Affichage des articles triés par pertinence pour la requête métier. Trier par date Afficher tous les articles
Affichage des articles triés par pertinence pour la requête métier. Trier par date Afficher tous les articles

mardi 21 novembre 2017

A propos de diplômes




Dans ma proposition de rénovation des études supérieures, c'est-à-dire de transformation de l' « enseignement » en « études », il y a notamment la proposition, plus spécifique, de fixer des niveaux, c'est-à-dire des référentiels de connaissances et de compétences qui conditionneraient l’attribution des diplômes : aux étudiants d'étudier pour avoir ces connaissances et compétences, et aux professeurs (puisque je ne veux pas d' « enseignants ») d'agir comme des tuteurs qui donnent de l'enthousiasme, qui débloquent en cas de besoin, qui guident, et, surtout, qui s'assurent que les études se déroulent dans les meilleures conditions.

A ce propos, un de mes très bons collègues me fait observer que ces notions de référentiels sont bien strictes, et qu'elles oublient le « métier ». Le métier ? J'ai d'abord été bien ennuyé par cette observation, qui venait d'une personne de qualité, parce que, effectivement, il semblait y avoir des tas de choses en plus des connaissances et des compétences techniques : des savoir-vivre, des savoir-être, de l'enthousiasme…
Certes, il n'a pas été démontré que ces choses-là puissent être évaluables aussi facilement que des connaissances et des compétences. Mais il n'a pas été non plus montré que cela ne puisse pas être évaluable ! En toutes choses, un peu d'intelligence ne messied pas, et, en l'occurrence, je ne vois pas d'opposition entre les deux points de vue, car connaissances et compétences, qui sont ce socle technique sur lequel on peut bâtir une activité professionnelle peuvent -doivent !- s'assortir de bien des sortes de compétences et connaissances.
J'ai ainsi évoqué, dans ma proposition de rénovation, il n'y ait plus d’enseignants mais des professeurs. Dans cette différence, il y a évidemment tout ce qui dépasse connaissances et compétences techniques, tout ce savoir vivre, ce savoir être qui permettront à nos étudiants à tenir des rôles décents dans les entreprises qui les embaucheront.
Le référentiel, c'est donc un minimum, mais un minimum indispensable, car, ayant travaillé pendant vingt ans dans l'industrie, contrairement à mon collègue qui est toujours resté fonctionnaire (enseignant à l'université), j'ai eu l'occasion d'apprécier la question des compétences. Même si un collaborateur est charmant, son incompétence est une plaie, qui se reporte comme une charge sur le reste de l'équipe. Et d'autre part, oui, nos étudiants doivent avoir des valeurs, et c'est d'ailleurs ce que j'ai proposé que les professeurs transmettent, et c'est largement insuffisant.
Je m'objecte à moi-même que tous les étudiants n'iront pas dans l'industrie, et qu'une partie ira travailler au service du public, mais je vois assez mal pourquoi cette partie n'aurait pas besoin de connaissances et de compétences comme les autres. Il y a aussi ceux qui se dirigent vers l'étude, les chercheurs en quelque sorte : ils ont les mêmes besoins que les atures.
D’ailleurs, je n'ai pas dit que ces connaissances et compétences étaient absolument orientés en vue d'une application immédiate de l'industrie, bien au contraire : je maintiens que c'est la plus grande culture qui s'impose, pour la recherche, comme pour la technologie et la technique.

Ce que j'ai dit surtout, c'est que ma proposition tient tout entier dans cette phrase : les étudiants doivent étudier, et le système universitaire doit être là pour conduire à ce résultat dans les meilleures conditions possibles.

jeudi 14 décembre 2017

Une de mes inventions anciennes : les liebig

Une sorte de paradoxe que de faire l'éloge de la technologie le dimanche, alors que la technologie est le métier de l'ingénieur, dont le nom a la même étymologie qu' "engigner" : le diable, raconte-t-on, engigna la mère de Merlin l'enchanteur, en vue de faire un pendant à Jésus Christ, de faire un fils qui perdrait l'humanité (mais un prêtre présent baptisa l'enfant à la naissance, de sorte qu'il perdit sa "malice", ne gardant que des pouvoirs surnaturels.
Vive la technologie ? La technologie permet la réalisation de l'utopie qu'est la science quantitative. D'accord, mais plus précisément ?
La technologie, c'est l'activité  qui cherche à appliquer les sciences quantitatives pour perfectionner les techniques. C'est un métier très particulier, et très extraordinaire puisqu'il transforme des connaissances en objets nouveaux du monde. Ces temps-ci, une partie frileuse du public refuse les avancées technologiques, les innovations techniques (et, même,  frémit à l'idée que la science poursuive son travail). Pourtant ces mêmes frileux utilisent des ordinateurs, des voitures, prennent le train, l'avion,  se brossent les dents avec des dentifrices dont ils ignorent tout de la constitution (pourtant bien perfectionnée par la technologie), portent des lunettes dont les verres sont des chefs-d'œuvre techniques...
Oublions donc ceux-là pour le moment et concentrons-nous sur la technologie. Elle doit être un état d'esprit,  comme je vais essayer de le montrer avec un exemple personnel. Un exemple qui a l'inconvénient d'être personnel (pardon, le moi est haïssable), mais qui, de ce fait, a l'avantage d'être attesté (alors que beaucoup de ce que l'on entend est douteux, de seconde main, etc.).
Cela se passe dans les années 1980 :  ayant compris que les protéines sont d'excellents  tensioactifs, qui permettent donc de faire des émulsions,  je vois une feuille de gélatine sur ma paillasse, au laboratoire. La gélatine ? C'est une matière faite de protéines. Peut-on  donc  faire une émulsion à partir d'eau, de gélatine et d'huile ? L'expérience n'est ni difficile ni longue,  et la réponse est immédiatement donnée : on obtient une émulsion.
Toutefois on n'a pas fait là une grande découverte scientifique, et une saine méthode scientifique doit nous pousser à quantifier les phénomènes, en l'occurrence à caractériser quantitativement l'émulsion. Un microscope fut donc utilisé : apparurent des gouttelettes d'huiles dispersées dans l'eau. Sur de telles images, les molécules de gélatine n'apparaissent pas, évidemment, mais on sait  (pour 1000 raisons chimiques) qu'elles sont soit aux interfaces, soit dissoutes dans l'eau. Où sont-elles ? Il faut passer du temps à cette question, répéter l'expérience, regarder,  regarder encore et... ... soudain, on voit deux gouttelettes d'huile voisines fusionner, puis deux autres, deux autres,  et ainsi de suite, mais contrairement à une coalescence telle qu'il s'en produirait si l'on avait fouetté de l'huile dans l'eau pure, la coalescence particulière des émulsions d'huile dans l'eau stabilisées par de la gélatine cesse de coalescer à partir un certain moment.
Voici l'état final :
2. Mayo gélifiée sans flash
Pourquoi ? Parce que l'émulsion est prise dans un gel physique.
Une émulsion prise dans un gel  physique ? Et si l'on en faisait de la cuisine ? Cela, c'est mon invention des « liebigs » (du nom du chimiste allemand Justus von Liebig, évidemment).
Remplaçons l'eau par un liquide qui a du goût, ajoutons  de la gélatine, ou tout autre composé qui permettra à la fois une émulsification et  une  gélification physique, utilisons de l'huile ou tout  autre corps gras sous forme liquide, et nous pourrons reproduire l'expérience, obtenir une espèce de sauce nommée liebig, un nouveau système, tout comme l'ont été mayonnaise,  crème fouettée,  parmentier, caramel, etc..
Moralité : les liebigs  sont une préparation nouvelle, maintenant bien comprise, fruit d'un transfert technologique. Il résulte de ce moment particulier  où l'on s'est demandé : "et en cuisine, qu'est-ce que cela donnerait ?" Ce moment particulier n'est pas un moment scientifique, mais un moment technologique.
Vive la technologie !




Vient de paraître aux Editions de la Nuée Bleue : Le terroir à toutes les sauces (un traité de la jovialité sous forme de roman, agrémenté de recettes de cuisine et de réflexions sur ce bonheur que nous construit la cuisine)

mardi 25 septembre 2018

Les bons mots font la bonne cuisine


Si l'apprenti du menuisier tend le ciseau à bois quand on lui demande le rabot, il ne fait pas avancer le travail. Si le bourrelier renforce le troussequin quand on lui a commandé d'arranger le pommeau, le client n'est pas content. Si le marin tend ce « cordage » qu'est la drisse quand on lui a demandé l'écoute, le bateau peut chavirer.
Le vocabulaire des métiers, le vocabulaire technique est presque le métier lui-même.

Cela est vrai de la cuisine, évidemment : une brunoise n'est pas une julienne, une mousseline n'est pas une  mousse, et une mousse n'est pas une émulsion. Marquer, chiqueter, ciseler, blanchir, réduire, caraméliser, brunir, sauter, poêler, casserole, sautoir, sauteuse, rondeau, russe, poêle, poêlon… Chaque terme a un sens précis et mérite donc d'être bien utilisé. Mieux encore, on peut soutenir la thèse selon laquelle la pratique du métier s'améliore avec les mots.
On se propose ici, régulièrement, de discuter les termes qui font grandir la profession, technique ou art.



dimanche 15 février 2009

Les sciences appliquées sont comme des carrés ronds : elles n'existent pas!

Je sais, il y a des centres d'enseignement et de recherche scientifique et technologique nommés INSA, en France, et il y a des chaires de "sciences appliquées", ou "applied sciences", en France ou à l'étranger, mais quelle confusion!

S'il y a science, il y a recherche des mécanismes des phénomènes, et non pas application, tandis que, s'il y a application, il y a application, et non pas science, mais technologie. Les sciences appliquées n'existent donc pas, alors qu'il y a des applications des sciences.

Le constat est terrible : que penser de tous les endroits universitaires ou apparentés, où traîne le mot "science appliquée"? Suis-je un petit esprit, de ne pas pouvoir accepter l'idée des sciences appliquées, ou bien ai-je raison de suivre ce grand ancien qu'était Louis Pasteur?
Je livre quelques unes de ses observations à ce propos :

« Souvenez vous qu’il n’existe pas de sciences appliquées mais seulement des applications de la science".
Pourquoi le goût de la vendange diffère de celui du raisin, Comptes rendus du Congrès viticole et séricicole de Lyon, 9-14 septembre 1872, p. 45-49 (séance du 11 septembre 1872), in Œuvres complètes, tome 3, p. 464. Masson, Paris, 1924.

« Une idée essentiellement fausse a été mêlée aux discussions nombreuses soulevées par la création d’un enseignement secondaire professionnel ; c’est qu’il existe des sciences appliquées. Il n’y a pas de sciences appliquées. L’union même de ces mots est choquante. Mais il y a des applications de la science, ce qui est bien différent. Puis, à côté des applications de la science, il y a le métier, représenté par l’ouvrier plus ou moins habile. L’enseignement du métier a un nom dans toutes les langues. Dans la nôtre, il s’appelle l’apprentissage, que rien au monde ne peut remplacer ».
Œuvres complètes, Tome 7, p. 187 :Note sur l’enseignement professionnel, adressée à Victor Duruy, 10 nov 1863.

« Non, mille fois non, il n’existe pas une catégorie de sciences auxquelles on puisse donner le nom de sciences appliquées. Il y a la science et les applications de la science, liées entre elles comme le fruit à l’arbre qui l’a porté ».
P. 215, Pourquoi la France n’a pas trouvé d’homme supérieur au moment du péril, paru dans le Salut public, Lyon, mars 1871, et dans la Revue Scientifique, 22 juillet 1872, 2 e série, in Œuvres complètes tome 7.

