On me demande si "le processus de brunissement au four permet d'obtenir une saveur plus prononcée" ?
La réponse est que il ne faut pas confondre la saveur et le goût.
Le goût, c'est la sensation synthétique que nous avons quand nous mettons des aliments en bouche. La saveur, c'est seulement la composante sapide, ce qui est perçu par les papilles.
Et quand on fait cuire une pâte, qui brunit, donne-t-on de la saveur ou du goût ?
Pour le savoir, je vous invite à faire l'expérience de cuire une pâte à tarte, de telle sorte qu'elle soit bien brune, et de la mettre en bouche après vous être pincé le nez : pendant que le nez est pincé, vous mastiquez, et vous sentirez les saveurs.
Puis, après quelques secondes, vous relâcherez les narines et la sensation qui viendra sera l'odeur. .
Cest la totalité qui fait le goût .
Avec cette expérience vous pourrez répondre vous-même à la question posée.
Ce blog contient: - des réflexions scientifiques - des mécanismes, des phénomènes, à partir de la cuisine - des idées sur les "études" (ce qui est fautivement nommé "enseignement" - des idées "politiques" : pour une vie en collectivité plus rationnelle et plus harmonieuse ; des relents des Lumières ! Pour me joindre par email : herve.this@inrae.fr
vendredi 15 septembre 2023
Brunissement et goût
jeudi 3 août 2023
A propos de réactions de glycation et d'enseignement !
Ce soir, une question :
Formatrice en sciences appliquées je me posais une question, ainsi que mes collègues, sur le brunissement du rotissage ou braisage des viandes. Nous voyons souvent dans les manuels que la réaction de Maillard en est la cause. Mais quel est le sucre réducteur qui est responsable ?
Et si ce n'est pas la réaction de Maillard, a quoi est dû ce brunissement ?
Merci de la question, et cela pour plusieurs raisons.
D'abord -pardonnez-moi d'être hors sujet-, les "sciences appliquées" ne peuvent pas exister : Louis Pasteur est un de ceux qui ont bien expliqué qu'il y a la science, et les applications de la science. Si la science est appliquée, ce n'est plus de la science, mais de la technologie, ou de la technique. Il faut donc absolument militer pour changer cette terminologie fautive : aidez-moi s'il vous plaît, militez avec moi. La science, c'est la science !
D'autre part, il y a des brunissements de très nombreuses sortes, comme je crois l'expliquer bien dans mon Traité élémentaire de cuisine. Par exemple, quand vous mettez dans de l'eau un sucre nommé acide galacturonique (un "maillon" des molécules de pectine) et quand vous chauffez cette solution limpide et incolore... vous obtenez un brunissement terrible, en quelques heures, alors qu'il n'y a qu'un sucre. Pas d'acides aminés ! Pas de protéines ! A
utre exemple : quand vous coupez une pomme, elle brunit... mais là encore, il ne s'agit pas de réactions de glycation, ce que vous nommez "réactions de Maillard" mais dont il faut changer le nom. Les réactions de glycation, donc, ont été galvaudées à l'infini, par des gens (y compris des auteurs de manuels : d'ailleurs, où est la preuve de leur compétence, à part leur prétention à enseigner aux autres ?) qui ont souvent été bien ignorants... ... et je suis partiellement responsable, parce qu'il est vrai que, dans les années 1980, j'ai popularisé les réactions de glycation, qui étaient méconnues. Mais, depuis, je rencontre des cuisiniers qui vont même jusqu'à me donner des cours... d'erreurs.
Par exemple, il n'est pas vrai que les réactions de glycation se font seulement à haute température : la preuve est que l'opacification du cristallin des personnes diabétiques est le résultat de réactions de glycation... qui se font à 37 degrés. Où est la haute température ?
Je terminerai en disant que, le plus souvent, à haute température, les réactions de brunissement sont des "pyrolyses" (il existe une journal scientifique international tout entier consacré à ce sujet). Ce ne sont pas les seules, comme je vous l'ai indiqué avec le brunissement de l'acide galacturonique : il y a des oxydations, des hydrolyses, des "déshydratations", des pyrolyses, des réactions de glycation, des foules de réactions possibles, qui conduisent à des brunissements, notamment d'un rôti.
