, on verrait un grouillement d'objets ressemblant à des pieuvres à trois tentacules. Ces objets ont pour nom "triglycérides", et ils sont faits d'atomes de carbone, d'oxygène et d'hydrogène.
La "tête des pieuvres" est faite de trois atomes de carbone, d'où partent les trois "tentacules". Or il y a un composé à trois atomes de carbone qui a pour nom glycérol, et les "tentacules" ressemblent beaucoup à des composés que l'on nomme des acides gras. De plus, on peut effectivement partir de glycérol et d'acides gras pour produire des triglycérides, mais au prix d'une réaction chimique, avec l'élimination de certains atomes d'oxygène et d'hydrogène. Bref, une fois que le triglycéride est fait, il n'y a plus de glycérol ni d'acides gras, même si un chimiste en retrouve la marque.

D'où ma conclusion : il n'y a pas d'acides gras dans l'huile, puisqu'il n'y a que des triglycérides. Et, d'autre part, il n'y a pas d'acides gras dans les triglycérides, mais seulement des résidus d'acides gras.

Ce que je viens d'expliquer se retrouve avec les protéines, qui ne "contiennent" pas d'acides aminés, mais sont des enchaînements de résidus d'acides aminés". Là encore, le mot "résidu" permet de bien comprendre que des atomes ont été éliminés des acides aminés.

Tout cela me semble simple et clair, mais je compte sur vous pour me signaler des obscurités.
En tout cas, je ne comprends pas pourquoi des collègues d'autres disciplines rechignent à utiliser des terminologies correctes... à moins qu'ils n'aient d'idées que de simples mots, comme des manteaux sans personne dedans ?

samedi 7 septembre 2019

Pas d'acides gras dans l'huile, mais des triglycérides


Vraiment, je m'étonne : alors que je venais de twitter que l'huile ne contient pas d'acides gras, mais des triglycérides, un collègue m'interroge, parce qu'il ne comprend pas. Certes, ce n'est pas un chimiste... mais qu'importe : je vois surtout qu'il y a lieu d'expliquer (merci de me dire ensuite si j'ai été clair).

Partons donc d'une bouteille d'huile : dans le récipient en verre ou en plastique, on voit un liquide jaune, un peu visqueux, transparent.
Si nous l'observons à l'aide d'une loupe, nous continuons de voir la même chose. Et également avec un microscope classique.
En revanche, si nous regardons avec un microscope bien plus puissant, nous voyons l'huile faite d'objets analogues à des  peignes à trois dents souples. Plein, qui grouillent... Ce sont des molécules, et ces molécules sont toutes comme des peignes à trois dents souples, de la catégorie que les chimistes nomment des triglycérides.
Dans les organismes vivants qui en synthétisent, ces composés sont obtenus par assemblage d'un composé nommé glycérol-3-phosphate et d'acide gras. Mais une fois que les atomes sont assemblés en molécules de triglycérides, il n'y a plus de glycérol ni d'acides gras.

Bien sûr, on sait aussi décomposer les triglycérides, afin de former, à partir d'eux, du glycérol et des acides gras, mais on sait aussi décomposer les molécules de triglycérides de mille autres manières. Et une huile décomposée, parce qu'elle a été exposée à la chaleur, ou à la lumière, ou à l'oxygène, est assez malsaine, rance, et la présence d'acides gras en abondance ne serait vraiment pas bon signe !

Donc voilà : pour ceux qui en avaient besoin, pas d'acides gras dans l'huile !




PS. A propos de ce billet, je reçois un remerciement d'un correspondant, qui me dit "Et concernant les oméga 3 (et autres AGPI) ce sont aussi des triglycérides ?". 
Ici, la question est l'usage généralisé d'un terme galvaudé par les réclames. "Oméga 3" est  une abréviation d'acide gras oméga 3. Et, en vertu de ce que j'ai expliqué plus haut, il n'y a donc pas d'acides gras oméga 3 dans les huiles, puisque les huiles ne sont faites que de triglycérides.
Mais certains triglycérides, surtout dans l'huile d'olive ou dans des graisses de poissons, ont des résidus d'acides gras (j'insiste, comme dit plus haut, sur l'expression résidus d'acides gras) qui sont des résidus d'acides gras oméga 3.

Mais, à ce stade, il faut considérer les résidus d'acides gras plus en détail. On trouvera, dans le Grand livre de notre alimentation, un chapitre bien détaillé sur ce point,  mais disons ici, simplement, que les résidus d'acides gras sont des enchaînements d'atomes de carbone, avec des atomes d'hydrogènes attachés à ces atomes de carbone.
A l'exception de l'atome de carbone de l'extrémité libre de la chaîne (l'autre extrémité est liée à un résidu de glycérol, le manche du peigne), chaque atome de carbone est lié à deux atomes d'hydrogène, dans les résidus d'acides gras saturés. En revanche, pour les résidus d'acides gras insaturés, deux atomes de carbone voisins ne sont liés chacun qu'à un seul atome d'hydrogène, tandis que ces deux atomes de carbone sont doublement liés : c'est ce que l'on nomme une "insaturation", car on peut chimiquement ajouter de l'hydrogène, auquel cas le résidu d'acide gras, d'insaturé, devient saturé.

Finalement, on aura raison de dire : il existe des triglycérides dont un ou plusieurs résidus d'acides gras sont insaturés, et, notamment, avec une insaturation de type oméga 3 (je n'explique pas plus en détail, voir le livre cité plus haut)


lundi 8 avril 2019

Pourquoi les diverses graisses ne fondent pas à la même température

Les question ne cessent d'arriver par email, mais je ne suis pas toujours parfaitement libre pour y répondre. Heureusement, vient le week-end, où je peux rattraper mon retard. Et, cette semaine, une question sur les graisses :

Pourquoi les graisses ne fondent-elles pas toutes à la même température ? 

La question est d'autant plus intéressante que les publicités qui nous submergent ne cessent d'induire le public en erreur : contrairement à ce qu'elles mentionnent, il n'y a pas d'acides gras dans les matières grasses, huiles ou graisses végétales ! Ou, plus exactement, quand il y en a (jusqu'à environ 5 % dans les pire cas), c'est le signe que la matière grasse n'est pas bien raffinée, ou bien qu'elle a été dégradée.