On me fera remarquer que Pasteur était un esprit bien peu jovial, mais, si la jovialité m'est excessivement chère, il faut quand même reconnaître que ce n'était pas le dernier des imbéciles.
Etait-il excessivement pointilleux ? Ces questions de langage sont-elles futiles ? Cette fois, c'est le grand Antoine Laurent de Lavoisier que j'invite à relire :

L'impossibilité d'isoler la nomenclature de la science, et la science de la nomenclature, tient à ce que toute science physique est nécessairement fondée sur trois choses : la série des faits qui constituent la science, les idées qui les rappellent, les mots qui les expriment (...) Comme ce sont les mots qui conservent les idées, et qui les transmettent, il en résulte qu'on ne peut perfectionner les langues sans perfectionner la science, ni la science sans le langage ».
Lavoisier A. L., Traité élémentaire de chimie, Cuchet, Paris, 1793

Convaincu ? Si oui, merci de m'aider à lutter pour que l'on cesse de berner nos jeunes esprits. Mettons fin aux "sciences appliquées"... puisqu'elles n'existent pas!

samedi 20 janvier 2024

Faisons confiance aux experts


Croire naïvement et douter de tout sont deux positions également fautives.

 Effectivement il y a lieu de s'interroger sur les idées qui nous sont proposées, car on sait combien nos sociétés humaines mettent de rhétorique, voire de mensonges, dans les échanges. Inversement une méfiance excessive conduit à se priver des faits justes sur lesquels notre esprit d'analyse pourrait s'exercer justement. 

Pour pallier la première difficulté, il y a donc lieu de s'interroger sur les émetteurs des messages, leur fiabilité, en gardant dans un coin de la tête l'idée que même des messages émis par des sources fiables pourraient être erronés. Il y a lieu de faire toujours une sorte d'analyse de risques, d'assortir la confiance d'une sorte de degré de confiance. 

Pour pallier la deuxième difficulté, il y a sans doute lieu d'utiliser la même stratégie, c'est-à-dire identifier des sources plus dignes de confiance que les autres. 

 

Par les temps qui courent, à propos de matières compliquées, comme les questions de santé et d'alimentation (pensons, par exemple, à l'effet à long terme de très petites doses de composés toxiques sur la santé, ou des résidus de pesticides, ou de la possible qualité des aliments bio, ou encore de la possible toxicité des édulcorants), je crois qu'il est utile de reconnaître et de faire savoir que les experts de l'Etat sont la meilleure de nos sources. 

Ils sont la meilleure de nos sources, parce que ces personnes ont souvent choisi le métier qu'ils exercent par souci de rendre un service à la collectivité. Pour accepter d'être moins bien payé que dans l'industrie, de travailler dans des conditions matériellement plus rudimentaire, il faut en quelque sorte avoir l'âme chevillée au corps. 

Je sais qu'une partie de la population pense que les fonctionnaires sont des sortes de privilégiés, à l'abri du chômage, ou avec des avantages particuliers, mais cela n'est pas juste : je peux témoigner qu'un très grand nombre de mes collègues s'engagent, sans compter leurs heures, dans le métier qui est le leur, pour de véritables raisons politiques, au sens le plus nombre du mot politique, se préoccuper de la collectivité. 

Ajoutons également que ces personnes sont compétentes : elles sont payées pour avoir la compétence qui est la leur, inégalable parce qu'elles y passent tout leur temps, ce que toute personne engagée dans une autre activité professionnelle n'est pas à même de faire. 

Et, là encore, l'argument que le temps libre d'un citoyen pourrait être utilisé pour faire le travail de recueil des données ne vaut rien : je sais que mes collègues ne s'arrêtent pas de fonder leur compétence lorsque vient le week end ; ils poursuivent leurs travaux, leurs études, pendant ces deux jours, pendant leurs vacances. Pas tous, mais beaucoup ! 

Ajoutons également qu'il n'est pas vrai que les experts soient vendus. D'une part, cette idée générale est... générale, donc fausse ; d'autre part, c'est une calomnie qui mériterait d'être punie par la loi. En effet, c'est une calomnie, une diffamation. 

Ensuite, c'est une déclaration toxique pour le bon fonctionnement de notre collectivité tout entière, jetant le doute sur la source la plus fiable d'informations que notre collectivité se donne les moyens de constituer, qu'elle paye pour avoir. Il y a donc un dol financier, supporté par l'ensemble des contribuables. 

Un mot, en passant, sur cette prétendue "expertise citoyenne". En matière de toxicologie, il n'y a pas d'expertise citoyenne. Cela se démontre, car jamais l'observation des maladies individuelles, surtout quand elles sont personnelles, n'a permis d'identifier des phénomènes que seule l'épidémiologie permet de repérer. 

L'épidémiologie, ce n'est pas un vain mot, ce n'est pas une activité d'amateur. C'est un véritable travail, fondé sur la réunion de très nombreuses observations, et qui permet de voir ce que la vision individuelle ne voit pas. En matière de santé, la maladie individuelle peut survenir pour de multiples causes, car la santé est une condition propre à l'organisme, lequel est un système complexe. Quand nous buvons du café, mangeons de la choucroute, du fromage, du saucisson, quand nous vivons en ville, ou encore à la campagne, quand nous peignons un appartement, utilisons du savon pour nous laver, quand nous marchons ou que nous nous exposons à l'atmosphère d'une forêt, etc., notre organisme réagit à notre insu, et c'est l'ensemble de toutes les conditions, cumulées sur la succession des jours que nous vivons, qui conduit à notre état de santé. Attribuer une maladie, ou la santé, à une cause unique est d'une naïveté navrante, et seule l'épidémiologie permet d'y voir plus clair. 

L'épidémiologie n'est pas à la porté de l'individu, du citoyen isolé, de sorte qu'il ne peut pas exister d'expertise citoyenne, dans ce domaine. D'autre part, un citoyen qui s'informe ne pourra jamais réunir l'ensemble des informations qu'un véritable praticien, un expert, aura. 

C'est ainsi que je me suis toujours étonné de voir des journalistes (on comprend que je ne tombe pas dans la généralité: je ne dit pas "les journalistes") croire qu'une enquête de quelques semaines, voire quelques mois, pourra leur donner les capacités, les compétences d'un médecin dont l'enquête tombe dans le champ de spécialité. La pratique quotidienne, jour après jour et heure après heure, fondée sur des années d'étude, donne une compétence et une expertise qu'aucun journaliste n'aura jamais. 

Ce qui est vrai pour la médecine vaut pour la chimie, la nutrition (observez que je ne la confonds pas avec la diététique), la toxicologie, etc. Ce serait de la dernière présomption que de croire que l'information glanée puisse être de l'expertise. Le savoir naïf n'est rien, et notre seul recours raisonnable est le choix d'expert bien sélectionnés. Bien sûr, l'expert parfait n'existe pas, non pas que les experts soient malhonnêtes, non pas qu'ils soient soumis à des influences, mais simplement parce que même l'expert qui compulse des dossiers énormes n'est pas omniscient, et doit élaborer son expertise sur un ensemble de données limité (vita brevis, ars longa). Ne nous trompons pas de combat pour autant ! 

 

 Pour terminer, je veux revenir à la question de la sélection des experts... et réclamer du courage. Tout d'abord, je veux faire état d'une anecdote terrible : je connais un expert qui fut récusé par une agence de santé parce qu'il avait touché une somme de... 150 euros pour un article qui avait été publié dans une revue où l'industrie pharmaceutique avait placé des publicités. Cent cinquante euros ? 

C'est risible ! Et c'est scandaleux, idiot, de récuser un expert pour une telle somme, d'autant -je gardais le meilleur pour la fin- que cet expert est le seul de sa discipline et que l'agence de santé a recouru à des personnalités qui n'étaient pas expertes. Je récuse ces dernières ! 

Un autre exemple: : dans le même type de configuration, un expert a été récusé parce que sa belle soeur travaillait dans l'industrie pharmaceutique. Et alors ? Pouvons nous être responsable de nos proches ? Et d'ailleurs, le fait de travailler dans l'industrie pharmaceutique est-il condamnable ? 

Je rappelle que l'industrie, c'est le "vrai monde", l'essentiel de la nation ; les services de l'Etat que sont que des appuis. Et, de surcroît, je condamne l'idée selon laquelle l'industrie (pharmaceutique, par exemple) serait un repère de brigand. Nous y avons des amis, des proches... L'industrie pharmaceutique est plein de personnes, honnêtes, remarquables, et, au fond, c'est une imbécilité coupable que de se priver de la compétence de ces personnes compétentes. Dans nos petits milieux, on sait bien qui est digne de confiance ou pas, et il vaudrait mieux, plutôt que d'appliquer des règles de sélection simpliste, y aller voir de plus près et faire un choix intelligent. 

A cette fin, il faudra avoir du courage : la sélection d'un expert industriel par une agence de santé impose d'être capable de résister ensuite à une certaine presse, à une certaine partie de la population, à un certain monde politique, qui critiqueront les choix. La stratégie de l'autruche et du parapluie ne vaut rien, et il faut avoir du courage. Je suis très confiant que les temps actuels ne sont qu'éphémères, et je suis optimiste : nous saurons dépasser la crise actuelle de l'expertise !

samedi 14 septembre 2019

Qui êtes-vous, et si vous n'êtes pas cuisinier, quel est votre métier, et pourquoi osez-vous parler de cuisine ?

Un journaliste coréen me demande qui je suis, quel est mon métier, et si je ne suis pas cuisinier, pourquoi j'ose parler de cuisine.

La question est  intéressante, parce que c'est une question de légitimité,  de territoire en quelque sorte, et l'on sait combien ces questions-là sont essentielles chez les primates, et d'ailleurs également dans les autres espèces animales.

Qui je suis ? Sans faire de pirouette, j'ai immédiatement envie de répondre que nous sommes ce que nous faisons, de sorte qu'il faudrait maintenant que je livre mon agenda des jours écoulés pour que mon interlocuteur puisse comprendre qui je suis vraiment.
Mais il s'attend plutôt à ce que je lui donne mon nom, et mon nom Hervé This. Souvent, j'écris plutôt Hervé This, vo Kientza, tant je suis malheureux d'être en exil à Paris alors que mon cœur est resté dans cette ville merveilleuse d'Alsace qui a pour nom Kientzheim en français, et Kientza en alsacien.
Aussitôt, j'ajoute que je suis physico-chimiste. En effet,  c'est cela qui m'anime, c'est cela qui me fait lever le matin sans traîner au lit, tant je émerveillé, depuis l'âge de six ans, par les sciences de la nature, et notamment la chimie. Chimie, physique, physico-chimie...  Peu importe, mais il est essentiel, pour moi, que la chimie soit en premier. Et j'insiste un peu :  on ne confondra pas la chimie avec ses applications, et l'on restera avec l'idée juste que la chimie est une science de la nature, nature se disant physis, physique en grec.
Oui, je suis émerveillé que des calculs, ce que d'aucuns nommeraient des mathématiques, puissent s'appliquer si bien aux phénomènes que nous observons. Je suis émerveillé que le monde s'interprète si bien en termes moléculaires et atomiques, mais je suis également épaté que ces connaissances scientifiques aient des applications si extraordinaires en terme de médicaments, cosmétiques, aliments...
Mais je ne suis pas animé par un émerveillement naïf et passif. Non, au contraire, j'ai l'ambition de contribuer activement à explorer le monde, de contribuer à apporter ma pierre à  la chimie, à la physique-chimie, à la chimie physique...