Et pour en revenir à l'enseignement, il faut donc se poser la question de savoir ce que l'on veut enseigner : si l'on dit au jeunes que le brunissement des viandes résulte de réactions de glycation, ou de pyrolyses, à quoi cela leur servira-t-il ? La question était au coeur de mon Traité élémentaire de cuisine, écrit spécifiquement pour les professeurs et les élèves, au moment de la réforme du CAP. Je sais que quelques vieux professeurs ou professionnels résistent à la vérité, mais je crois que nos jeunes méritent mieux. Je reste atterré, par exemple, de voir des cuisiniers étoilés confondre les mousses et les émulsions. Voilà un combat bien plus important, je crois, que de nommer les réactions du brunissage des viandes lors d'un rôtissage. On demande à l'inspecteur général d'organiser des états généraux de l'enseignement culinaire ?
dimanche 25 juin 2023
Les réactions de glycation : une des causes de brunissement des aliments parmi mille
Aujourd'hui, il devient urgent que je discute la question des réactions fautivement nommée "de Maillard".
Il y a plusieurs décennies, j'avais cru bon de de populariser le nom de Maillard. D'une part, Louis Camille Maillard était un chimiste nancéien, venu donc de la même ville qu'un de mes grands-pères, et je voulais contribuer au rayonnement de la Lorraine ; d'autre part, il est exact que Maillard a étudié une catégorie de réactions chimiques, comme Diels, Alder, Würtz, Grignard, de sorte qu'il est légitime que son nom soit retenu par l'histoire.
J'ai donc agi, auprès des municipalités, des régions, afin que Maillard soit mieux reconnu par la Lorraine et par le monde. J'ai aussi vanté partout les réactions qu'il a étudiées (sans les découvrir, toutefois) et qui contribuent à expliquer le brunissement des aliments dans certaines conditions.
Observez s'il vous plaît que j'ai écrit « certaines conditions », et j'ai mis beaucoup de restrictions, car il est vrai que, 30 ans plus tard, les réactions fautivement attribuées à Maillard sont dans toutes les bouches de façon bien excessive. Même des chimistes confondent allègrement les "réactions de Maillard" et des réactions de caramélisation, alors que ces réactions sont bien différentes.
Pour la caramélisation, il suffit de chauffer du saccharose pour le voir brunir, et l'on obtient de même des « péligots » si l'on chauffe de même du glucose, ou encore du fructose.
Pour les réactions étudiées par Maillard, mais découvertes par Lucien Dusart, les choses sont bien différentes, et c'est précisément cela qui fait que les études de Maillard furent importantes : pour ces réactions particulières, il faut nécessairement des saccharides particuliers dits réducteurs, et des composés qui portent un groupe amine tels les acides aminés ou les protéines. Les réactions étudiées par Maillard surviennent quand saccharides réducteurs et acides aminés sont chauffés (dans certaines conditions), et l'on voit alors apparaître goût et couleur.
Pour autant, les réactions étudiées par Maillard ne sont... que les réactions étudiées par Maillard. Dans nombre de cas, dans nombre de cuissons, on observe des brunissements qui ne correspondent pas à des réactions étudiées par Maillard.
D'une part, il y a des brunissements enzymatiques, par exemple quand on coupe une pomme et qu'elle brunit. Mettons de tels brunissements de côté et ne considérons que les brunissements non enzymatiques, qui résultent de réactions chimiques. Il y a mille causes de brunissement qui ne s'apparentent pas à des réactions de glycation, comme on peut peut le voir notamment en chauffant des composés organiques variés à l'aide d'une chalumeau, après avoir déposé ces composés sur une porcelaine. Les réactions ont pour nom oxydation, hydrolyse...
Mais, le plus généralement, il s'agit de pyrolyses, de pyros le feu, lyse décomposer, et je suis heureux de vous signaler l'existence d'un Journal of pyrolysis, qui, mois après mois, relate des découvertes de réactions de ce type.