Mais commençons par expliquer ce dont il s'agit, en partant d'une huile bien raffinée. 

C'est alors un liquide transparent, quasi incolore, fait de molécules qui sont quasiment toutes des "triglycérides", à savoir des assemblages d'atomes de carbone, d'atomes d'hydrogène et d'atomes d'oxygène.



Plus précisément, pour la molécule d'un "triglycéride saturé", trois atomes de carbone liés sont ensuite chacun liés à un atome d'oxygène, qui est lui-même lié à un autre atome de carbone qui est, d'une part, lié à un atome d'oxygène, et, d'autre part, lié à un chaîne d'atomes de carbone qui sont chacun liés à deux atomes d'hydrogène, sauf à l'extrémité de la chaîne, le dernier atome de carbone est lié à trois atomes d'hydrogène, et non deux.



Ces molécules sont très nombreuses :  dans une bouteille d'huile, il y en a environ cent millions de milliards de milliards.


Mais la description que je viens de donner est simpliste, parce que, en réalité, il y a des triglycérides variés : au lieu d'avoir cent millions de milliards de milliards de molécule d'une seule sorte, il y a des millions de milliards de molécules d'environ 400 millions de sortes différentes. Toutes ont en commun cette structure particulière, avec trois atomes de carbone auxquelles sont liées les structures présentées précédemment. Et comme on peut synthétiser chimiquement ces molécules à l'aide d'un composé nommé glycérol et de composés nommées acides gras, ou glycérides, on nomme triglycéride les molécules des matières grasses. D'ailleurs, on peut également dégrader les triglycérides en glycérol et acides gras, par exemple.
Le glycérol ? C'est le "sucre" le plus simple, avec, donc, trois atomes de carbone qui sont chacun liés à un atome d'oxygène liée à un atome d'hydrogène, et aussi à des atomes d'hydrogène, de sorte que le total de la liaison de chaque atome de carbone avec des atomes voisins soit de quatre.



Quant aux acides gras, ils sont tous faits d'un atome de carbone qui est lié à un atome d'oxygène, à un autre atome d'oxygène lié à un atome d'hydrogène, et à un enchaînement d'atomes de carbones qui ne sont liés, eux, qu'à des atomes d'hydrogène.







Mais il faut le répéter : les matières grasses alimentaires ne contiennent que très peu de glycérol et d'acides gras, et elles sont majoritairement faites de molécules de triglycérides. C'est un abus de langage dommageable que de dire qu'il y a des acides gras dans les matières grasses alimentaires. Et c'est cet abuse de langage qui impose de parler d'acides gras libres, pour les acides gras qui existent réellement, dans des matières grasses de mauvaise qualité.


Tout cela étant expliqué, nous pouvons maintenant nous préoccuper de la fonte des graisses solides, ou, inversement, de la solidification des matières grasses liquides. 

L'expérience fondatrice est facile à faire : il suffit de mettre une bouteille d'huile dans un congélateur  : quand l'huile est refroidie à la température du congélateur, elle est alors solide, blanche et opaque. En effet, les molécules  sont des objets qui bougent, s'agitent, vibrent... d'autant plus rapidement qu'ils ont plus d'énergie, ce qui revient à dire d'autant plus que leur température est élevée. Et c'est ainsi que, quand on refroidit, les molécules ralentissent, et viennent s'empiler les unes sur les autres, formant des "cristaux" dont l'assemblage devient blanc comme la neige (qui est faite de cristaux, par empilement des molécules d'eau).
A ce stade, manque encore une information : les molécules de triglycérides s'attirent très légèrement, avec une force qui dépend de leur constitution moléculaire particulière.
Et c'est ainsi, par exemple, que si l'on ne considère que des matières grasses "saturées", comme celles que nous avons décrites précédemment, l'empilement se fait à température plus basse pour les petits triglycérides. En effet, imaginons deux groupes de triglycérides à la même température : un groupe avec des petites molécules, et un groupe avec des molécules plus grosses (plus d'atomes de carbone dans les "résidus d'acides gras"). Comme l'énergie d'une molécule correspond à son mouvement, la vitesse des petites molécules est supérieure. Cela signifie que leur mouvement vaincra plus facilement les forces d'attraction entre les molécules, et que ces petites molécules figeront plus difficilement.

Ce qui est dit de la taille des molécules de triglycérides n'épuise pas le sujet : pour l'instant, nous n'avons évoqué que les triglycérides "saturés", et pas les triglycérides "insaturés", pour lesquels  les chaînes d'atomes de carbone sont moins flexibles pour des raisons que nous n'expliquerons pas ici.  De ce fait, les empilements sont plus difficiles, et il faut donc refroidir davantage pour arriver à les empiler en solides. De fait, l'huile d'olive, qui contient beaucoup de ces triglycérides insaturés, fige à plus basse température que la matière grasse d'origine animale, qui contient  des  triglycérides saturés.

Hopla!


Et si voulez en savoir plus : 
E.W. Hammond, in Encyclopedia of Food Sciences and Nutrition (Second Edition), 2003.
H.D. Belitz, W. Grosch, P. Schieberle, Food Chemistry, Springer Verlag.
Hervé This, Mon histoire de cuisine, Editions Belin.


samedi 3 mars 2018

Si l'on venait à manquer de beurre

Ceux qui suivent trop ces "informations" qui sont souvent de la désinformation ou de l'intoxication intellectuelle s'émeuvent : il y aurait une pénurie de beurre.

De fait, hier, alors que j'avais acheté sans difficulté du beurre dans un supermarché, j'ai été interrogé par un journaliste qui préparait un article sur le thème : "puisqu'il y a une pénurie de beurre, comment s'en passer"... interview qui est arrivé alors que je sortais du tournage d'une émission de télévision, pour une chaîne nationale, sur le thème de la margarine.

Décidément, il faut expliquer les choses.



De quoi le beurre est-il fait ? 