Le rapport avec la cuisine ? Depuis le 16 mars 1980, j'ai compris que les phénomènes culinaires sont en réalité des transformations physiques et chimiques, de sorte qu'il y a la possibilité de les considérer en vue de produire des résultats scientifiques. Autrement dit, en étudiant scientifiquement la cuisine, on peut tout à la fois comprendre les transformations que l'on observe et agrandir le domaine scientifique, ce second objectif étant en réalité le premier pour moi.
Autrement dit, je passe mes journées à considérer les phénomènes culinaire, de sorte que je les comprends assez bien et que je crois pouvoir dire sans trop de prétention que je connais bien les théories actuelles qui décrivent les phénomènes culinaires.

Est-ce suffisant pour parler de cuisine avec légitimité ? Ici, je propose de revenir à des analyses que j'avais faites et oubliées dans mon livre La cuisine, c'est de l'amour, de l'art, de la technique pour appeler que l'activité culinaire à en réalité trois composantes :  une composante sociale, une composante artistique et une composante technique. Ce que j'ai exposé précédemment me permets de dire que très légitimement, je connais bien la composante technique de l'activité culinaire, au point même que, quand je veux sourire un peu, je dis que mes amis cuisinier sont bien moins bon techniquement que moi qui sait produire un mètre cube de blanc de blanc en neige à partir d'un seul blanc d'oeuf. Évidemment, du point de vue artistique, je suis assez mauvais, même si je crois être le premier à avoir produit un traité d'esthétique culinaire, à avoir théorisé le bon en cuisine, c'est-à-dire le beau à manger.
Enfin, pour ce qui est de la composante sociale, je suis bien en retard, du point de vue théorique comme du point de vue pratique.

Voilà, je crois avoir répondu honnêtement à la question posée, mais je reste à la disposition de mes amis pour donner d'autres éclaircissements.

dimanche 8 mars 2009

Apprendre dans une école d’ingénieurs ?

Soyons simples, avant de tout compliquer. Une école d’ingénieur forme certainement des cadres, des banquiers, des hommes politiques… mais elle forme aussi des ingénieurs ! D’ailleurs, si les écoles d’ingénieurs conduisent à des postes de responsabilité importants pour la vie de la nation, n’est-ce pas, surtout, parce que sortent de ces écoles des personnes qui ont voulu acquérir, en travaillant, des connaissances opératives, des méthodes rationnelles, donc applicables dans de nombreux aspects de la vie de la nation ?
La question est compliquée. Abandonnons-là pour l’instant, et revenons au constat : les écoles d’ingénieurs forment des ingénieurs. De quoi s’agit-il ?
_____
Pour la partie « technique » du métier d’ingénieur, il y a de nombreux aspects, mais, a priori, il s’agit d'abord d’orchestrer la production et d’innover, afin que cette production se fasse dans des conditions modernes.
Oui, on peut travailler le métal à la main, mais une société qui ferait ainsi serait submergée par la concurrence, laquelle utiliserait des machines. Survivre dans le monde industriel, c’est innover… d’où l’emphase mise sur ce mot « magique » dans le monde industriel.
Une conclusion s’impose alors aux écoles d’ingénieurs : puisque les ingénieurs devront innover, qu’enseigner aux futurs ingénieurs ? A innover, notamment.
_____

Considérons les relations (simples) de la technique, de la technologie, de la science.
La technique, c’est le faire, la production : le mot techne, en grec, signifie « faire ».
La technologie (il suffit de lire le mot pour comprendre), c’est l’étude de la technique… évidemment en vue de son perfectionnement, de sa rationalisation.
La science, enfin, c’est la science, c’est-à-dire la recherche des mécanismes des phénomènes, par l’usage de la méthode scientifique.
_____

Observons que la technologie n’est pas la technique (ce qui semble clair), mais qu’elle n’est pas non plus la science.
Pourquoi, alors, les élèves ingénieurs pratiqueraient-ils la science ? La méthode de la « formation par la recherche » (tarte à la crème de l'enseignement supérieur) doit être questionnée.
Une métaphore pour commencer : l’expérience professionnelle conduit à donner des réflexes, fondés précisément sur la confrontation répétée avec des situations analogues, reconnues comme telles. En gros, on se fait des « cals » pour éviter les ampoules.
Du coup, imaginons que les élèves ingénieurs pratiquent la science au cours de leurs études, ils auraient des cals appropriés à la science (recherche des mécanismes)… mais pas à l’innovation ! Et c’est un fait que, personnellement, mes enseignants à l’ESPCI nous ont plus d’une fois répété que nous apprendrions ensuite, sur le tas. A quoi bon, alors, suivre des enseignements qui ne forment pas aux compétences nécessaires ?
Révisons la question de la science dans les écoles d’ingénieurs. S’il faut innover, il faut des connaissances pour innover, et une méthode pour transformer ce savoir en techniques, méthodes… C’est là une des branches de la technologie : le transfert technologique. Bien sûr, si l’on dispose de connaissances anciennes, il y a fort à parier que d’autres, avant nous, auront fait le transfert innovatif. Il faut donc transmettre aux étudiants des connaissances nouvelles, de pointe, afin qu’ils puissent ensuite en faire des applications innovantes, modernes.
Conclusion : c’est la science la plus moderne qu’il faut que les écoles d’ingénieurs transmettent aux étudiants.

Ce n’est pas suffisant, bien sûr : il faudra enseigner la méthode de transfert. Qui peut l’enseigner : des personnes qui la connaissent bien, ou des personnes qui ne la connaissent pas bien ? Les premières, semble-t-il ! Or les premières sont des personnes qui ont du succès, qui ont fait leurs preuves dans ce transfert. Ce sont les ingénieurs les plus remarquables que les écoles d’ingénieurs doivent inviter, en leur demander de formaliser leurs connaissances, de proposer un savoir théorisé, et non seulement des exemples.
_____

Cette réflexion s’assortit d’une réflexion sur les stages. Où faire des stages, quand on est élève ingénieur ? Si le métier d’ingénieur est dans le transfert technologique et l’innovation, alors il faut sans doute avoir fait un stage où l’on découvre des techniques de pointe, scientifiques, afin de pouvoir faire du transfert, ultérieurement, mais il faut aussi un stage industriel, où l’on découvre non pas le monde industriel, comme une tarte à la crème le dit parfois, mais plutôt du transfert !

Merci de bien vouloir m'aider à corriger des idées simples ("tout ce qui est simple est faux, mais tout ce qui est juste est inutilisable").

jeudi 16 juillet 2020

L'étude

1. Mes billets précédents m'ont largement montré que l'essentiel, c'est donc l'étude. Pas l'enseignement ; pas les professeurs ! Non, les étudiants, l'étude.

2. Et la clé de l'apprentissage, c'est l'étude. On n'apprend que si l'on étudie, & l'on n'étudie bien que si l'on aime cela.

3. Ce qui a comme conséquence que nos institutions d'études doivent en priorité contribuer à développer ce goût de l'étude. 
Ce qui a des conséquences sur le métier de professeur. 

3. Et "sélectionner" sur cette capacité d'étudier.
Mais je me hâte d'ajouter que ce mot de sélection va pour moi avec celui d'orientation : il s'agit moins de classer (ce serait bien impossible) que de ne pas laisser des étudiants perdre leur temps à faire quelque chose qu'ils n'aiment pas. Si l'on aime étudier la chimie, on est à sa place dans un cursus de chimie ; mais si l'on aime étudier autre chose, alors on est à la place ailleurs qu'en chimie... et l'on voit que c'est le goût pour une matière qui peut être à la base d'une sélection positive !

4. L'étude se fait-elle seul ou à plusieurs ? Pourquoi ne pas penser que les deux solutions sont possibles. Le tout est d'être dans un position active de recherche : on doit prendre plutôt que recevoir... ce qui a des conséquences sur le métier de professeur.

A suivre, évidemment !

dimanche 6 septembre 2015

Cuisine et dérégulation

En ces temps de dérégulations, où n'importe qui prétend exercer le métier de taxi ou d'hôtelier sans passer par  la réglementation en place, cela vaut la peine de se poser la question de l'exercice du métier de restaurateur.
Cela fait longtemps que, personnellement, je me demande pourquoi n'importe qui peut tenir un restaurant,  alors qu'un certificat d'aptitude professionnelles (CAP)  est imposé pour tenir un salon de coiffure. Il y a évidemment le fait que nous cuisinons tous quotidiennement et que, si nous cuisinons pour notre famille, nous ne comprenons que difficilement pourquoi nous ne pourrions pas cuisinier pour autrui.
Toutefois ce raisonnement  ne m'a jamais convaincu, car je ne suis pas sûr que tous les cuisiniers familiaux cuisinent  correctement pour leur famille (on a compris que je manie l'euphémisme : je suis en réalité sûr que la majorité des cuisiniers familiaux ne cuisinent pas correctement).  Lesquels savent les dangers du cuivre, eux qui utilisent des bassine en cuivre pour faire des confitures, et cela de façon traditionnelle ... mais dangereuse ?  Lesquel ont une idée des micro-organismes et du développement de ces derniers lorsque les met sont chauds ?  Lesques savent que leur réfrigérateur devrait être à 4 degrés ? Lesquels savent les toxicités des ingrédients ou des parties de ces derniers ? On me répondra peut-être que  la tradition a sélectionné des recettes, des pratiques,  qui évitent les accidents, mais est-ce vrai ? Même perfectible, l'enseignement de la cuisine n'a de cesse de vouloir éviter protéger le mangeur. En outre, je réfute la « bonne tradition » : l'examen des pratiques culinaires du passé, notamment lors de nos séminaires de gastronomie moléculaire, montre combien les pratiques anciennes sont souvent mauvaises.
Lors des enseignements professionnels,  il y a des informations que les cuisiniers familiaux n'ont pas et n'auront sans doute jamais :  la marche en avant, la méthode HACCP, l'examen des points critiques pour la mise en œuvre des pratiques culinaires (si vous ignorez ces notions, c'est une démonstration supplémentaire de ce que j'avance). Il y a aussi des enseignement utiles, comme la gestion du restaurant, la gestion du personnel, etc. On peut bien sûr imaginer que des individus se renseignent sur tous ces points, mais je maintiens qu'il est bien difficile  de  savoir reconnaître le degré de cuisson particulier auquel on doit arriver, simplement avec une photo ou un film,  et un professeur qui vous  observe et qui vous  signale des fautes de procédure met une évaluation qui, si nous la faisions nous-même, serait très certainement trop complaisante. Et puis, un enseignement bien fait apporte une foule de compétences complémentaires qui, mieux que permettre une cuisine seulement saine,  permettent une cuisine qui soit bonne, ce qui n'est pas rien.
Il est amusant de voir qu'en science, cette question de la déréglementation ne se pose pas,  parce que la maîtrise du calcul -ce que le public nomme les mathématiques- fait une sélection immédiate. On objectera peut-être qu'il ne suffit pas de savoir calculer pour faire de la bonne science, mais je répondrai très volontiers que, a contrario, il n'y a pas de science du tout s'il n'y a pas de calcul. Certes la connaissance des objets spécifiques d'un champ est importante, mais c'est une base tellement faible qu'on ne peut imaginer exercer la recherche scientifique si on se limite à elle.
Finalement, ici comme dans d'autre billets, j'en arrive à une conclusion très optimiste, à savoir qu'une compétence s'obtient par une longue pratique doublée d'une réflexion appuyée, qui permet de dépasser la simple répétition des gestes ou des pensées, pour  mettre les objets d'étude dans un cadre plus vaste et plus cohérent, ce qui permet la floraison d'une véritable compétence, qui n'a donc pas de raison de ne pas être testée, si elle est vraiment acquise. Je propose de penser que des diplômes d'état bien attribués sont une garantie pour les citoyens, une protection, une nécessité, enfin. Au fond, c'est cela l'information essentielle que nous devons transmettre  aux étudiants  qui nous font confiance au point de penser que nous  pouvons les aider à marcher dans la voie professionnelle qu'ils ont choisie.

vendredi 26 juillet 2019

De la classe préparatoire à l'école d'ingénieur

Note préliminaire : j'ai résolu de considérer les étudiants comme des "collègues", mais pour les besoins de clarté, dans ces billets consacrés aux études, j'utilise l'expression "jeunes collègues" pour désigner les étudiants, et professeurs pour désigner les "professeurs", sans distinction de grade pour ces derniers.