Autrement dit, les réactions de glycation, étudiées par Maillard et bien d'autres, ne sont qu'une goutte d'eau dans le monde des pyrolyses (et a fortiori dans le monde des réactions de brunissement), et l'on comprend pourquoi, aujourd'hui, il devient urgent de combattre en quelque sorte l'idée fausse des "réactions de Maillard".
PS. Certains croient que les réactions de glycation n'ont lieu qu'à haute température, par exemple à 180 degrés. C'est faux, comme le démontre hélas, l'opacification du cristallin de l'oeil les personnes diabétiques. Là, les réactions de glycation ont lieu à la température du corps, c'est-à-dire 37 degrés, et je vous laisse en exercice le soin de calculer l'ordre de grandeur de temps que dure cette opacification, sachant que des réactions de glycation se produisent en quelques minutes à 180 degrés, et que, d'autre part, grosso modo> la vitesse des réactions chimiques est doublée chaque fois que la température à laquelle elle s'effectue augmente de 10 degrés. Pour vous aider, j'irais jusqu'à formuler cette phrase autrement : la vitesse est divisée par deux quand la température est réduite de 10 degrés.
samedi 11 mars 2023
De la pâtisserie et de la "chimie"
On m'interroge sur la chimie "cachée" derrière la pâtisserie et je réponds que la chimie n'est pas "cachée", mot qui a une connotation négative
Disons que la gastronomie moléculaire (une branche de la chimie) a été introduite, pour explorer les techniques et art du goût, notamment la pâtisserie. Et que les connaissances produites éclairent les phénomènes.
Mon interlocuteur veut comprendre et expliquer la chimie qui intervient dans la fabrication et la cuisson de certaines pâtisseries : je propose de dire plutôt "comprendre et expliquer les phénomènes qui interviennent lors de la confection de pâtisseries".
Pour le brunissement, qui est un phénomène qui l'intéresse, il y en a plusieurs sortes, décrites dans mon livre "Mon histoire de cuisine".
Et les "réactions de Maillard", qui provoquent effectivement du brunissement, ne doivent plus être nommées ainsi ; ce sont des réactions de glycation.
Oui, il y a des réactions de glycation en pâtisserie, chaque fois que l'on chauffe des sucres et des acides aminés ou des protéines. Mais attention : souvent, les brunissements sont dus plutôt à des caramélisations ou à des pyrolyses.
Des documents "publics" à ce sujet ? J'en produis tellement que je ne parviens plus à savoir. Avez vous tapé "Maillard" ou "glycation" sur mes blogs ?
Timothée Goujard
samedi 30 novembre 2019
A propos d'oxydation
En cuisine, on entend parler parfois d'oxydation : c'est un mot un peu compliqué qui me fait soupçonner que certains de mes interlocuteurs ne savent pas exactement ce qu'ils disent. Il y a peu, j'ai entendu quelqu'un dire que les oxydation conduisaient toujours à du brunissement, et je viens de trouver un exemple qui réfute cette idée.
Pour commencer, examinons en termes très simples ce qu'est une oxydation. Prenons l'exemple de l'action de l'oxygène -par exemple, celui de l'air, qui devrait d'ailleurs être nommé plus justement dioxygène- sur du fer. Le fer rouille : il est oxydé par le dioxygène.
Pourquoi ? Parce que les atomes du fer métallique cèdent des électrons aux atomes d'oxygène du dioxygène gazeux, ce qui fait des "ions" fer et des "ions oxygène". Ces ions sont électriquement chargés, et ils s'attirent comme la règle en plastique frottée attire les cheveux, ou comme un pôle nord d'un aimant attire un pôle sud.
Dans cette réaction, il y a au bilan le fait que le fer a perdu les électrons qui ont été gagnés par les atomes d'oxygène. Dans un langage ancien, on aurait dit qu'il y avait une affinité entre le fer et l'oxygène, mais aujourd'hui, on dirait qu'il y a une réaction d'oxydation du fer par l'oxygène. D'ailleurs, dans cette réaction, l'oxygène a été réduit, ce qui est l'opposé de l'oxydation.