Commençons par expliquer que les corps gras sont majoritairement faits de composés nommés des "triglycérides". Pas (ou très peu) d'acides gras, dans cette affaire, contrairement à ce que des publicités fautives nous répètent de façon lancinante ! Toutes les molécules de triglycérides sont comme de minuscules peignes à trois dents, avec le "manche" qui ressemble à la molécule de glycérol (la glycérine), dont la colonne vertébrale est faite de trois atomes de carbone, et avec des dents qui ressemblent aux molécules d'acides gras, qui sont, elles, de longues chaînes d'atomes de carbone, liées à des atomes d'hydrogène, et, avec un groupe acide à une extrémité.
En réalité, les molécules de triglycérides sont donc composées d'un résidu de glycérol et de trois résidus d'acides gras.

Chaque triglycéride a un point de fusion très précis (par exemple 34 degrés, ou - 5 degrés, ou 47 degrés...), mais les mélanges de triglycérides, eux, sont des solides à températures suffisamment basse, qui fondent progressivement à mesure que la température augmente.
Et c'est ainsi que la matière grasse laitière, qu'elle soit dans le lait ou dans la crème ou encore dans le beurre ou le fromage, commence à fondre à partir de  - 10 degrés, et finit de fondre à  55 degrés. Pour ce mélange particulier de triglycérides qu'est le beurre de cacao, la fonte commence à 30 degrés, et s'achève à 37 degrés.

Bien sûr, à part dans les huiles, il est rare que les matières grasses ne comportent que des triglycérides : par exemple, le beurre peut comporter de l'eau, avec toutefois une réglementation qui limite cette quantité à 16 pour cent (sans quoi des commerçants indélicats mettraient plein d'eau dans le beurre, et vendraient de l'eau au prix du beurre).


Le bon beurre

Le beurre, pour y revenir ? Il est préparé à partir du lait, lequel est une "émulsion", c'est-à-dire une dispersion de gouttelettes de matière grasse dans de l'eau. Il y a 36 grammes de matière grasse par litre (environ un kilogramme) de lait.
Quand on laisse le lait reposer, les gouttelettes de matière grasse viennent flotter à la surface, formant une émulsion plus concentrée : c'est la crème, dont, évidemment, la teneur en matière grasse dépend du temps de repos du lait.

Puis, quand on baratte la crème, c'est-à-dire quand on la brasse énergiquement, on obtient une masse grasse dont un liquide aqueux se sépare : c'est le beurre, qui, comme dit plus haut, a une teneur en eau réglementée.

Le beurre est cher ? C'est légitime : il faut quand même avoir élevé des vaches, avoir trait ces dernières, et avoir produit le beurre.
Bien plus facile que presser des graines de tournesol  pour faire de l'huile ! Et, de fait, la question du prix du beurre se pose depuis longtemps, et notamment depuis l'époque du chimiste Michel Eugène Chevreul, qui encouragea le chimiste Hyppolite Mege à produire une copie du  beurre qui fut nommée margarine.
Initialement, dans le premier brevet de Mège, en 1869, la recette de la margarine utilisait de la graisse de boeuf clarifiée, de la mamelle de vache broyée, un peu de lait, du bicarbonate de sodium et un colorant jaune.
Mège, qui prit ultérieurement le nom de Mège-Mouriès pour se distinguer d'homonymes, prétendait avoir fait un produit "supérieur"... mais je n'échange pas du bon beurre contre de la margarine ! En effet, la margarine n'as pas de goût (sauf si l'on a ajouté des composés odorants (que la réglementation nomme fautivement des "arômes", alors qu'il faudrait parler de compositions ou extraits odoriférants), et c'est juste de la graisse utilisable pour des usages techniques... qui oublient que la cuisine est d'abord une activité artistique, qui veut faire bon. Si c'est pour manger des nutriments, ce n'est pas la peine de cuisiner.



Pallier une pénurie de beurre

Mais laissons cette cuisine sans goût aux ignorants, et revenons à la margarine pour en dire qu'elle fut introduite afin de pallier un coût élevé du beurre. Mège-Mouriès vendit son brevet à la société Margarine Unie (qui deviendra Unilever), qui en a fait ... son "beurre".
D'ailleurs, comme la graisse de boeuf est plus coûteuse que l'huile, la société Unilever a rapidement appris à remplacer la graisse de boeuf par de l'huile : comme les comportements de fonte d'une émulsion d'huile ne permettent pas de faire des pâtes à tarte, l'industrie a "hydrogéné" les triglycérides, leur permettant de fondre à température supérieure.
On observera qu'il aurait été loyal de nommer différemment les émulsions aux matières grasses hydrogénées, afin de bien éclairer le public (la loi sur le commerce des denrées alimentaires de 1905 revendique que les produits vendus soit loyaux, sains et marchands). D'autre part, on n'aura pas lieu de craindre les émulsions faites de graisses hydrogénées, surtout depuis les progrès de l'industrie alimentaire dans ce domaine, il y a plus de deux décennies.


Autrement dit, voici au moins deux idées pour pallier une éventuelle absence de beurre : utiliser de la graisse de boeuf (clarifiée), ou utiliser de la margarine, pour les usages de type pâtisserie. Pour les cuissons ou d'autres usages tels que la confection d'émulsions (sauce mayonnaise, par exemple), pas besoin de beurre : l'huile suffit.


 Mais la vraie question est celle du goût : une huile neutre est sans intérêt, autre peut-être que de faciliter économiquement des cuissons où le goût est apporté par ailleurs. Mais une huile sans goût ne vaut pas une huile avec goût, pas plus qu'une margarine n'aura le goût de beurre.
Bien sûr, on peut aussi imaginer de donner du goût à une margarine, en y ajoutant des composés sapides ou odorants variés, tel le diacétyle, ou bien le 1-cis-hexén-3-ol, ou des "arômes beurre" (qu'on devrait plus justement, plus honnêtement, nommer des compositions odorantes reproduisant l'odeur du beurre). Car le beurre n'est pas le nec plus ultra : on peut sans doute faire "mieux" (en définissant préalablement ce que le "mieux" signifie, et en n'oubliant pas qu'est bon ce que j'aime personnellement).







Terminons en signalant que le public est un peu girouette, à l'aune de l'histoire : quand le beurre se fit cher, du temps de Mège, la chimie qui produisit la margarine fut portée aux nues. De même, la chimie triompha quand le blocus continental provoqua une pénurie de sucre (de canne, importé des colonies), et que l'on découvrit comment faire du sucre de betteraves.
Je parie qu'un certain  public qui jette l'anathème à la chimie aujourd'hui en dira du bien demain, quand le prix du beurre aura augmenté !

















