Pour expliquer les questions de chimie, j'ai fini par comprendre que rien ne vaut le recours à l'expérience.
On m'interroge "Quel est l'effet du pH sur les protéines en solutions aqueuses ?"
Pour répondre à cette question, rappelons d'abord que le pH est une mesure de l'acidité, ou, inversement, de la basicité. Entre 0 et 7, une solution est acide, et elle est basique si le pH est entre 7 et 14.
Et je préfère donc reformuler ainsi la question : si des protéines sont dissoutes dans de l'eau, comment se comportent-elles quand on change l'acidité ?
Expérimentalement, commençons, par exemple par mettre un œuf dans de la cendre, comme le font les asiatiques pour produire des "oeufs de longévité", ou "oeufs de 100 ans" : après plusieurs semaines, le blanc d'œuf est coagulé.
Pour interpréter cette expérience, il y a lieu de savoir que le blanc d'oeuf, tout d'abord, et une solution de protéines. Puis ajoutons que les cendres contiennent souvent de la potasse, ou hydroxyde de potassium, un composé basique.
Une expérience complémentaire consiste à mettre un œuf dans du vinaigre. Cette fois, après que le vinaigre a attaqué le calcaire de la coquille, qu'il l'a dissoute, on voit progressivement le blanc coaguler, sous l'action de ce vinaigre qui lui, est acide.
Autrement dit, cette solution aqueuse de protéines qu'est blanc d'oeuf, fait de 90 % d'eau et de 10 % de protéines, coagule parce que les protéines sont "dénaturés", soit par les acides, soit par les bases.
Dénaturées ? Il faut expliquer que les molécules des protéines sont parfois comme des pelotes. Et la "dénaturation" désigne tout changement de l'enroulement.
Évidemment, l'expérience qui est proposée ici ne vaut pas seulement pour les protéines du blanc d'oeuf: on peut la faire avec les protéines du jaune, par exemple, ou les protéines du lait. Par exemple, si l'on verse un jus de citron sur du lait chaud, on le voit "cailler", coaguler en formant non pas un gel régulier mais de petits agrégats.
Ces réactions se généralisent à d'autres protéines, notamment les actines et les myosines qui forment l'intérieur des fibres musculaires dans les viandes et les poissons
Plus en détail, reprenons l'idée donnée plus haut, à savoir que les protéines sont des composés dont les molécules peuvent-être, pour les protéines globulaires notamment, comme des fils microscopiques repliés sur eux-mêmes en pelotes.
Pour nombre d'entre elles un changement de pH conduit à l'apparition de charges électriques, et les répulsions entre charges électreiques de même signe conduisent à un débobinage de la structure moléculaire.
Quand les protéines contiennent des résidus d'acide aminés appropriés (notamment des résidus de cystéine), alors les protéines peuvent se lier par des liaisons chimiques nommées ponts disulfures, comme ceux qui sont créés quand on cuit du blanc d'œuf.
Mais, en réalité, la coagulation met en œuvre toute une série de liaison chimiques différentes : liaisons hydrogène, interactions hydrophobes, forces de van der Waals, forces électrostatiques...
Les plus férus de chimie observeront que je n'ai pas parlé ici de pI, de point isoélectrique : c'est parce que je préfère me consacrer au gros plutôt qu'aux détails et que d'autre part, les matières considérées en cuisine sont souvent des mélanges de nombreuses protéines qui ont des points isoélectriques particuliers, de sorte qu'il aurait fallu rentrer dans trop de détails pour arriver à une explication un peu utile.
Ce blog contient: - des réflexions scientifiques - des mécanismes, des phénomènes, à partir de la cuisine - des idées sur les "études" (ce qui est fautivement nommé "enseignement" - des idées "politiques" : pour une vie en collectivité plus rationnelle et plus harmonieuse ; des relents des Lumières ! Pour me joindre par email : herve.this@inrae.fr
lundi 22 décembre 2025
Les protéines et l'acidité
Inscription à :
Publier les commentaires (Atom)
Aucun commentaire:
Enregistrer un commentaire
Un commentaire? N'hésitez pas!
Et si vous souhaitez une réponse, n'oubliez pas d'indiquer votre adresse de courriel !