Mais arrivons maintenant à l'exemple que je voulais donner. Quand il y a du carbone -pensons à du charbon- et de l'oxygène, alors cela peut faire du dioxyde de carbone : le carbone a été oxydé, comme le fer l'est quand il rouille. Mais dans ce cas du carbone, la couleur noire du carbone disparaît, puisque le dioxyde de carbone est un gaz sans couleur. On voit donc que l'oxydation a fait disparaître une couleur marron, au lieu de la créer ! C'est bien ce que je disais : un brunissement ne correspond pas toujours à une oxydation.
mardi 15 octobre 2019
A propos d'oignons qui brunissent
À propos d'oignons qui brunissent, je vois évoquée une "caramélisation", ce matin. D'autres fois, je vois évoquées des "réactions de Maillard"... par des personnes qui ne savent pas ce que cela signifie.
Finalement, pourquoi les oignons brunissent-ils ? que peut-on en dire ?
Je donne déjà la réponse : il suffit de parler de brunissement, car c'est la seule façon vraiment juste de le faire, même si elle est d'une simplicité qui prévient la prétention d'utiliser des mots de plus de trois syllabes pour paraître savant.
Partons des faits : nous mettons des oignons dans un récipient et nous chauffons. C'est un fait qu'il brunissent, et c'est également un fait (que j'avais vérifié il y a plus de 20 ans) que l'ajout de sel peut changer considérablement la vitesse de brunissement et peut-être le brunissement lui-même. Mais oublions ce détail du sel pour l'instant, et posons la question : pourquoi ce brunissement ?
Commençons simplement en observant que les oignons contiennent des composés variés et que, manifestement, des transformations moléculaires engendrent des composés nouveaux, qui donnent la couleur brune.
Quels sont les composés initiaux ? Comme tous les tissus végétaux, les oignons sont faits majoritairement d'eau, puis de polysaccharides (pensons à la cellulose, chimiquement inerte, aux pectines et aux autres composés de la même famille), mais aussi de ces "petits" sucres que sont le glucose, le fructose ou le saccharose (ce dernier étant le sucre de table), des acides aminés, et mille autres composés.
Quand on chauffe, ces composés réagissent, par les mêmes réactions que celles que des chimistes pourraient faire dans des éprouvettes.
Par exemple, les sucres peuvent caraméliser... mais on gagnera à se souvenir de la température de 140 degrés, à partir de laquelle le brunissement commence de façon manifeste. Or, tant qu'il y a de l'eau dans les oignons, la température est limitée à 100 degrés, et la caramélisation ne peut pas avoir lieu. En revanche, en surface, là où l'eau est évaporée, alors le brunissement par caramélisation peut se produire... mais je dis bien "peut" se produire, car personne ne l'a encore montré correctement.
Avec des acides aminés et des sucres, un brunissement d'une autre sorte peut résulter de réactions... mais pas par des réactions de Maillard, car les réactions de Maillard ne sont pas entre sucres et acides aminés, mais plutôt entre sucres et protéines. Si le brunissement découlait de réactions entre les sucres et les acides aminés, ce seraient des "réactions de Fischer", et non des réactions de Maillard. Certes, dans les deux cas, les températures nécessaires sont plus basses que celles de la caramélisation, de sorte qu'elles pourraient expliquer le brunissement des oignons... mais il reste quand même à établir qu'elles ont lieu lors de la cuisson des oignons !
Surtout, il peut y avoir également bien d'autres réactions, et j'en prends pour preuve le fait que des protéines chauffées à sec brunissent très vite, je vous invite à mettre au four de la farine (avec amidon et protéines), de la fécule (avec seulement de l'amidon), des protéines, du sucre. Chauffez, par exemple, à 200 degrés, et vous verrez rapidement les protéines brunir, puis les sucres. Le brunissement des protéines seules ? Il a lieu, donc, mais je ne sais pas par quelles réactions.
Pour en revenir aux oignons, on doit donc conclure que le brunissement résulte probablement de plusieurs réactions simultanées et j'insiste pour dire que je n'en ai cité jusque ici que quelques-unes d'envisageables... car il y en a bien d'autres : des thermolyses, des pyrolyses, des oxydations, des déshydratations intramoléculaires des hexoses...