 Vient de paraître aux Editions de la Nuée Bleue : Le terroir à toutes les sauces (un traité de la jovialité sous forme de roman, agrémenté de recettes de cuisine et de réflexions sur ce bonheur que nous construit la cuisine)  

lundi 5 février 2018

Mélange de matières grasses

Les huiles alimentaires sont-elles toujours miscibles ? 

La question culinaire simple est en réalité d'une belle complexité physico-chimique, parce que l'idée classique d'énergie est battue en brèche... et que nous verrons que le problème est résolu d'emblée (autrement dit, tout ce que je vais expliquer pour commencer est parfaitement inutile en vue de répondre à la question posée ; désolé).

Au départ, il y a la question de la miscibilité. Pourquoi du vin se mélange-t-il à de l'eau, mais pas de l'huile ? La question est difficile, et elle n'a été élucidée qu'il y a une dizaine d'années.

Commençons par une idée simple : une bille en haut d'une montagne roule vers le bas. Pour expliquer ce fait d'expérience, les physiciens ont introduit une notion, l'énergie potentielle", et établi une "loi de la nature", à savoir que les systèmes évoluent vers les états où l'énergie potentielle est inférieure. Dit ainsi, on ne semble pas avoir gagné grand chose, à part rendre abstrait ce qui était concret... mais ce sentiment n'est pas juste : il résulte du fait que la vulgarisation scientifique veut donner les résultats avec des mots, de sorte qu'il n'est pas étonnant que les mots ressemblent  aux mots. En réalité, derrière l'idée de l'énergie potentielle, il y a des quantités, des équations dont je vous prive (oui, je dis bien : je vous en prive, parce que la beauté des équations est merveilleuse).

Pour les atomes, c'est un peu pareil que pour les billes et les montagnes : de même, les atomes s'associent en molécules quand il y a des possibilités de liaison chimique sont satisfaites, et les physico-chimiste ont introduit une sorte d'énergie potentielle chimique, ce que l'on  nomme aussi des forces de liaisons chimiques. Les liaisons les plus faibles sont nommées liaisons de van der Waals, et il y en a entre les molécules de l'huile (ce que l'on nomme des triglycérides, mais j'y reviendrai) ; puis il y a des "liaisons hydrogène", par exemple entre les molécules d'eau, plus fortes que les précédentes ; et puis, beaucoup plus fortes, les "liaisons covalentes", c'est-à-dire les liaisons qui lient les atomes entre eux pour former des molécules, au lieu simplement de faire coller les molécules entre elles, comme dans les liquides ; enfin les forces électrostatiques, pour les atomes ou molécules chargés électriquement, ce qui assure la solidité des cristaux de sel, par exemple.

Cette première description permet d'expliquer certains phénomènes : par exemple, s'il n'y avait pas de liaisons hydrogène entre les molécules d'eau, qui sont de petites molécules, l'eau s'évaporerait quasi instantanément. Les liaisons hydrogène sont comme une sorte de glu, entre les molécules d'eau.
De même, pour les molécules d'huile, les liaisons de van der Waals sont une colle, bien plus faible... mais l'huile ne s'évapore guère, parce que les triglycérides sont de très grosses molécules, bien plus lentes (à température ambiante) que les molécules d'eau.
Examinons maintenant la constitution de ces molécules. Pour l'eau, c'est simple : chaque molécule d'eau est faite d'un atome d'oxygène lié à des atomes d'hydrogène, en une structure en forme de V. A la température ambiante, la vitesse moyenne des molécules d'eau est de 650 mètres par seconde.
Pour les molécules de triglycérides, la structure des molécules est plus compliquée : il faut imaginer une sorte de peigne avec des dents souples. Le manche est fait de trois atomes de carbone enchaînés linéairement, et chaque atome de carbone est lié par un atome d'oxygème à une longue chaîne d'atomes de carbone qui sont eux mêmes liés à un, deux ou trois atomes d'hydrogène. J'omets volontairement des détails, pour signaler seulement que de telles molécules ont un nombre d'atomes de carbone total de l'ordre de 20 à 100, avec un peu plus d'atomes d'hydrogène, et six atomes d'oxygène. Bref, une telle molécule est bien plus grosse qu'une molécule d'eau, et bien plus lente, aussi : la vitesse moyenne est seulement de 90 mètres par seconde.
En quoi cela fait-il une différence ? Imaginons que nous avancions assez lentement, en ligne droite, et que nous passions près d'un ami, que nous cherchons à attraper seulement en fermant les doigts. Si notre énergie de vitesse est faible, alors nous pourrons en entraîner notre ami avec nous ; en revanche, si nous allons très vite, nous ne parviendrons pas à l'entraîner. De même, des molécules lentes sont très sensibles aux liaisons possibles, même quand elles sont faibles, comme dans l'huile. Et comme les molécules de triglycérides peuvent donc s'attacher les unes aux autres, elles ne s'évaporent pas, sauf à atteindre environ 300 à 400 degrés.

Avec cela, nous en savons assez pour revenir à la question initiale, sur la miscibilité. Considérons de l'eau, et imaginons que nous voulions y mettre une molécule de triglycéride. Quand la molécule de triglycéride arrive dans l'eau, elle établit des liaisons de van der Waals avec les molécules d'eau... ce qui nous conduirait à penser que l'huile peut se dissoudre dans l'eau... Mais cela est réfuté par les faits !

Pourquoi l'huile ne se dissout-elle alors pas dans l'eau ? Parce que, quand la molécule de triglycéride est introduite dans l'eau, elle oblige les molécules d'eau à se disposer autour d'elle d'une façon spécifique, déterminée par la structure moléculaire du triglycéride. Or c'est une découverte essentielle de la physique du 19e siècle que d'avoir compris que le monde évolue spontanément vers le désordre, pas vers l'ordre. Une molécule de triglycéride qui ordonnerait des molécules d'eau ferait évoluer le monde vers un état plus ordonné... ce qui "coûterait" de l'"énergie de désordre"... de sorte que cela n'arrive pas, en pratique.
Bref, si l'huile ne se dissout pas dans l'eau, c'est une question d'"énergie de désordre". Et nous avons maintenant les deux idées indispensables pour savoir si les huiles sont miscibles entre elles...