Allons-y : des jeunes collègues  (je vous aide encore une fois : je veux donc dire par là "étudiants") qui arrivent dans les écoles d'ingénieurs se plaignent souvent de redites entre leurs cours de première année et les cours de classes préparatoires aux grandes écoles. Voici leur message :

Tout d’abord, certains cours, notamment dans le tronc commun scientifique de première année, reprennent de nombreux éléments qui ont déjà été étudiés dans les années précédant l’école.
Plus généralement, nous trouvons que les matières scientifiques sont traitées avec peu de profondeur et ne nous fournissent que très peu de connaissances scientifiques solides et de savoir-faire.



Savourons d'abord la fin du message : nos jeunes collègues font bien la différence entre connaissances et compétences (savoir-faire). Enfin... Savourons, mais faisons leur remarquer qu'il manque des cases au tableau : savoir vivre, savoir être... En conséquence, je leur propose de réévaluer les cours qu'ils ont reçu en tenant compte de toutes les dimensions, et pas seulement des connaissances.

Mais, d'autre part, je répète que les cours ne sont pas là pour donner des connaissances : l'idée de l'oie que l'on gave est mauvaise, et cela est su depuis au moins Aristophane, qui disait justement qu'enseigner, ce n'est pas emplir une cruche, mais allumer un brasier. En classes préparatoires, il y a souvent un programme à faire au pas de charge, et il n'est pas certain que l'on ait eu la perspective soit de chercher comment des connaissances peuvent nourrir la technologie (métier de l'ingénieur), soit comment on pourra utiliser ces connaissances pour en produire de nouvelles (métier du scientifique).
Et puis, le concours est souvent un point de passage obligatoire pour les jeunes collègues, et non pas un moment que l'on déguste, parce que l'on aime étudier les matières qui sont celles du concours : chimie, physique, mathématiques, biologie... Je dis bien "souvent", parce que tel n'était pas mon cas personnel : j'ai beaucoup aimé mes deux années de classes préparatoires, parce que je pouvais me focaliser sur ce que j'aimais le plus. Bien sûr, j'aurais aimé avoir plus de temps pour le savourer, mais quand même, c'était un merveilleux moment.

Une fois arrivé dans une école, que faire ? Si les cours reproduisent ceux de classes préparatoires, c'est évidemment une faute, car au minimum, le format d'études devrait être différent. Il y a mille autres manières que le tableau noir et la craie, le devoir sur table, la colle...
A minima, l'institution - et les professeurs - doit pouvoir dire aux élèves en quoi les cours diffèrent de ceux des classes préparatoires, soit dans le contenu, soit dans la forme...

Mais, d'autre part, les élèves peuvent prolonger le cours, car ce ne soit pas des oies, n'est-ce pas ? Si nos collègues sont parfaitement à l'aide, ils n'ont rien à redouter d'évaluations, et ils peuvent parfaitement prolonger le cours... car on ne me fera pas croire que les classes préparatoires aient amenés les étudiants jusqu'au sommet de la montagne de la connaissance, jusqu'aux connaissances les plus récentes produites par la science.

Cette discussion, d'ailleurs, ne doit pas oublier que les jeunes collègues arrivent avec des niveaux variés... ce qui  me conduit à vous renvoyer vers mon billet sur l'"enseignement" (mot que je déteste) matriciel.

mercredi 19 avril 2023

Eloge de la technologie

 Une sorte de paradoxe que de faire l'éloge de la technologie le dimanche, alors que la technologie est le métier de l'ingénieur, dont le nom a la même étymologie qu' "engigner" : le diable, raconte-t-on, engigna la mère de Merlin l'enchanteur, en vue de faire un pendant à Jésus Christ, de faire un fils qui perdrait l'humanité (mais un prêtre présent baptisa l'enfant à la naissance, de sorte qu'il perdit sa "malice", ne gardant que des pouvoirs surnaturels.

 Vive la technologie ? La technologie permet la réalisation de l'utopie qu'est la science quantitative. 

D'accord, mais plus précisément ? La technologie, c'est l'activité  qui cherche à appliquer les sciences quantitatives pour perfectionner les techniques. 

C'est un métier très particulier, et très extraordinaire puisqu'il transforme des connaissances en objets nouveaux du monde. 

Ces temps-ci, une partie frileuse du public refuse les avancées technologiques, les innovations techniques (et, même,  frémit à l'idée que la science poursuive son travail). Pourtant ces mêmes frileux utilisent des ordinateurs, des voitures, prennent le train, l'avion,  se brossent les dents avec des dentifrices dont ils ignorent tout de la constitution (pourtant bien perfectionnée par la technologie), portent des lunettes dont les verres sont des chefs-d'œuvre techniques... 

Oublions donc ceux-là pour le moment et concentrons-nous sur la technologie. Elle doit être un état d'esprit,  comme je vais essayer de le montrer avec un exemple personnel. Un exemple qui a l'inconvénient d'être personnel (pardon, le moi est haïssable), mais qui, de ce fait, a l'avantage d'être attesté (alors que beaucoup de ce que l'on entend est douteux, de seconde main, etc.). 

Cela se passe dans les années 1980 :  ayant compris que les protéines sont d'excellents  tensioactifs, qui permettent donc de faire des émulsions,  je vois une feuille de gélatine sur ma paillasse, au laboratoire. La gélatine ? C'est une matière faite de protéines. Peut-on  donc  faire une émulsion à partir d'eau, de gélatine et d'huile ? L'expérience n'est ni difficile ni longue,  et la réponse est immédiatement donnée : on obtient une émulsion. Toutefois on n'a pas fait là une grande découverte scientifique, et une saine méthode scientifique doit nous pousser à quantifier les phénomènes, en l'occurrence à caractériser quantitativement l'émulsion. Un microscope fut donc utilisé : apparurent des gouttelettes d'huiles dispersées dans l'eau. Sur de telles images, les molécules de gélatine n'apparaissent pas, évidemment, mais on sait  (pour 1000 raisons chimiques) qu'elles sont soit aux interfaces, soit dissoutes dans l'eau. Où sont-elles ? Il faut passer du temps à cette question, répéter l'expérience, regarder,  regarder encore et... ... soudain, on voit deux gouttelettes d'huile voisines fusionner, puis deux autres, deux autres,  et ainsi de suite, mais contrairement à une coalescence telle qu'il s'en produirait si l'on avait fouetté de l'huile dans l'eau pure, la coalescence particulière des émulsions d'huile dans l'eau stabilisées par de la gélatine cesse de coalescer à partir un certain moment. 

 Pourquoi ? Parce que l'émulsion est prise dans un gel physique. Une émulsion prise dans un gel  physique ? Et si l'on en faisait de la cuisine ? Cela, c'est mon invention des « liebigs » (du nom du chimiste allemand Justus von Liebig, évidemment). 

Remplaçons l'eau par un liquide qui a du goût, ajoutons  de la gélatine, ou tout autre composé qui permettra à la fois une émulsification et  une  gélification physique, utilisons de l'huile ou tout  autre corps gras sous forme liquide, et nous pourrons reproduire l'expérience, obtenir une espèce de sauce nommée liebig, un nouveau système, tout comme l'ont été mayonnaise,  crème fouettée,  parmentier, caramel, etc.. 

 

Moralité : les liebigs  sont une préparation nouvelle, maintenant bien comprise, fruit d'un transfert technologique. Il résulte de ce moment particulier  où l'on s'est demandé : "et en cuisine, qu'est-ce que cela donnerait ?" Ce moment particulier n'est pas un moment scientifique, mais un moment technologique. Vive la technologie !

vendredi 20 janvier 2012

Et encore !


J'ai décidément affaire à quelqu'un de merveilleux... qui répond : 






"Je suis attachée à la fraise et aux poireaux et à beaucoup d'autres légumes ou autres ingrédients qui sont ma culture alimentaire, mais pas tout à fait comme les gens du Moyen Age, qui eux n'avaient pas ou peu de choix, et ne pouvaient raisonner leur alimentation.  Et  bien sûr les particularités personnelles ne comptent pas à l'aune de l'histoire de l'alimentation ; mais savourer un poireau ou une carotte c'est,  et ce fût partagé par des milliards d'hommes.  
Permettez moi aussi de revenir sur l'objectif politique, que vous poursuivez avec la cuisine note à note, à destination des agriculteurs. Aujourd'hui, dans les régions qui s'y prêtent le mieux, les agriculteurs  essaient de produire en ayant une relation directe avec le consommateur et donc de travailler en circuit court. Et ce système semble satisfaire les deux parties et rencontrer du succès. Qu'est ce qui inciterait les agriculteurs à transformer leur production  ? Et le risque existe de voir immédiatement l'industrie agroalimentaire s'emparer de ce maillon de la chaine ?"

Ouf, c'est un gros morceau. Allons y doucement. 

Partager un poireau avec des milliards d'êtres humains, nos soeurs, nos frères... Ce sont de grands mots, mais "partage-t-on vraiment" avec ceux qui ont faim ? Et avec ceux qui ne connaissent ni le poireau ni la fraise, parce que, eux, ont des cives (au goût bien différent) ou des fruits de la passion ? 

La production de proximité ? Je veux bien, mais, en région parisienne, et dans les métropoles qui ne cessent de s'étendre, où sont les champs ? Ils sont de plus en plus loin ! Pour la région parisienne, c'est, je crois, un fantasme que de croire que l'on puisse nourrir 10 millions d'individus avec de la culture de proximité... surtout si les terres à blé ne sont pas des terres à carotte ! 
Certes, on n'est pas forcé de faire venir des produits végétaux et animaux de l'autre bout de la Terre, mais le fait est que le public veut à la fois sauver la planète et des tomates en hiver ! Quand la collectivité sera cohérente...
Bref, je ne suis pas là pour juger. Ce que je sais, c'est que, quel que soit le modèle alimentaire, il faut voir plus loin que ses compétences limitées, et c'est pourquoi, pour cette question, j'ai invité mon ami Pierre Combris à venir discuter la question. Lui, est compétent ! Ni mon interlocutrice ni moi. 

Qu'est ce qui empêchera l'industrie alimentaire de s'emparer de la production des composés pour la cuisine note à note ? 
Disons : 
1. pour nos amis canadiens, tous ceux qui produisent sont de l'industrie (au vrai sens du mot) ; les agriculteurs, les cuisiniers, sont des "industriels". 
2. Rien n'empêchera qu'une industrie plus capitalistique s'empare de la production de composés ou de fractions... d'où mon insistance à mettre tout de suite les agriculteurs dans le coup. Comptez sur moi pour aider les agriculteurs à s'enrichir... mais il faut en passer par une transformation, et pas seulement se limiter à la culture (qui est, n'en doutez pas, un vrai métier, avec un vrai savoir faire : que ceux qui ne sont pas convaincus relisent Bouvart et Pécuchet, de Flaubert). La question est différente, donc : faut-il supporter que les agriculteurs ne soient pas bien rétribués pour leur travail de production, et faut-il qu'ils doivent faire "plus" ? Je répondrais que le cuisinier doit faire plus que la cuisine, de la gestion, du commerce, de la représentation. Que le scientifique doit faire plus que de la science : des levées de fond, de la formation d'étudiants, etc. Et c'est sans doute ainsi pour la majeure partie des "métiers". 
Je ne suis pas là pour juger... mais je suis certain que de la valeur ajoutée facilement gagnée, ce n'est pas à négliger. 