Finalement, laquelle de ces réactions est prépondérante ? Personne n'en sais rien, de sorte qu'il est totalement abusif de parler de "réactions de Maillard", ou même de "réactions de Fischer" ou encore de réactions de caramélisation.
A ce jour, la seule position intellectuellement soutenable est de parler ... de brunissement.
Ah, j'oubliais l'affaire du sel : non seulement j'ignore pourquoi cet effet, mais je ne connais pas de publication scientifique qui en ait établi le mécanisme. C'est un message optimiste que j'adresse aux jeunes scientifiques : ne croyez pas que le vieux aient déjà tout découvert, au contraire ! Tout reste à faire, pour comprendre les mécanismes des phénomènes qui surviennent lors des transformations culinaires.
samedi 21 septembre 2019
Pourquoi ne peut-on plus parler de réactions de Maillard ?
Mais si, bien sûr, on a le droit de parler de réactions de Maillard, mais quand même, il vaudrait mieux savoir de quoi on parle, non ? Et ne pas dire n'importe quoi !
Je suis un peu responsable - et fautif- du fait que le monde culinaire parle à tort et à travers de ces réactions, parce que, naguère, dans mon enthousiasme communicatif, avec ma volonté contagieuse de faire comprendre que la cuisine met en œuvre des réactions intermoléculaires (plutôt que "chimiques"), j'ai largement milité pour faire connaître la réaction de Maillard, que l'on devrait d'ailleurs nommer "les" réactions de Maillard.
De quoi s'agit-il ? De réactions qui ont lieu entre certains sucres et des protéines. Elles conduisent à des composés qui donnent de la couleur et du goût aux aliments, et il est exact qu'elles sont fréquentes en cuisine. Cela étant, dire que les réactions de Maillard font la croûte brune et savoureuse des viandes grillées est faux, et je crois avoir plutôt dit que les réactions de Maillard contribuent à la couleur et au goût des viandes grillées. Disons que j'espère avoir été ainsi prudent, car en réalité, mille réactions différentes se conjuguent pour faire la couleur brune et le goût des viandes.
D'ailleurs, dans les sciences et technologies des aliments, on parle de "brunissement non enzymatique", et les réactions de Maillard ne sont qu'une sorte de réactions parmi mille. D'ailleurs, tout composé "organique" (disons : provenant des êtres vivants, animaux ou végétaux) que l'on chauffe brunit !
Plus sur les réactions de Maillard : le chimiste français (né à Pont-à-Mousson) Louis Camille Maillard a découvert en 1912 que des sucres "réducteurs" (les plus fréquents, en cuisine, sont le glucose et le fructose) réagissent avec des protéines, pour faire des composés bruns, qui avaient d'ailleurs été nommés "mélanoïdines" avant qu'il fasse sa découverte. D'ailleurs, sa découverte est venue bien après que le chimiste allemand Emil Fischer avait découvert que ces sucres réducteurs réagissent avec les acides aminés, ces composés dont l'enchaînement fait les protéines : si l'on devait parler d'une réaction essentielle en cuisine, on devrait parler de réaction de Fischer !
Mais en réalité, j'y reviens : il y a mille réactions différentes qui font du brunissement en cuisine. Maintenant que Maillard est connu, passons à autre chose !
vendredi 20 juillet 2018
L'acide ascorbique
L'acide ascorbique ? C'est la vitamine C. Et elle permet d'éviter le brunissement des fruits et des légumes : la preuve en est que les jus d'orange ou de citron brunissent très peu, par rapport aux jus de pommes ou de poires, par exemple.
Pourquoi l'utiliser ?
En cuisine, le jus de citron est utilisé pour des raisons variées. Par exemple, pour empêcher des fruits ou des légumes de noircir, le jus de citron apporte de l'acide ascorbique, ou vitamine C. C'est ainsi une pratique courante que de mettre des quartiers de citron dans une bassine d'eau où l'on met des légumes que l'on a épluchés. Car, par exemple, ce n'est pas appétissant d'avoir des carottes râclées qui brunissent, ou des pommes, ou des poires. Le pire, c'est évidemment pour les jus ou les champignons de Paris.