 A cela près que tout ce que je viens d'expliquer est inutile, comme je l'avais annoncé initialement. Nous aurions dû commencer par analyser que chaque huile est déjà un mélange d'un nombre parfois très grand de triglycérides différents. Et si on mélange deux mélanges, qui sont des mélanges de triglycérides distincts seulement par la proportion des divers triglycérides, pourquoi ne se mélangeraient-ils pas, alors qu'ils sont les mêmes constituants ?




Vient de paraître aux Editions de la Nuée Bleue : Le terroir à toutes les sauces (un traité de la jovialité sous forme de roman, agrémenté de recettes de cuisine et de réflexions sur ce bonheur que nous construit la cuisine)

dimanche 4 février 2018

Huiles et graisses

On entend mille choses, à propos des graisses  : 

- l'huile, ce serait mieux que le beurre ou la crème "pour la santé"

- les graisses végétales, ce serait mal (ou bien) dans le chocolat

- les matières grasses hydrogénées, ce serait très  mauvais

- et ainsi de suite. 

Je déplore que beaucoup de mes interlocuteurs qui font ainsi des déclarations à l'emporte pièce ne savent pas de quoi ils parlent, d'un point de vue physico-chimique. Manifestement, quelques données de base sont nécessaires pour se faire une idée. 


Commençons non pas par la chimie, ni par la physique, mais par la nutrition. Ce sera vite fait : je n'y connais rien, de sorte que je ne suis pas habilité à en parler ! 


Alors passons à la politique : on nous dit qu'on peut mettre des graisses végétales dans le chocolat, afin de régulariser les cours du cacao.
Pourquoi pas, mais le chocolat doit d'abord être et rester du chocolat, donc une matière dans la composition de laquelle ne viennent  pas d'autres corps gras que le beurre de cacao.
C'est là une question de loyauté. Et j'ai déjà déploré dans des billets cette possibilité donnée aux fabricants d'ajouter de la matière grasse végétale (quelle qu'elle soit)  en petite quantité au beurre de cacao.
Plus exactement, alors que le produit ainsi obtenu ne diffère probablement pas du chocolat (le mot que je conserve pour désigner le produit sans ajout de matières grasses autres que du beurre de cacao), je propose qu'on ait deux noms différents pour désigner les produits différents, sous peine de tromperie. Ce n'est pas la règle qui a été retenue,  mais il n'est pas impossible de changer la règle actuelle, en vue d'une plus grande loyauté. 

A propos d'huile de palme, aussi, il y a des débats : la question semble être politique, mais là, je n'y connais rien, et c'est en dehors de mon champ scientifique, de sorte que je ne dois  rien en dire. Et que je n'en dis rien.



La toxicologie, maintenant ? Il y a la question des matières grasses, et de leurs impuretés... Là, des explications de chimie sont nécessaires. Nous considérerons d'abord une huile, puis une matière plus complexe. 

Les huiles sont des matières, parfois jaunes, qui sont liquides à la température ambiante. Si l'on avait un microscope très puissant, on la verrait faite d'objets qui bougent en tous sens : des molécules. Ces molécules ont une construction particulière : elles sont comme des peignes à trois dents, et, mieux, avec trois dents souples, au point qu'elles peuvent  se mettre dans toutes les directions autour du manche. Les molécules de l'huile sont nommées "triglycérides", parce que le "manche", s'il était isolé, serait un composé nommé glycérol (le nom que les chimistes donnent à la "glycérine"), et qu'il y a trois dents. 

Et les acides gras, me direz-vous ? Si l'on ne dit pas n'importe quoi, il n'y en a pas dans l'huile. Oui, j'insiste : lorsque des "dents" isolées, qui sont alors des acides gras, réagissent avec un manche isolé, qui est donc du glycérol, pour former des triglycérides, des atomes sont échangés, perdus, etc., de sorte que le glycérol n'est plus du glycérol, et les acides gras ne sont plus  des acides gras. Finalement l'huile est faite, donc, de molécules de triglycérides. 

Et il y a beaucoup de sortes de molécules de triglycérides, parce qu'il y a de nombreuses sortes de "dents". Plus exactement, pour du lait, où de la matière grasse (qui fait ensuite le beurre) est dispersée dans l'eau, sous la forme de gouttelettes microscopiques, il y a 400 sortes de dents.
De sorte que le nombre de différents triglycérides est considérable. Partons en effet d'une molécule de glycérol, et faisons la réagir avec un acide gras : il y a 400 possibilités. Puis faisons réagir l'ensemble avec un autre acide gras : pour chacun des 400 résultats initiaux, il y a 400 possibilités, soit au total 400 fois 400, soit 160 000 possibilités. Et avec le troisièmc acide gras, cela fait donc des millions de molécules différentes. 

Pourquoi cela est-il intéressant ? Parce que les divers  acides gras déterminent le comportement physique des matières grasses. En gros, à une température fixe (par exemple la température ambiante), les grosses molécules bougent plus lentement que les petites.
Or quand les molécules ne peuvent pas bouger, elles restent sur place et forment un solide. De ce fait, les divers triglycérides, s'ils étaient purs, auraient des températures de fusion différentes. Pour les triglycérides du beurre, par exemple, les plus  fusibles fondent dès - 10 °C, et les moins fusibles  fondent à 50 °C. Dans le beurre de cacao, les moins fusibles fondent à 37 °C... comme le prouve l'expérience qui consiste à placer un carré de chocolat dans la bouche. 

Et ainsi, pour chaque  matière grasse, il y a un comportement de fusion différent... mais il y a une constante : aux  températures inférieures à la température de fusion des triglycérides les plus fusibles d'une matière grasse, cette dernière est à l'état solide ; aux températures supérieures à la température de fusion des triglycérides les moins fusibles, la matière grasse est entièrement liquide (l'huile à la température ambiante). 

Et aux températures intermédiaires ? Et bien, là, une partie est liquide, et elle est le plus souvent piégée dans la partie solide. Oui, dans une motte de beurre placée à une température comprise entre -10 °C et + 50 °C, il y a de la matière grasse liquide dans ce qui paraît solide. 