Ouvert à la discussion!

Vive la gourmandise éclairée !
vive la connaissance produite et partagée !

mercredi 8 mars 2023

A propos d'Edouard de Pomiane

 
Un historien m'interroge, voire m'interpelle, à propos d'Edouard Pojersky de Pomiane, dont j'ai dit qu'il avait écrit beaucoup d'erreurs.

Je l'ai renvoyé vers un article où j'ai présenté le personnage, mais il faut que j'insiste : que j'explique que Pomiane fut un grand vulgarisateur, un remarquable écrivain gastronomique, mais pas un grand scientifique, du point de vue de la connaissance scientifique de la cuisine (au sens des sciences de la nature). Ce qui n'est pas une critique, mais une observation factuelle que j'explique ici.

Pomiane était microbiologiste à l'Institut Pasteur et il s'est beaucoup intéressé à la cuisine,  avec un esprit rationnel.

Il dit dans ses textes avoir expérimenté, mais on ne trouve pas de publications scientifiques à ce sujet. Il a eu un immense  succès populaire, avec des livres et avec une émission de cuisine, car il était fin, intelligent, enthousiate, plein d'énergie et d'humour.

Dont acte. Mais cela ne suffit pas pour faire de la science : ne pas confondre science, vulgarisation, cuisine, littérature, journalisme !

En réalité, beaucoup de ce qu'il a écrit à propos de la physique et de la chimie des phénomènes culinaires est faux (je n'y peux rien, désolé), notamment parce qu'il n'était pas physicien ni  chimiste, et que la cuisine n'est pas une affaire de microbiologie (sauf pour les questions de conservation ou d'hygiène).

Bien sûr, un microbiologiste a une formation scientifique, mais cela ne suffit pas toujours pour faire des travaux de physico-chimie.

De surcroît, la science, et notamment la gastronomie moléculaire, n'est pas dans le dogme, comme la vulgarisation scientifique, qui, elle, explique des théories, mais dans la réfutation.

Considérons un exemple : celui de la mayonnaise. Pomiane a des phrases extraordinairement ambiguës où il dit qu'il y a de l'eau et de l'huile mélangées intimement l'un dans l'autre en une émulsion. Certes, il y a de l'eau et de l'huile, et certes, la mayonnaise est une émulsion mais la description est mauvaise : il faut dire que des gouttelettes d'huile sont dispersées dans l'eau (une "solution aqueuse", plus exactement).

Disons-le encore plus simplement :  on prend de l'eau, on y met une gouttelette d'huile, puis une autre, puis encore une autre, et l'on obtient de l'eau chargée de gouttelettes d'huile, si tassées qu'elles ne peuvent plus bouger : la sauce tout entière ne coule plus. Et ce système physico-chimique est nommé "émulsions".

Ce que je viens de dire, c'est de la vulgarisation, un peu du dogme, et je m'empresse d'ajouter que la science précisément, cherche plutôt à réfuter cela. La science n'est pas intéressés a asséner  des propositions théoriques , mais, au contraire, elle cherche  en quoi ces descriptions sont fautives.

Par exemple pour la mayonnaise, dans les années 1980, certains disaient encore que les gouttelettes d'huile dans l'eau étaient stabilisées (en réalité, c'est une métastabilité) par des phospholipides, cette fameuse "lécithine" dont beaucoup parlent sans savoir ce que c'est. En réalité, pour les mayonnaises, les protéines présentes dans le jaune sont beaucoup plus importantes que les lécithine et si l'on ne veut pas se perdre dans les détails, on commencera par dire que la mayonnaise est stabilisée par les protéines.
Certes, les deux composés agissent, mais le principal, ce sont les protéines.

Pour en revenir à Pomiane, sa confusion ne lui a pas permis de véritablement fonder la gastronomie moléculaire parce qu'il confondait aussi la technique, la technologie, la science et l'art.
Il  introduisit sur le tard la "gastro-technie", mais si on le lit précisément, on voit que cette dernière est une espèce de chimère dont on ne sait pas exactement ce que c'est ;  en tout cas, ce n'est pas de la science à lire ses définitions, ce n'est pas de la technique non plus et ce n'est pas de l'art. Serait de la technologie ? Je n'en suis pas non plus sûr si l'on lit les mots qu'il écrit;

Bien sûr, si l'on est excessivement charitable ou enthousiaste, on peut dire que l'on va passer sur les mots, mais alors, autant autant confondre tout de suite le tournevis et le marteau, la casserole et la fourchette, le poivre et le sel, la molécule et l'atome !
Non, les mots ont une signification et celui qui n'utilise pas le sens des mots dans un but de clarté est soit confus, soit volontairement poète. On a le droit d'être enthousiaste, on a le droit d'avoir de l'humour, on a le droit de tout ce qu'on veut dans les limites de la légalité bien sûr,  mais on ne fera jamais de la science en confondant les émulsions avec les mousses, les gels avec les suspensions, les protéines avec les phospholipides, et cetera.

Déjà Jean-Anthelme Brillat-Savarin s'était posé en scientifique, alors qu'il était juriste (et se posait en "physiologiste, qu'il n'était pas), et il faut -on le sait- un exceptionnel "gastronome", au sens de la gastronomie littéraire. Scientifique de métier, Pomiane fut également un excellent gastronome littéraire, mais il faut prendre ses écrits en les interprétant, sans oublier son oeil souriant au-dessus de sa moustache.

dimanche 8 mai 2022

The translation in English of a text that I published first in French, about the rigor in the use of words of chemistry


Rigourous terminology for concepts of chemistry: a base for rational choices.

Hervé This 1



1 INRAE, UMR 0782 SayFood, France.
 Correspondance :
Intae-AgroParisTech International Centre for Molecular and Physical Gastronomy
herve.this@inrae.fr

Translated from  This H. 2021. La rigueur terminologique pour les  concepts de la chimie : une base pour des choix de société rationnels, Notes Académiques de l'Académie d'agriculture de France / Academic Notes from the French Academy of Agriculture, 2021, 1, 1-15.




Abstract
Food-related decisions that engage communities are often based on chemical concepts. Therefore, the utmost terminological rigour is required. This article considers frequent examples of confusion, and concludes with a call for the introduction of chemistry lessons as early as primary school.


Keywords
chemistry, human food, public debate, controversies, terminological rigor, molecule, compound, fatty acid, triglyceride, minerals, natural product, chemical denomination





Introduction

Public debates about food often involve chemical objects: nitrates, nitrites (Pouliquen, 2020), fatty acids (INSERM, 2020), glyphosate (Foodwatch, 2020), acrylamide (Cérou, 2020), iron (Santé Magazine, 2020), curcumin (Lacamp, 2020), DNA (Bru, 2020), mineral salts (Mary, 2020), pesticides (Foodwatch, 2020), micro-plastics (Anses, 2020a), nano-particles (Anses, 2020b)... Unfortunately, some of those who intervene in these debates are ignorant of the exact nature of these compounds and products, or have negative perceptions of them, as the consultation of the references given above shows over and over again! In particular, the belief in a "good nature" - which forgets for example natural poisons such as hemlock or datura - is not new (Mill, 1874), but it continues to rage, while unfounded fears are heard (Kressmann, 2018).
The bad knowledge of the objects of chemistry is deleterious, in the public debates where these objects intervene, because it can lead to irrational positions and choices of the public and the elected officials, then to laws which risk to govern the collective life in an unacceptable way for whoever seeks more rationality and a better use of the public money (Vaulpré et Jaffré, 2020). Already Nicolas de Condorcet wrote, at a time when science was considered as a "natural philosophy": "Any society which is not enlightened by philosophers is deceived by charlatans". (Condorcet, 1791).
It is true that chemistry courses have been introduced in secondary school courses, but they are limited, and recent surveys show the weakness of France, from this point of view (Cabioch, 2020), compared to other countries in the world. Beyond questions of national industrial competitiveness, training in chemistry is essential for citizens to be able to make up their minds in the highly technical world in which they live today. As young people become adults, and eventually elected officials, Parliament has deemed it essential to strengthen the scientific and technological knowledge of elected officials through the Parliamentary Office for the Evaluation of Scientific and Technological Choices, created in the early 1980s (OPECST, 2020): scientific information and training (especially in chemistry) help to avoid erroneous ideas, either resulting from personal preconceptions or propagated by pressure groups... And the issue of insufficient knowledge of science, especially chemistry, is serious enough that it is frequently considered by states and international organizations, including UNESCO, which has been concerned with the popularization of natural sciences in the public service media (Naji, 2006).
In this article, we analyze a series of frequent confusions, with a view to discussing further the reasons why rigorous terminology is needed, especially for the objects of chemistry. We address readers who are trained in the natural sciences, but not all of them chemists, and we also examine presentations to citizens who are not always well educated in science, seeking to show why those who are in a position to abuse language might usefully avoid it in public debate.
We wish to establish that rigor is never excessive when discussing questions that involve chemical objects, at the risk of confusions that would make the bed of ideologues or dishonest people, or that would lead to the unreasoned fears that we have mentioned.


An anthology, before taking a step back
 

1. A first common error, in relation to chemistry, is the abuse of language that consists in speaking of "molecules" to refer to "chemical species", in particular  "compounds" (Myers, 2012). Chemistry hesitated for a long time, before considering -at last- that a molecule is an assembly of atoms, whereas a compound is a category of molecules that are all identical, a particular kind of "chemical species" for which there are atoms of more than one chemical element. To say that water is a molecule, for example, must be avoided, because it is false, in the modern sense of the word "molecule". For the public, water is a liquid, and for chemistry, water is a material, a  "substance" which can be in the vapor phase, or liquid, or solid, for example, depending on temperature and pressure conditions (Lide, 2005); generally, for the samples considered on Earth, this material is made of very many identical molecules: tens of thousands of billions of identical molecules per gram of water (IUPAC, 2004).
A detail that is useless for citizens trained in the natural sciences, but essential for all those who do not have sufficient training and who participate in public debates: each of the water molecules is made of one oxygen atom and two hydrogen atoms, which is conventionally noted H2O (Lower, 2020). Water is a "compound" (since its molecules are made of atoms of two different chemical elements: oxygen and hydrogen).
Finally, above we have made the assumption of an absolute purity of the samples, but we will see later (example 5) that it is interesting to distinguish this pure water (rare on the Earth), made only of water molecules, from the water we drink, which inevitably contains a number of "impurities", i.e. molecules which are not water molecules, or various ions (sodium, magnesium, chloride, nitrate, etc.).
What is said about water obviously applies to other compounds.
In any case, the abuse (or impropriety, depending on the case) of language which consists in speaking of "molecule" to evoke a chemical species has serious consequences: the author of this text can testify to having met a science journalist from a public service television channel who thought (and explained to his audience!) that there were 450 odorant molecules in wines, and this person was thinking of 450 particular objects, of 450 molecules of chemists, and not of 450 odorant compounds (chemical species). Because yes, wine contains a few hundreds of different odorant compounds (depending on the wine), but each of these compounds is present, in a bottle of wine, at a rate of hundreds of thousands of billions of molecules (Pons et al., 2017).
The practice of popularization conferences, as well as the questioning of passers-by in the street, show that this case was very far from being isolated: when the notion of molecules is declared to be known, the idea to which it corresponds is very often erroneous, without even going so far as to hope that the citizens know that the molecules of a liquid are all in movement.
Let us add that the confusions between "compounds" and "molecules"(or  "chemical species"), when they are not abuses of language, can result as much from insufficient knowledge of chemistry, notably of its vocabulary, as from the difficulty of thinking about categories, already discussed by Aristotle, then many others (Van Aubel, 1963), before being, for example, one of the pitfalls of teaching, notably that of "modern mathematics" (Thom, 1970).
This is one reason why the introduction of the modern notion of molecules was such a remarkable achievement of chemistry, due in particular to Amedeo Avogadro (1776-1856), that it remained the object of violent scientific controversy until the first half of the twentieth century: French chemists, notably around Marcellin Berthelot, refused the modern (yet correct) idea of molecule, and their political influence, notably in terms of education and university training, caused French chemistry to lag half a century behind (Jacques, 1987).
In short, there are many reasons to be vigilant about this word "molecule", especially when one is addressing interlocutors or a public who are not aware of the possibilities of confusion.