Ces brunissements sont dus au fait que les végétaux contiennent des quantités notables de composés phénoliques, qui sont dans les cellules végétales (les petits sacs dont l'agrégation constitue les tissus végétaux), séparés d'enzymes qui ont un nom barbare : polyphénol oxydases. Tant que les deux types de composés sont ainsi dans des compartiments cellulaires différents, tout va bien. Mais quand le couteau coupe les cellules, il libère, en surface des végétaux coupés, les deux types de composés, qui réagissent chimiquement. Oui, un simple coup de couteau provoque des réactions chimiques !
C'est aussi le cas quand on heurte des végétaux : on sait que les pommes se tallent facilement, par exemple. Mais on ne sait pas assez que la partie endommagée, cette calotte hémisphérique qui apparaît sous la peau, a un volume qui est directement proportionnel à la hauteur de chute ou à l'énergie du choc. Raison pour laquelle on aura intérêt de recommander la plus grande délicatesse dans le maniement des fruits et des légumes. D'autant que le goût est modifié, et pas seulement la couleur.
Bref, pourquoi utiliser de la vitamine C ? Parce que le jus de citron, ou les quartiers de citron, sont des objets coûteux, encombrants, dont une partie seulement est active. Là où l'on mettrait le jus d'un citron entier, il suffit en effet de 50 milligramme environ.
Cinquante milligrammes, que cela représente-t-il ? Un volume de la taille d'une petite goutte d'eau ! Oui, il suffit d'une pointe de couteau pour remplacer le jus d'un citron, avec pour avantage supplémentaire que l'on évite le goût citronné, qui n'est pas toujours celui que l'on veut !
L'aspect « citron »
L'acide ascorbique est réglementairement considéré comme un additif, sous le numéro de code E 300, et, comme tous les additifs, il est critiqué par des ignorants qui confondent toxicologie et lutte politique contre le « grand capital » que serait l'industrie alimentaire, avec plus ou moins d'ignorance.
Cela dit, même les ignorants qui critiquent sans savoir font une exception pour l'acide ascorbique. Et c'est vrai qu'ils auraient du mal à en dire du mal.
Mais évitons leurs sites pourris, et allons plutôt voir si l'Agence nationale de sécurité sanitaire de l'alimentation, de l'environnement et du travail, l'ANSES, dit différemment ? On trouve « L'acide ascorbique ou vitamine C intervient dans de grandes fonctions de l'organisme : défense contre les infections virales et bactériennes, protection de la paroi des vaisseaux sanguins, assimilation du fer, action antioxydante (capture des radicaux libres), détoxication de substances cancérigènes, cicatrisation. La vitamine C favorise également l'absorption du fer non héminique.
»
Bon, jusque là, tout va bien.
Puis « La vitamine C est présente dans tous les végétaux mais à des quantités variables.
La vitamine C est la plus fragile de toutes les vitamines : elle est sensible à l'eau, à la chaleur à l'air et à la lumière. Par exemple à température ambiante, la moitié de la teneur en vitamine C d'un aliment peut être perdue en 24 heures. Les modes de cuisson et de stockage doivent donc être adaptés de manière à limiter les pertes.
» Cette fois, on voit que l'acide ascorbique en poudre est avantagé sur les fruits et les légumes, puisque, lui, n'est pas dégradé.
Les apports conseillés ? « Ils tiennent donc compte de la couverture des besoins en vitamine C dans le cadre de son double rôle, pouvoir antiscorbutique et pouvoir antioxydant. Les besoins en vitamine C sont accrus dans certaines situations pathologiques (fracture, infections, traitement anticancéreux) mais également en fonction des modes de vie (activité physique intense, consommation excessive d'alcool, tabagisme). Par exemple, un supplément de 20% de vitamine C est conseillé chez le fumeur de plus de 10 cigarettes par jour pour contrecarrer le stress oxydant lié au tabac.
Les apports moyens en vitamine C dans la population française (données INCA2) sont de 77 mg/j chez les enfants de 3 à 17 ans et de 93 mg/j chez les adultes de 18 ans-79 ans. Ces apports ne sont pas différents entre la population féminine et masculine.