D'ailleurs, c'est une expérimentation amusante que d'ajouter de l'huile à du chocolat fondu, et à refroidir ensuite ; ou, inversement, à ajouter du beurre  de cacao à de l'huile (d'accord, c'est pareil ;-), mais on n'oublie pas qu'à côté de la dénotation, il y a  la connotation) : on change ainsi le comportement de fusion. 

Commençons par dire que le chocolat est fait environ pour moitié de matière grasse (le beurre de cacao, donc) et de sucre. Et pensons à un coulant au  chocolat, gâteau  avec un coeur qui coule quand on ouvre le gâteau. Comment le faire ? Il faut faire une sorte de mousse au chocolat additionnée de farine, et placer, au centre, un "noyau" fait de chocolat rendu plus  fusible par l'ajout de matière grasse liquide à la température du service. On n'oublie pas, évidemment, de congeler ce noyau  pour le manipuler. Lors de la cuisson, il fond, et, quand on coupe le gâteau, dans l'assiette, le chocolat fondu en sort. 

Et par la même technique, on change le degré de fusion des matières grasses, on mélange du beurre avec de l'huile, de l'huile de palme avec de la matière grasse laitière, du beurre de cacao avec de la matière grasse  de fois gras, que sais-je ? 

Tiens, j'ai évoqué l'huile de palme, qui fait débat. Qu'en penser ? D'un point de vue chimique, elle est faite de triglycérides, comme le beurre, comme l'huile, comme le beurre de cacao. Après, il y a -semble-t-il, car en réalité, je n'y connais rien- des questions politiques, environnementales, mais on comprend bien que ce n'est pas à un physico-chimiste d'en parler. Pour moi, un triglycéride est un triglycéride... Chaque matière grasse a son comportement de fusion particulier, son intérêt nutritionnel particulier...

Reprenons les questions initiales. L'huile d'olive "meilleure" que les autres ? Cela n'a jamais été établi correctement, et ce n'est sans doute pas vrai. Il faut de tout, en quantités variées... et faire de l'exercice, pour se donner des chances de rester en bonne santé... si l'on ne fume pas, boit pas, etc.  

Les matières grasses végétales dans le chocolat ? Ayant déjà évoqué le cas, je n'y reviens pas. 

Les matières grasses hydrogénées : là, il faut entrer dans le détail moléculaire des "dents" des triglycérides, et expliquer que certaines de ces "dents" (le vrai nom est "résidu d'acide gras") sont "insaturées", et d'autres sont "saturées". En effet, les "dents" sont des enchaînements d'atomes de carbone (pensons à -C-C-C-C..., où la lettre C représente un atome de carbone). Parfois les atomes de carbone peuvent s'attacher les un aux autres plus fortement, ce que l'on représente par deux barres, au lieu d'une : -C-C=C-C... C'est cela que l'on nomme une "double liaison", ou un "insaturation". Or les triglycérides dont des "dents" ont des doubles liaisons sont plus fusibles que les autres. Pour obtenir une matière grasse solide, à partir d'une huile, on a découvert que l'on pouvait "hydrogéner" les triglycérides. 

Les avantages ? Les inconvénients ? Je vous renvoie vers une séance de l'Académie d'agriculture de France, où nous avions discuté la question. Il faut quand même savoir que certaines matières grasses saturées sont indispensables à notre bon fonctionnement physiologique. 



Toutes les graisses se vaudraient-elles ? Ce n'est pas ce que j'ai dit... et je voudrais terminer cette causerie en signalant que certains  triglycérides ont plus de "goût" que d'autres. Oui, de goût, alors que les matières grasses semblent ne pas avoir de goût quand elles sont pures. Il y a une dizaine  d'années, une équipe de physiologistes, à Dijon, a découvert que les triglycérides sont "coupés" par des enzymes, à proximité des papilles : ainsi sont  libérés des acides gras. Or les acides gras  "insaturés", quand ils sont assez longs,  peuvent se lier à des récepteurs de la bouche, comme une clé vient dans une serrure... et un "goût" est identifié. On a ainsi longtemps dit qu'un acide gras, c'était un acide gras, mais ce n'est pas exact : certains ont un effet sensoriel, en plus de l'onctueux qu'ont tous les triglycérides. 







Vient de paraître aux Editions de la Nuée Bleue : Le terroir à toutes les sauces (un traité de la jovialité sous forme de roman, agrémenté de recettes de cuisine et de réflexions sur ce bonheur que nous construit la cuisine)

vendredi 5 janvier 2018

Un vrai billet scientifique...

Un vrai billet scientifique...
On me fait observer que je n'ai que très peu expliqué le travail scientifique que nous faisons au laboratoire (sauf bien sûr dans des articles scientifiques). Au-delà des inventions mensuelles que je publie notamment sur le site de Pierre Gagnaire, au delà des comptes rendus de séminaires, des billets de blog de réflexion, de "bonnes pratiques", par exemple, quel est le travail vraiment effectué ? Quel est le travail proprement scientifique ?
La question est évidemment légitime, et je comprends que la réponse permettrait de mieux faire comprendre que la gastronomie moléculaire (notre travail de recherche scientifique) n'a rien à voir avec la cuisine, qu'elle soit moléculaire ou note à note.
Bref, ici, je propose d'expliquer la teneur d'un travail fait il y a quelques années. La première contrainte sera d'être clair ; la seconde sera de montrer combien nos travaux sont enthousiasmants (pire : sans épithétisme !).
Mais je prends d'emblée une précaution : le travail n'est qu'un détail parmi mille, parce que ce serait trop compliqué de présenter des travaux un peu profonds, et j'en suis absolument désolé.
Mais bon, essayons quand même.