2. More specifically, abuses of language that I believe to be harmful, in food science, technology, and engineering, are to speak of "fatty acids in a triglyceride" or "amino acids in a protein": it is more accurate (and internationally decided) to use the terminologies "fatty acid residues" and "amino acid residues", respectively, for the parts rightly designated as such, in triglycerides or in proteins (IUPAC, 2019).
Why? Because free fatty acids, for example (we are sometimes obliged to add the adjective "free" to make ourselves clear), are quite different compounds from triglycerides. And, often, it is useful to add that there are almost no (free) fatty acids in oils or in other food fats: it was, this time, a contribution of the French chemist Michel-Eugène Chevreul (Angers, 1786 - Paris, 1889) to establish that food fats are mostly composed of "triglycerides", and not fatty acids, recognizing by measurements of great precision (at that time) that the esterification reaction by which we can eventually synthesize a triglyceride does not correspond to a juxtaposition, but a real reaction, which changes the nature of the reactants (Chevreul, 1823). In the case of proteins, it was not until Theodor Svedberg's advances in the 1920s that the difference between a polymer (which proteins are) and a colloidal assembly (of amino acids, in this case) was finally understood (Florkin and Stotz, 1972).
The experience of university teaching shows how widespread is the confusion between fatty acids and triglycerides, or amino acids and proteins; it remains often until the master's degree, and, similarly, the analysis of public discussions shows how confused ideas are often on this subject.
In order to explain things to a public that constantly hears about "the fatty acids of table oils", even in food hygiene documents (PNNS, 2020; Olivier et al., 2014), we can usefully begin by pointing out that oil (like most food fats) is mainly made up of a large number of molecules similar to octopuses with three flexible arms: these molecules are "triglycerides". Note that we could also say "triacylglycerols", but this would unnecessarily increase the complexity (Figures 1 and 2).
Oils, for example, contain other compounds than triglycerides, but they are very much in the minority. For example, in the middle of the triglyceride molecules, oils also contain fatty acid molecules (free, therefore), squalene molecules, terpene acid molecules, sterol molecules, etc., but the total of all these, constituting the oil, is only one percent by mass.
Let's concentrate on these triglycerides which are in the majority. Oil and other fats contain a large number of different triglycerides (several billion for milk fat), the names of which are set by the international rules of the International Union of Pure and Applied Chemistry (IUPAC, 2019): the general rules of chemical naming lead to the recognition, in the center of triglyceride molecules, of a unit of three linked carbon atoms, each one linked to an oxygen atom, which is also the case in the molecules of the compound named glycerol (Figure 3). However, there is no glycerol (the compound) in the molecules of triglycerides; there is only a group of atoms reminiscent of glycerol, by the way, to within three hydrogen atoms (which is no small thing, in chemistry), and so one must speak, for this part identified by thought of "glycerol residue" (IUPAC, 2019).
Starting from this center, which is the  "glycerol residue", after the oxygen atoms that have been mentioned for this residue, the triglyceride molecules carry long chains of atoms that differ little from those of molecules of compounds that would be fatty acids: fatty acid molecules are, in fact, chains of carbon atoms bonded exclusively to hydrogen atoms, with, at one end, a "carboxylic acid" group, the terminal carbon atom being bonded to an oxygen atom by a double bond, and to a hydroxyl group, made of an oxygen atom itself bonded to a hydrogen atom (Figure 4). In triglycerides, this structure is not present as such, but only discernible to a few atoms. One can only recognize, in triglyceride molecules, a glycerol residue and three "fatty acid residues".
Why would some people (chemists or not) hesitate to say the right things? Why would they refuse to be terminologically rigorous? Because triglycerides could be assembled from fatty acids, and degraded to fatty acids? In reality, triglycerides can be constituted and modified in many different ways, and not necessarily by assembling one glycerol molecule and three fatty acid molecules. It depends on the reaction conditions: reagents present, pH, presence of free radicals, catalysts, etc.
Above all, to speak improperly of fatty acids (instead of "fatty acid residues") in fats is to expose oneself to the risk that the public (and even students of food science, technology and engineering) will think that oil is made of fatty acids! The risk even concerns people trained in science: the author of this text testifies that he knows an excellent physicist, a distinguished research director in his discipline, who believed this... because the confusing ambient language made him think so.
A nutritionist colleague who spoke of "triglyceride fatty acids" was questioned in the preparation of this article, and his reasons included (1) habit and (2) the fact that the public might fear "residues"... The first reason is not sufficient, as the history of chemistry has shown, which has progressed with the clarification of terminology, but the second is debatable: is there not a risk of paternalism in believing that the public is incapable of thinking well (This and Panel, 2010), knowing moreover how many charlatans, dishonest people, and ideologues sneak into the slightest intellectual breach to propagate their pernicious ideas?
And then, if the word -accepted inter-nationally- of "residue" seems difficult to use, why not use "fragment", or "group", for example... knowing that, in French, a residue is a part that remains after a main part has been removed, for example by evaporation: the connotation is not necessarily negative.

3. A third example, concerning "mineral salts", is intended to show the extent to which abuses of language can insidiously induce false ideas, even in scientific circles. We will begin by observing that, very often, the expression "mineral salts" should be replaced by "mineral ions", or "the mineral content of... ".
Let's start by observing that we often hear and read that water contains "mineral salts", or worse, that "calcium" and other mineral ions would be mineral salts (Passport to Health, 2020; Greenfield and Southgate, 2007)... This is incorrect for several reasons. First, calcium is an "element" and is only present in foods as divalent calcium ions. Secondly, a mineral ion, such as the calcium ion, is not a mineral salt, but only a mineral ion, which could be a constituent of a mineral salt if it were in a crystalline structure, with ions of opposite charge (at least in balance). Finally, "mineral salts" are (under ambient conditions) crystallized solids, such as sodium chloride (of which our table salt is mostly composed).
If we place crystals of a salt (for example, sodium chloride) in water, the constituent ions (chloride and sodium) can disperse, surrounding themselves with water molecules, and a solution of this salt can be formed (within the limits of solubility). In this particular case of the dissolution of a single salt, the water does contain a mineral salt, in solution, as long as it has been put in.
However, this is no longer true for ordinary drinking water, which contains various mineral ions: sodium, potassium, magnesium, chlorides, nitrates, sulphates, phosphates... These waters do indeed contain mineral ions, and they therefore have a mineral content, but do they contain mineral salts?
It is with regard to the last question that the difficulty arises, as can be seen from the simple case of an aqueous solution in which two mineral salts, such as sodium chloride and potassium nitrate, for example, have been initially dissolved. This solution would be the same if potassium chloride and sodium nitrate had been dissolved instead, so that, without knowing how the solution was constituted, it is impossible to say which mineral salts it may contain.
More generally, when faced with a solution that has a mineral content, it is impossible to say what "mineral salts" it contains. What is true for an aqueous solution is true for food ingredients and foods, including plant or animal tissues, or culinary preparations made from them: all have a mineral content, all contain mineral ions, but it would be very difficult to identify the mineral salts they contain. Conclusion: food does not contain mineral salts!
 
4. The fourth example concerns a more subtle - but chemically essential - characteristic of food compounds: their "chirality". To discuss this, let us first recall a tragic episode in pharmacy.
In the 1950s and 1960s, thalidomide was prescribed to pregnant women to relieve morning sickness, but it was overlooked that the compound appears in two mirror-image forms, like a left hand and a right hand. Just as a left hand is not a right hand, a left molecular form has different chemical and biological properties than a right molecular form (Figure 5). Metaphorically, one does not fit the left hand into the right glove or vice versa, and what applies to hands and gloves applies to active ingredients and biological receptors (Jacques, 1981). In the case of thalidomide, its "right" chiral form relieves nausea, while its "left" form causes malformations in the fetus: 10,000 to 20,000 children were born in this way, terribly affected, because of the confusion!
With foods, whether nutrients or bioactive compounds, the same question arises, and so chirality (the left-hand/right-hand difference) has become the daily tool of flavourists and perfumers: for example, (+)-(S)-carvone and (-)-(R)-carvone do not smell the same, like spearmint or dill. Or, (E)-anethole (trans form) is very low in toxicity, while the cis form, synthetic or natural trace, is much more toxic. Both enantiomers of linalool are natural, but while the (+)-(S)-linalol in coriander is very low in toxicity, the (-)-(R)-linalol in basil and lavender is higher. To simply talk about "anethole", for example, is simplistic... not to mention the disasters it can cause!

5. From compounds, let us now turn to "products" used in food. For the former, we have mentioned the common difficulty of thinking in terms of categories, but we have not gone into the details of the philosophical difficulties, namely that "the horse" is a very heterogeneous category: ponies, percherons, bay horses, grey horses, piebalds... This question is encountered with food ingredients.
Here again, public debates are hasty: "the" flour, for example... Which flour? What kind? With what composition? Bakers and confectioners are well aware of the variability of this product, even when only wheat flour is considered, to the point that it complicates recipes considerably (Inbp, 1990): the amount of water that must be added to a dough depends on the year, the origin, the grinding, the temperature of use... This same type of observation is valid for most of the food ingredients: "gelatine", "lecithin", etc.
Here for "products" as about the chirality of compounds, the question is terminological, and the consequences are sometimes serious. We recall the terrible episode of 2019, when a pharmaceutical company changed the formulation of its drug against hypothyroidism: the change in formulation, which was not accompanied by a change in name, had terrible consequences for many patients who used "the" product (Ansm, 2017). For food, this issue must be analyzed in the light of the 1905 law on the food trade, which must be "fair" (horse is not beef): this fairness requires fair designations (French Academy of Agriculture, 2011) and, in particular, fair chemical designations. Hence the importance of IUPAC, mentioned earlier.
This observation finds its full importance in relation to food additives: there is certainly a need for better designation (Anses, 2016). For example, the additive designated by the European code E140 corresponds to what is sometimes called chlorophyllin, or sometimes chlorophyll (Efsa, 2015), but, ultimately, what is it?
Let us first observe that "the" chlorophyll is an outdated terminology, introduced in 1818 by the French pharmacists Joseph Bienaimé Caventou (1795-1877) and Pierre Joseph Pelletier (1788-1842) to designate what cooks called "spinach green" (This, 2019); today, we know "chlorophylls", with different light absorptions: a, a', b, b', c, d, e, etc. On the other hand, the preparations made from chlorophylls and metals, such as zinc or copper, are no longer chlorophylls (in the center of which there is naturally a divalent magnesium ion), but chlorophyllines, zinciques or cuivriques, for example.
Similarly, we find the question about "lecithin" (IUPAC, 1979), a term that still suffers from the hesitations of chemistry, when it was young and more imperfect than today. Here, the story begins in 1845, when the French chemist and pharmacist Theodore Gobley isolated "lecithin" from egg yolk (lekithos means "egg yolk" in Greek); in 1874, he established the complete chemical formula of "lecithin phosphatidylcholine" (Gobley, 1874). Between 1850 and 1874, he had demonstrated the presence of "lecithin" in a variety of biological materials, including venous blood, human lungs, bile, human brain tissue, fish eggs, and chicken and sheep brains.
How to admit that, today, "lecithin" designates preparations (mixtures of compounds, therefore), with different properties according to the producers? The differences in functionality of the various preparations expose users to problems. Of course, one could say that no material is constant: "gelatin" can have a lot or little gelling power, depending on the batch; the same goes for "pectin", of which there are various varieties... even for "egg white powder", which is sold under this name, whether it is cooked and dehydrated egg white or fresh dehydrated egg white, with considerable differences in functionality for the two products (one does not coagulate, and the other can coagulate). Wouldn't it be in our interest, in the interest of fair trade, to better designate the food ingredients that are traded?