Chez les adultes, la principale source d’apport en vitamine C sont les fruits (27%) puis les légumes (hors pommes de terre) (22%) à égalité avec les boissons fraîches sans alcool (essentiellement les jus de fruits) (22%).
Chez les enfants, ce sont les boissons fraîches sans alcool (essentiellement les jus de fruits) (37%) qui constituent la principale source d’apport en vitamine C, suivi des fruits (17%), puis des légumes (hors pommes de terre) (14%).
Pour assurer la couverture des besoins quotidiens en vitamine C, il est recommandé de consommer environ 500 g de fruits et légumes par jour.
Aussi, la consommation, au moins une fois dans la journée, de fruits ou de légumes crus permet d'assurer aisément la couverture des besoins en vitamine C.
»
Décidément, j'ai donc bien du mal à trouver des inconvénients, mais lisons jusqu'au bout, puisqu'il y a une rubrique « Risque de déficience et d’excès d’apport ». Cette dernière stipule « Chez les individus non carencés, la concentration plasmatique de vitamine C est un bon indicateur du statut vitaminique. Les études épidémiologiques (notamment SU.VI.MAX) ont estimé la concentration plasmatique optimale de vitamine C à 60 µmol/L chez le jeune adulte. En effet, celle-ci correspond à la concentration qui permet d'atteindre le pouvoir antioxydant maximal nécessaire à la protection des individus vis-à-vis des risques de maladies cardiovasculaires et neurodégénératives, de cancers, de cataracte.
La pathologie spécifique, mais aujourd'hui exceptionnelle, liée à la carence en vitamine C est le scorbut. Elle se manifeste par des œdèmes (gonflement des tissus lié à leur hydratation excessive), des hémorragies et peut entraîner la mort si elle dure plusieurs mois. Les situations de carence modérée, encore fréquentes, sont responsables de perte d'appétit, d'amaigrissement et de fatigue.
En excès, la vitamine C est éliminée dans les urines. Toutefois un excès de vitamine C peut entraîner des maux d'estomac, des diarrhées, des calculs rénaux. » Autrement dit, il ne faut pas manquer de vitamine C, mais il n'y a pas à craindre les excès !
Quelques idées techniques
■ Comme indiqué, quand nous épluchons des fruits ou des légumes, empêchons les de brunir en les pulvérisant avec une solution faite d'une pointe de couteau d'acide ascorbique dans quelques cuillerées d'eau (juste de quoi pulvériser).
■ Pour bloquer le brunissement d'un jus de fruit fraîchement produit, notamment à la centrifugeuse : ajoutons une pointe de couteau d'acide ascorbique dans le récipient où vient couler le jus.
■ Dans tous les plats note à note, ne pas oublier la vitamine C, qui contribuera à faire des « plats santé ».
Où s'en procurer
Chez tous les fournisseurs qui approvisionnent les pâtissiers, mais aussi sur internet.
dimanche 17 décembre 2017
Les réactions de Maillard ? Une goutte dans l'océan des brunissements
Depuis la publication des Secrets de la casserole, en 1992, le monde culinaire s'est emparé des réactions de Maillard, que j'avais alors présentées, mises à l'honneur, considérant qu'il était indécent d'oublier ce chimiste nancéien Louis Camille Maillard, vue l'importance de la découverte qu'il avait faite pour la gastronomie moléculaire, en 1912.
Les réactions de Maillard se sont donc popularisées, et je rencontre même, aujourd'hui, des cuisiniers qui... croient pouvoir m'enseigner ce que ce sont ces réactions, quand elles sont lieu !
On me dit qu'elles n'auraient lieu qu'à haute température...
On me dit que les brunissements des aliments sont dus à des réactions de Maillard...
Pour réfuter la première affirmation, il suffit de savoir que les réactions de Maillard sont à l'origine de l'opacification du cristallin des diabétiques, le glucose étant abondant en compagnie de protéines, et le tout à seulement 37 degrés. Comme ces réactions ont lieu à des températures plus basses que celles de la cuisine, elles sont donc plus lentes... heureusement.
Mais c'est surtout au brunissement que je veux me consacrer ici.