De la science, à propos de technologie
Le travail que je propose de discuter ici a été réalisé dans le cadre d'un travail de thèse sur la fraîcheur des yaourts : pourquoi les yaourts sont-ils frais, en bouche, même quand ils ne sont pas froids ?
La fraîcheur peut être due à de multiples causes, telle la présence de composés qui, tel le menthol, stimulent les terminaisons nerveuses du nerf trijumeau, mais elles peuvent aussi être associées -par une sorte de conditionnement- à des couleurs, tels certains verts.
Ou bien il peut y avoir des effets thermiques, comme quand des matières grasses fondent en bouche : la "chaleur" communiquée par la bouche à ces matières grasses donne une sensation de fraîcheur.
Certes, l'étude de la fraîcheur était initialement plus technologique que scientifique... mais on peut compter sur moi pour tirer toujours les questions du côté de la science : je fais bien la différence, et je sais parfaitement où est mon intérêt (au sens d'être passionné intellectuellement, pas au sens financier).
Bref, en réalité, le travail que je vais décrire, est bien une recherche de connaissance pure, scientifique donc, plutôt que la recherche technologique qui y a conduit.

Les yaourts ? Des gels

Pour situer le phénomène que nous avons explorer, partons du yaourt, tout d'abord, qui est produit par gélification du lait.
Comment ce phénomène a-t-il lieu ? Partons donc du lait : c'est une "émulsion", c'est-à-dire une dispersion de gouttelettes de matière grasse dans de l'eau où sont dispersés ou dissous des protéines et notamment un sucre nommé lactose.
 Quand on ajoute au lait deux types de micro-organismes qui consomment le lactose, ce dernier sucre est transformé en acide lactique, qui acidifie le lait. Or le lait n'est pas stable en milieu acide, comme le montre l'expérience toute simple qui consiste à ajouter du jus de citron dans du lait : le lait caille. Avec le citron, la coagulation est rapide, ce qui engendre des petits agrégats visibles à l'oeil nu, mais quand la coagulation est plus lente, par les micro-organismes de la fermentation des yaourts, alors un gel lisse est produit : c'est le yaourt.
Il faut imaginer la structure finale, gélifiée comme un grand échafaudage où se trouve le liquide, eau et matière grasse dispersée dans l'eau sous la forme de gouttelettes.

Les graisses du yaourt
Tout cela étant dit, il y a donc des gouttelettes de matière grasse dans les gels que sont les yaourts, et ces gouttelettes sont enrobées de protéines et de divers minéraux qui pontent ces protéines.
Que se passe-t-il quand on refroidit un yaourt ? La matière grasse qui forme les gouttelettes est celle du lait, et on la retrouve dans de la crème ou dans du beurre. C'est principalement un mélange de très nombreuses sortes de molécules nommées "triglycérides".
Or autant un matériau fait d'une seule sorte de molécules passe brusquement de l'état liquide à l'état solide, quand on le refroidit (pensons à l'eau liquide qui devient solide à exactement 0 °C), autant les matériaux faits de plusieurs sortes de molécules ont une transition progressive. Ainsi le beurre est entièrement solide à la température de -10 °C, mais entièrement fondu à la température de 50 °C ; entre les deux extrêmes, le beurre est fait d'une partie liquide dans une partie solide, en proportions qui dépendent donc de la température, entre 0 % de liquide à la température de - 10 °C et 100 % à la température de 50 °C. .

 Les transitions dans un yaourt

Et dans une gouttelette de matière grasse qui se trouve à l'intérieur d'un yaourt ? En théorie, selon la température, la proportion de matière grasse solide et la proportion de matière grasse liquide devraient évoluer comme à l'extérieur des yaourts... à cela près que l'on doit distinguer les états à l'équilibre (quand on laisse longtemps un yaourts à une température fixée) et hors d'équilibre. Ainsi, on sait que de l'eau très pure peut rester liquide même à des températures inférieures à 0 °C, quand il n'y a pas de perturbations, telles des vibrations. Cela pourrait être le cas pour des yaourts : il se pourrait que la matière grasse d'un yaourt que l'on refroidit reste en surfusion.
Comment le savoir ? Pour certaines de nos études expérimentales, nous utilisons un équipement de "résonance magnétique nucléaire", une grosse machine qui nous permet... plein de choses... mais notamment de compter le nombre de molécules de différentes espèces, quand elles sont à l'état liquide.
Je passe volontairement sur la présentation de cette machine merveilleuse, parce que cela allongerait un billet qui est déjà long, et je me contente d'observer que l'on peut notamment compter les molécules de triglycérides à l'état liquide, sans voir celles qui sont à l'état solide. De ce fait, si nous partons de matière grasse laitière fondue ou de yaourt chauffé à une température où la matière grasse doit être fondue (on peut chauffer à l'intérieur de la machine), alors on compte toutes les molécules de triglycérides du yaourt, mais si l'on refroidit suffisamment, le compte tombe à zéro.
Ainsi, en observant cette matière grasse à une température particulière, on peut déterminer la proportion de matière grasse liquide et de matière grasse solide...
Et -je fais court- les mesures ont finalement montré que la matière grasse se comportait de la même façon, qu'elle soit dans le yaourt ou en dehors : la proportion de matière grasse ne dépend que de la température, et nous n'avons pas observé de surfusion.


Je fais maintenant un pas en arrière.

Ai-je été clair ? Je l'espère. Ai-je montré pourquoi nos travaux sont enthousiasmants ? Je ne suis pas sûr, et cela pour plusieurs raisons :
1. d'abord, il a fallu expliquer beaucoup de choses avant d'arriver au fait : ce qu'est la constitution d'un yaourt, ce que sont les matières grasse laitières, etc. ; de sorte que mes amis se sont sans doute dits qu'il fallait beaucoup d'efforts pour...
 2. un résultat qui ne semble guère original
3. souvent nos amis veulent comprendre "à quoi ça sert" ; or le résultat précédent ne semble pas servir à grand chose.
4. je me suis pas rendu le travail facile, parce que, pour arriver au résultat, j'ai évité l'explication du fonctionnement de la résonance magnétique nucléaire, qui est véritablement une machine merveilleuse...
5. je n'ai absolument pas discuté tous les calculs qui fondent ces travaux ; il y a ceux qui permettent de faire les comptage, ceux qui permettent de prévoir la répartition de triglycérides à l'état liquide, ceux qui indiquent s'il y a ou non une différence entre la quantité de matière grasse liquide selon que la graisse est dans un yaourt ou pas...
6. je ne me suis guère tapé sur la poitrine, je n'ai pas fait d'épithétisme, je n'ai pas cherché à faire penser que nous faisions des choses particulièrement difficiles...