6. The same question is found with the products called - unfortunately - "flavors" (Dgccrf, 2006), and for which I propose to analyze that the terminological vagueness has undermined social cohesion. Indeed, we all know that, on the one hand, these products are widely used by the food industry, and, on the other hand, they are widely criticized - for a long time - by a part of the population (60 Millions de consommateurs, 2016). Could it not be interpreted that the public fears deception? In fact, the food industry and regulatory authorities have warped the word "aroma", which in French means the smell of an aromatic plant, an aromatic (TLFi, 2020). It would have been wiser not to use this term to designate flavoring compositions or extracts!
Because that is what it is all about: these compositions or extracts (which are never "natural", stricto sensu, since they are produced by craftsmen or industrialists) are either "compositions", obtained by mixing odorant compounds, by a technical and artistic work which is similar to that of the perfumer ; or "extracts", obtained by methods that resemble the production of table sugar from beet, or the production of eaux-de-vie from wines, with, in this case, processes that range from cold pressing to distillation, possibly with solvents (Sniaa, 2020). Since the public is right to think that compositions or extracts are not "flavors", in the sense of the common language, but rather flavoring agents, wouldn't the food industry, if it wants to show its loyalty, and the regulatory authorities, if they aim for more social cohesion, have an interest in taking the measure of the error initially made and changing the terminology?
Let us add two points:  (1) the English language distinguishes flavour from flavourings; (2) some of these flavourings are so remarkable, from an olfactory point of view, that there is hardly any reason not to make them available to the public, so that they can use them in their daily cooking... provided that they have a correct perception of them.

7. In the previous paragraph, we sketched out a discussion of the term "natural", but we did not insist enough to point out that the regulations also contradict the dictionary when they accept this adjective for products, flavourings (Sniaa, 2020) or others. Insofar as naturalness excludes the intervention of a human being (TLFi, 2020b), this use of the term "natural" is unwarranted, even dishonest: the "products" have indeed been produced, by human beings, so that they are strictly speaking "artificial".
If one were too lax, one would go as far as to speak of "natural food", and this is quite impossible since our food is cooked. Even "raw vegetables" are subject to culinary preparation, with trimming, washing, cutting, addition of a sauce, etc. (Bocuse, 1976). (Bocuse, 1976). So no: there is nothing natural in our food, and the regulations should absolutely refuse the demagogic temptation to accept this term of naturalness about food products, because there is the source of conflicts about it.

8. Let's end this anthology with nitrates and nitrites, of which it will be observed that very few of those who speak of them have ever seen them (this is true for most of the compounds or products mentioned in this text). However, it is not difficult to go and scrape some walls to recover saltpetre (Guyon, 2006): it is a nitrate, which was once added to saltings (Anonymous, 1826) and which prevented botulism (Pascal, 2020)!
While nitrates and nitrites are denounced by some (National Assembly, 2020; Ligue contre le cancer, 2019), the food industry, which is threatened in its practices, has learned to cook hams in vegetable broths, where naturally present nitrates (truly naturally, this time) are transformed into nitrites by fermentation (Ifip, 2020). Thus, hams (for example) obtained in this way contain nitrates and nitrites like pieces to which nitrite salt, commonly used by pork butchers, has been added.
In other words, the ban on nitrates and nitrites in charcuterie leads to propose the banning of ham cooked with vegetables, which would be quite an achievement, especially since the micro-organisms that transform nitrates into nitrites are naturally present in the environment!


Excessive rigor?


Let's stop here, because we could fill volumes, and concentrate on the question initially asked: is it excessive, unnecessary rigor to be concerned with exact terminology when we talk about chemical species in public debates or in teaching? Is it a waste of time to ask for a precise terminology? Is it really necessary to avoid abuses of language and imprecision? And is it right to annoy your interlocutors by repeating in a nagging, even intrusive way that proteins are not "made of amino acids", but of "amino acid residues", for example? Should we accept to appear fastidious by recommending to our interlocutors to speak about D-glucose rather than glucose (we will not forget thalidomide)? Should we accept talking about "iron", when we know that the bioavailability of ionic iron (and not just any iron ion) is very different from that of heme iron in the blood (in the heme group of certain proteins), to the point that doctors who prescribe "iron" to combat deficiencies have to add the prescription of ascorbic acid, to increase this absorption (Cismef, 2020).
Let us first answer the question posed with an authoritative argument, by quoting Antoine-Laurent de Lavoisier: "It is while I was occupied with this work that I felt more clearly than I had done until then, the evidence of the principles that were laid down by the Abbé de Condillac in his logic, and in some of his other works. He establishes that we can only think with the help of words; that languages are true analytical methods; that the simplest, most exact algebra, best adapted to its object of all the ways of expressing itself, is at the same time a language and an analytical method; finally that the art of reasoning is reduced to a well-made language.  [...] The impossibility of isolating nomenclature from science, and science from nomenclature, is due to the fact that all physical science is necessarily founded on three things: the series of facts that constitute science, the ideas that recall them, and the words that express them [...] As it is words that preserve ideas, and transmit them, it follows that one cannot perfect languages without perfecting science, nor science without language" (Lavoisier, 1789).
As we can see, the idea of the brilliant creator of modern chemistry was clear... and who among us would dare to contradict him, on a point of thought? Who among us has done so much for science that he could feel superior to Lavoisier? Come on, a little modesty.
Then let's ask our interlocutors the question: why should we be embarrassed to use the right terms? After all, a botanist does not confuse a carrot with a turnip, and a forester does not confuse a fir with a spruce, and those who are neither botanist nor forester conform to the uses defined by these professionals, since it is up to them to initially make the difference. No disadvantage, finally, except to have to work to eradicate our own inaccuracies... but many advantages to precision in chemistry: whether it is a question of substance or form, the objective is to avoid empty speeches, to invite to go and see more closely, and to avoid that ideologists seize confusions to arrive at their masked and, sometimes, nauseating ends.
Yes, the rigor of terminology for chemical terms, as well as the coherence of units of measurement (Lavoisier also participated in their harmonization and in the creation of the Metric System), are the foundation on which sound collective decisions can be taken. It is therefore a condition of democracy.
In addition, the examination of words avoids unnecessary fears. For example, a few years ago, a consumer magazine headlined that some products contained "traces of potentially carcinogenic pesticide residues". The word "potentially" should already put us on the track of healthy doubt, because potentially carcinogenic does not mean carcinogenic. And exposure to the product is essential, because without exposure to a hazard, there is no risk (Pascal, 2020). The word "pesticide"? There are synthesized pesticides, on the one hand, but there are also compounds with which plants naturally protect themselves (Ames et al., 1990). We will not discuss here the relative merits and dangers of the two categories, especially since it would be better to consider the various "pesticides", natural or artificial, one by one, but let us insist: an apple, a carrot, a potato, protect themselves against aggressors by natural compounds... which are sometimes synthesized to use them as pesticides.
Residues of these pesticides? Let us suppose that a pesticide is carcinogenic, and that it is degraded: nothing proves that its "residues" (we would more correctly speak of degradation products) are also carcinogenic, and, even better, why couldn't residues of synthetic pesticides be beneficial? Basically, we are back to the question of triglycerides... but the word "residue" is used in a different sense... very vague!
Finally, the consumer magazine did not mention pesticides or pesticide residues... but traces of pesticide residues! Knowing that our chemical analysis equipment detects compounds at amounts as low as 10-15 mol/L (Kawai et al., 2020), we should first ask the question "how much? ", and to relate the amounts to toxicological values (tolerable daily intake, for example).
Finally, let us make a useful observation: often the mistakes that students of food science and technology make are the result of a misuse of terms, an imprecise use of words that they use without sufficient understanding. The corollary of this is that wishes for good terminology use must be accompanied by efforts at instruction: chemistry must be introduced as early as elementary school. After all, is it so difficult to think that water, for example, is made of many small moving objects (water molecules)? And then, to speak about what one does not know, to use words of which one is unaware of the meaning, to show one's ignorance by silly sentences... Still, we have our dignity, don't we?



References 

60 Millions de consommateurs. 2016. Des aliments en trompe-l’œil, https://www.60millions-mag.com /2016/06/08/des-aliments-en-trompe-l-oeil-10478, dernier accès 2021-01-15.

Académie d'agriculture de France. 2011. Que sont les produits alimentaires sains, loyaux et marchands, Séance publique du 27 avril 2011, https://www.academie-agriculture.fr/actualites/academie/seance/academie/que-sont-les-produits-alimentaires-sains-loyaux-et-marchands, dernier accès 2020-12-15.

Ames BN, Profet M, Schisky Gold L. 1990. Dietary pesticides (99.99% all natural), Proceeding of the National Academy of Sciences of USA,  87, 7777-7781.

Anonyme. 1826. La charcuterie ou L'art de saler, fumer, apprêter et cuire toutes les parties différentes du cochon et du sanglier. Editions Audor, Paris.

Anses. 2016. Le point sur les additifs alimentaires, https://www.anses.fr/fr/content/le-point-sur-les-additifs-alimentaires, dernier accès 2020-12-15.

Anses. 2020a. Les microplastiques, un risque pour l’environnement et la santé, https://www.anses.fr/fr/content/les-microplastiques-un-risque-pour-l%E2% 80%99environnement-et-la-sant%C3%A9, dernier accès 2020-12-15.

Anses. 2020b. Nanomatériaux dans l’alimentation : les recommandations de l’Anses pour améliorer leur identification et mieux évaluer les risques sanitaires pour les consommateurs, 9 juin 2020, https://www.anses.fr/fr/content/nanomat%C3%A9ri aux-dans-l%E2%80%99alimentation-les-recom mandations-de-l%E2%80%99anses-pour-a%C3% A9liorer-leur, dernier accès 2020-12-15.

Ansm. 2017. Levothyrox et médicaments à base de lévothyroxine, https://www.ansm.sante.fr/ Dossiers/Levothyrox-et-medicaments-a-base-de-levothyroxi ne/A-quoi-servent-les-medicaments-contenant-de-la-levothyroxine/(offset)/0, dernier accès 2020-12-15.

Assemblée nationale. 2020. Les sels nitrités dans l'industrie agro-alimentaire, http://www2.assemblee-nationale.fr/15/commissions-permanentes/commission-des-affaires-economiques/missions-d-information/les-sels-nitrites-dans-l-industrie-agro alimentaire, dernier accès 2020-12-15.

Bocuse P. 1976. La cuisine du marché, Flammarion, Paris.

Bru M. 2020. Organismes génétiquement modifiés : dans la tourmente des contradictions de la sécurité alimentaire, https://www.revueconflits.com/organismes-geneti quement-modifies-dans-la-tourmente-des-contra dictions-de-la-securite-alimentaire/, dernier accès 2020-12-15.

Cabioch J. 2020. TIMSS : Que retenir pour l'enseignement des sciences au collège ?, Le café pédagogique, http://www.cafepedagogique.net /lexpresso/Pages/2020/12/08122020Article637430181218329432.aspx, dernier accès 2020-01-8.

Cérou M. 2020. Acrylamide : de nouveaux aliments sous surveillance, Process alimentaire, https://www.processalimentaire.com/qualite/acrylamide-de-nouveaux-aliments-sous-surveillance, dernier accès 2020-12-15.

Chevreul ME. 1823. Recherches chimiques sur les corps gras d'origine animale, Berger Levrault, Paris.

Cismef. 2020. Acide ascorbique, http://www.chu-rouen.fr/page/acide-ascorbique, dernier accès 2020-12-15.

Condorcet N. 1791. Cinq mémoires sur l’instruction publique. http://classiques.uqac.ca /classiques /condorcet/cinq_memoires_instruction/cinq_memoires.html, dernier accès 2021-01-13.
Dgccrf. 1976. Les arômes alimentaires, https://www.economie.gouv.fr/dgccrf/les-aromes-alimentaires, dernier accès 2020-12-15.

Foodwatch. 2020. Pesticides, https://www. Food watch.org/fr/sinformer/nos-campagnes/alimentation-et-sante/pesticides/, dernier accès 2020-12-15.

Efsa. 2015. Scientific opinion on the re-evaluation of chlorophylls (E 140(i)) as food additives, https://www.efsa.europa.eu/fr/efsajournal/pub/4089, dernier accès 2020-12-15.

Florkin M, Stotz EH. 1972. A history of biochemistry. In Comprehensive biochemistry, 30, 292.

Gobley T. 1874. Sur la lécithine et la cérébrine, Journal de Pharmacie et de Chimie, 20,‎ 98-103, 161-166.

Greenfield H, Southgate DAT. 2007. Données sur la composition des aliments, Organisation des Nations Unies, FAO. http://www.fao.org/3/a-y4705f.pdf, dernier accès 2020-01-12.

Guyon E. 2006. L'Ecole normale de l'an III : Leçons de physique, de chimie, d'histoire naturelle. Presses de l'Ecole normale supérieure, Paris.

Ifip. 2020. Impact de sel nitrité ou de bouillon de nitrate fermenté, Gestion des qualités technologiques et sanitaire des produits, fiche 41, https://ifip.asso.fr/sites/default/files/pdf-documenta tions/fiche_2017_041.pdf, dernier accès 2020-12-15.

Inbp. 1990. Mon métier, boulanger, Editions J. Lanore, Paris.

INSERM. 2020, La consommation d’aliments moins bien classés au moyen du Nutri-Score associée à une mortalité accrue, https://presse.inserm.fr/la-consommation-daliments-moins-bien-classes-au-moyen-du-nutris core-associee-a-une-mortalite-accrue/40805/, dernier accès 2020-12-15.

IUPAC. 1978. The nomenclature of lipids (Recommendations 1976) IUPAC-IUB, Commission on Biochemical Nomenclature, Biochemical Journal, 171(1), 21-35.

IUPAC. 2004. Formulae, https://old.iupac. org/reports/provisional/abstract04/RB-prs310804/Chap4-3.04.pdf, dernier accès 2020-12-15.

IUPAC. 2019. Glycerides, Compendium of chemical terminology, 2nd ed. (The Gold Book), https://goldbook.iupac.org/terms/view/G02647, der-nier accès 2020-12-15.

Jacques J. 1981. Confessions d'un chimiste ordinaire, Le Seuil, Paris.

Jacques J. 1987. Berthelot : autopsie d'un mythe, Belin, Paris.

Kawai Y, Miyake Y, Hondo T, Lehmann JL, Terada K, Toyoda M. 2020. New Method for Improving LC/Time-of-Flight Mass Spectrometry Detection Limits Using Simultaneous Ion Counting and Waveform Averaging, Analytical Chemistry, 92, 9, 6579–6586.

Kressmann G. 2018. Risques réels et craintes infondées. Paysans & société, 368(2), 44-48.

Lacamp I. 2020. Les compléments alimentaires contenant du curcuma ou de la vinpocétine pourraient être dangereux, Sciences et avenir, https://www.sciencesetavenir.fr/sante/les-comple ments-alimentaires-contenant-du-curcuma-ou-de-la-vinpocetine-pourraient-etre-dangereux _141717 dernier accès 2020-12-15.

Lavoisier AL. 1789. Traité élémentaire de chimie, Cuchet, Paris.

Lide DR. 2005. CRC Handbook of Chemistry and Physics, Internet Version 2005, CRC Press, Boca Raton, Florida, http://www.hbcpnetbase.com, dernier accès 2020-12-15.

Ligue contre le cancer. 2019. Stop aux nitrites ajoutés, https://www.ligue-cancer.net/article/ 54352_ stop-aux-nitrites-ajoutes, dernier accès 2020-12-15.

Lower S. 2020. All about water, Chemistry Libretexts, https://chem.libretexts.org/ Book shelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Supplemental_Modules_(Physical_and_Theoretical_Chemistry)/Physical_Properties_ of_Matter/All_About_Water, dernier accès 2020-12-15.

Mary H. 2020. Traçabilité, additifs... 60 Millions de consommateurs s'attaque aux produits alimentaires ultra-transformés, https://www.usine nouvelle.com /article/tracabilite-additifs-60-millions-de-consomma teurs-s-attaque-aux-produits-alimentaires-ultra-transformes. N976911, dernier accès 2020-12-15.

Mills JS. 1874. La nature, Editions La Découverte (réédition 2003), Paris.

Myers RJ. 2012. What are elements and compounds, Journal of chemical education, 89(7), 822-833.

Naji JE. 2006. Citoyens et media: guide pratique pour un dialogue entre citoyens et media, www.UNESCO.org, CI/COM/VG/2006/RP/3, dernier accès 2020-12-15.

Ollivier D, Pinatel C, Ollivier V, Artaud J. 2014, Composition en acides gras et en triglycérides d’huiles d’olive vierges de 34 variétés et 8 Appellations d’Origine françaises et de 2 variétés étrangères implantées en France : constitution d’une banque de données, Olivae, 119, 36-48.

OPECEST. 2020. Office parlementaire d'évaluation des choix scientifiques et technologiques, http://www.senat.fr/opecst/, dernier accès 2020-12-15.

Pascal G, 2020. Rapport du groupe de travail « Impacts sur les cancers colorectaux de l’apport d’additifs nitrés (nitrates, nitrites, sel nitrité) dans les charcuteries », Académie d'agriculture de France, https://www.academie-agriculture.fr/ publi cations/publications-academie/avis/rapport-impacts-sur-les-cancers-colorectaux-de-lapport, dernier accès 2020-12-15.

Passeport santé. 2020. Les sels minéraux : tous sur ces micro nutriments indispensables, esNutriments/Fiche.aspx?doc=sels-mineraux_nu, dernier accès 2020-12-15.

PNNS. 2020. Manger bouger : les huiles riches en acides gras polyinsaturés, https://www. mangerbouger.fr/pro/sante/alimentation-19/nouvelles-recommandations-adultes/rubri que-test/e-les-huiles-riches-en-acides-gras-poly insatures.html, dernier accès 2020-12-15.

Pons A, Allamy L, Schüttler A, Rauhut D, Thibon C, Darriet P. 2017. What is the expected impact of climate change on wine aroma compounds and their precursors in grape?, OENOOne, Institut des Sciences de la Vigne et du Vin, 51 (2-3), 141-146.

Pouliquen F. 2020. Charcuterie : La ligue contre le cancer, Yuka et Foodwatch demandent l’interdiction des nitrites, 20 Minutes, 4 février 2020, https://www.20minutes.fr/sante/2710507-20200204-charcuterie-ligue-contre-cancer-yuka-foodwatch-demandent-interdiction-nitrites, dernier accès 2020-12-15.

Santé Magazine. 2020. L’alimentation est bien un facteur de risque pour le cancer de la prostate, Santé Magazine, 29 juillet 2020, https://www.santemagazine.fr/actualites/actualites-alimentation/lalimentation-est-bien-un-facteur-de-risque-pour-le-cancer-de-la-prostate-650766, dernier accès 2020-12-15.

Sniaa. 2020. Définition. http://www.sniaa. Org/ arome#definition, dernier accès 2020-12-15.

This P, Panel P. 2010. La décision médicale partagée en gynécologie, Gynécologie Obstétrique & Fertilité, 38, 126-134.

Thom R. 1970. Les mathématiques « modernes », une erreur pédagogique et philosophique ?, L’Age de la science. http://gaogoa.free.fr/HTML /Textes/Les%20Mathematiques%20Modernes%20 par%20R.THOM.pdf, dernier accès 2021-01-13.

TLFi. 2020a. Arôme, http://stella.atilf.fr/ Dendien/scripts/tlfiv5/advanced.exe?8;s=1754745 780, dernier accès 2020-12-15.

TLFi. 2020b. naturel, http://stella.atilf.fr/Dendien /scripts/tlfiv5/visusel.exe?14;s=1387088820; r=1;nat=;sol=9, dernier accès 2020-12-15.

This H. 2019. Parlons des chlorophylles, et pas de la chlorophylle !, Encyclopédie, « Questions sur », Académie d’agriculture de France, https://www.academie-agriculture.fr/sites/default/files/publications/encyclopedie/final_s8-07_parlons _des_chlorophyles.pdf, dernier accès 2020-12-15.

Van Aubel M. 1963. Accident, catégories et prédicables dans l'œuvre d'Aristote, Revue Philosophique de Louvain.Troisième série, 61(71), 361-401.

Vaulpré J, Jaffé J. 2020. Réformer dans un climat irrationnel, le nouveau défi des politiques, https://www.lesechos.fr/idees-debats/cercle/reformer-dans-un-climat-irrationnel-le-nouveau-defi-des-politiques-1161763, dernier accès 2020-12-15.



Edité par
Nicole Moreau, Membre de la Société chimique de France et ancien Président de l'IUPAC. Président du Comité scientifique du Programme International pour les Sciences fondamentales (PISF) de l'UNESCO.

Rapporteurs
Nicole Moreau, Membre de la Société chimique de France et ancien Président de l'IUPAC. Président du Comité scientifique du Programme International pour les Sciences fondamentales (PISF) de l'UNESCO.

Jean-Pierre Foulon, ancien professeur de chimie en Spéciales au Lycée Henri IV à Paris. Membre du Comité de rédaction de l'Actualité Chimique (SCF).


Rubrique
Cet article a été publié dans la rubrique « Opinions » des Notes Académiques de l'Académie d'agriculture de France.

Reçu
17 novembre 2019

Accepté
3 janvier 2021

Publié
13 janvier 2021


Citation
This H. 2021. La rigueur terminologique pour les concepts de la chimie : une base pour des choix de société rationnels, Notes Académiques de l'Académie d'agriculture de France / Academic Notes from the French Academy of Agriculture, 2021, 1, 1-15.



Hervé This est physico-chimiste dans l'UMR 0782 SayFood INRAE - AgroParisTech, professeur consultant à AgroParisTech, membre de l'Académie d'agriculture de France, membre correspondant de l'Académie royale des sciences, arts et lettres de Belgique et de l'Académie de Stanislas, membre de l'Académie d'Alsace, sciences, lettres et arts.