Je reprends maintenant ces raisons une à une

1. Oui, il y a lieu de dépenser beaucoup d'énergie, pour des résultats expérimentaux proprement obtenus. Et il faut dire et redire que la science progresse à très petits pas, à pas très soigneux, par des mesures que l'on répète, que l'on affine, que l'on valide. Aujourd'hui, par ces temps d'utilisation courante d'ordinateurs, de téléphones portables, d'avions, de trains, on oublie que tout cela n'a été obtenu que très lentement. Ce sont des conquêtes humaines extraordinaires.
De surcroît, il faut dire et redire aussi que la science expérimentale, c'est 99 pour cent d'échec, de mise au point, de travail de fourmi, acharné... et il faut ces 99 pour cent si l'on veut le 1 pour cent qui est au bout !
2. Le résultat ne semble pas original... mais seulement a posteriori. D'une part, nous avons mis au point une méthode de dosage des graisses à l'intérieur des yaourts, sans modification de ces derniers. D'autre part, il faut bien avouer que, quand nous avons lancé cette étude, nous nous attendions à un résultat différent. Autrement dit, nous avons progressé, en analysant les raisons pour lesquelles nos prévisions étaient fausses. Mais cela serait trop long à expliquer.
3. A propos de l'utilité des travaux scientifiques, je suis précédemment parti sur une mauvaise piste en évoquant les ordinateurs, les avions, les téléphones portables... En réalité, sous peine que la science ne devienne de la technologie, elle ne doit servir à rien d'autre qu'à produire de la connaissance. Et cela est essentiel, car on ne dira jamais assez que la technologie n'est qu'une des "utilités" de la science ; en réalité, les modifications des connaissances humaines sont essentielles, et c'est parce qu'il y a de la Raison que les intolérances peuvent reculer, les superstitions disparaître. Quand l'être humain était sans compréhension du monde, on invoquait des divinités qui laissaient à quelques uns la possibilité d'abuser des autres, comme le font, hélas encore aujourd'hui, des rebouteux, des marabouts, des prétendus devins... Oui, il faut plus de science, toujours plus de science.
Cela dit, il ne serait pas difficile de justifier technologiquement les études précédentes. Par exemple, alors que le dosage des matières grasses dans les laits ou dans les yaourts est long, la méthode précédente, maintenant qu'elle est au point, pourrait être mise sur des lignes de productions, pour des mesures qui ne prendraient que quelques minutes. Mieux encore, je n'ai pas expliqué que notre méthode de mesure permet de distinguer les "résidus d'acides gras" des triglycérides. Et ainsi de suite...

 4. Oui, je n'ai pas dit ici pourquoi la résonance magnétique nucléaire, parce que j'ai "chanté" cela dans un de mes livres (La Sagesse du chimiste, Editions L'oeil Neuf). Cette méthode est vraiment merveilleuse : pensons qu'à l'aide de deux champs magnétiques, on peut voir les atomes des molécules ! Je reste parfaitement ébloui par la beauté de la chose.

5. A propos des calculs qui ont été nécessaires pour arriver au résultat présenté, il faut bien avouer que leur présentation allongerait démesurément le billet... sans compter qu'il faudrait les expliquer, et que cela risquerait de prendre beaucoup de temps, de lasser mes amis. Je réserve ce genre d'exercices pour un autre billet. Car dans ces calculs, il y a beaucoup de "petites beautés", de petits plaisirs... Allez, une autre fois.
 6. Oui, je n'ai pas fait de rodomontades, parce que l'objectif était précisément de faire penser que tout cela était simple : quand on dit que les choses sont difficiles, nos amis ne comprennent pas. Or je m'adresse à des amis.

vendredi 31 juillet 2015

Que faire devant la malhonnêteté ?

 Certains de mes billets posent  des questions auxquelles je réponds, mais d'autres  posent des questions auxquelles j'invite mes amis à m'aider à répondre. Celui-ci est de ce second type.

 Au départ, il y a une annonce, un "communiqué de presse", par l'université Purdue, qui stipule que "la recherche confirme que le gras est la sixième saveur".
 Jusque là, rien de particulier... sauf qu'un peu de bibliographie montre bien que cette perception (réservons le mot "saveur" pour plus tard) des acides gras insaturés à longue chaîne n'est pas neuve : elle fut découverte il y a une quinzaine d'années par une équipe de physiologistes de Dijon (Bénard et al.), et j'ai dans mon ordinateurs des dizaines d'articles scientifiques qui l'attestent !
D'où la question  : que faire, face à un tel communiqué de presse ? Pouvons-nous laisser croire à nos amis qu'il y a là une grande nouveauté ? Devons-nous laisser la malhonnêteté impunie ? Devons-nous passer l'éponge, en nous disant qu'un clou chasse l'autre, et qu'une "nouvelle" viendra s'ajouter à cette vieille lune, laquelle sera oubliée demain ? Ecrire à la chercheuse à l'origine de la publication ? Ce n'est pas elle qui est fautive, mais plutôt le service de communication de l'université Purdue : on sait que les institutions reçoivent des fonds en proportion de leur activité, notamment de la couverture médiatique qu'elles reçoivent, mais faut-il aller jusqu'à la tromperie ?
 Je suis preneur de vos conseils.


Pour en revenir à cette "perception des acides gras insaturés à longue chaîne", vous observez que  je n'écris pas "goût du  gras", ni même "saveur du gras" (comme le fait ce communiqué de presse fautif), parce que, s'il a été effectivement montré que nous sommes sensibles à la matière grasse, ce n'est pas elle-même qui a "du goût".
En effet, la matière grasse est faite essentiellement de molécules de triglycérides, lesquelles sont composés d'un résidus de glycérol et de trois résidus d'acides gras. Lorsque nous mangeons un produit qui contient de telles molécules, des enzymes des papilles sapictives détachent des acides gras, et il est exact que certains de ces acides gras peuvent se lier à des récepteurs des papilles, et donner une sensation.
Cela étant, la question est surtout de savoir nommer cette perception. Ce n'est peut-être pas une saveur, contrairement à ce que le communiqué de presse dit, et c'est la raison pour laquelle, il y a plusieurs années, j'avais proposé le terme de "lipaction" pour la modalité de perception de ces acides gras.