En cuisine, il y a des brunissements de toutes sortes.
Certes, dans certains cas très particuliers, quand se trouvent réunis des sucres réducteurs, tels le glucose, et des acides aminés, des réactions de Maillard peuvent avoir lieu si l'on chauffe.
Toutefois il y a bien d'autres occasions culinaires où des brunissements apparaissent. Par exemple, quand on coupe une pomme : des enzymes de la pommes viennent modifier des composés phénoliques également présents dans le fruit (mais séparés, dans d'autres compartiments que les enzymes), et former, à l'issue d'une chaîne de réactions, des composés bruns. Le fruit brunit, mais là, pas de réaction de Maillard.
Il y a aussi des cas tels que la caramélisation, où, cette fois, il ne s'agit pas de réactions de Maillard, puisqu'il n'y pas de réaction entre sucres réducteurs et acides aminés.
C'est une autre réaction, qui , d’ailleurs, conduit à la formation d'une masse très particulière, qui est celle du caramel.
La caramélisation n'a rien à voir avec une réaction de Maillard. Lors de la caramélisation, il y a apparition d'une couleur brune, mais cette couleur résulte de réactions différentes de celles qui font la masse du caramel.
Quelles réactions ? Des réaction de « pyrolyse ». Oui, mot « pyrolyse » est un peu tautologique, puisqu'il s'agit de dire qu'il y a décomposition à la chaleur. On n'est guère plus avancé... mais c'est un fait que, en cuisine, les pyrolyses ont partout, bien plus abondantes que les réactions de Maillard. D'ailleurs, avec les composés organiques, lesquels ont des molécules formées essentiellement d'atomes de carbone, hydrogène, oxygène, il y a presque toujours un jaunissement ou un brunissement quand on chauffe.
Ce changement de couleur est le premier pas vers le noircissement auquel les pryolyses conduisent immanquablement... sauf à former de l'eau, du dioxyde de carbone.
A ce propos, cela vaut la peine de reprendre cette expérience classique de l'encre sympathique, cette encore qui est invisible quand on l'emploie et qui apparaît quand on chauffe la feuille de papier. On a parfois dit que le jus de citron aurait cette propriété, mais j'ai fait l'expérience... et j'ai vérifié, qu'une fois de plus les on-dit méritent d'être vérifiés. D'abord, quand on écrit avec du jus de citron sur du papier bien blanc, l'écriture n'est pas du tout invisible : elle apparaît. Certes, quand on chauffe, le jaune devient brun, mais on observe les mêmes effets avec du vinaigre cristal, par exemple.
L'acidité serait-elle en cause ? Non puisque l'usage de sirop montre un brunissement aussi. Plus généralement, l'ensemble des solution aqueuses de composés organiques conduit à un tel brunissement.
Rendons donc hommage à Maillard, mais ne généralisons pas abusivement, et, si nous voulions rester simples, nous serions bien avisés d'admettre que les pyrolyses sont responsables de la plupart des brunissements en cuisine.
Dans la mer des brunissements, il y a des réaction de Maillard, des brunissements enzymatiques, mais ce sont des îles dans l'océan des pyrolyses.
Vient de paraître aux Editions de la Nuée Bleue : Le terroir à toutes les sauces (un traité de la jovialité sous forme de roman, agrémenté de recettes de cuisine et de réflexions sur ce bonheur que nous construit la cuisine)
dimanche 10 décembre 2017
En cuisine, il y a des brunissements de tas de sortes
Formatrice en sciences appliquées je me posais une question, ainsi que mes collègues, sur le brunissement du rotissage ou braisage des viandes. Nous voyons souvent dans les manuels que la réaction de Maillard en est la cause. Mais quel est le sucre réducteur qui est responsable ?
Et si ce n'est pas la réaction de Maillard, a quoi est dû ce brunissement ?
Merci de la question, et cela pour plusieurs raisons.
D'abord -pardonnez-moi d'être hors sujet-, les "sciences appliquées" ne peuvent pas exister : Louis Pasteur est un de ceux qui ont bien expliqué qu'il y a la science, et les applications de la science. Si la science est appliquée, ce n'est plus de la science, mais de la technologie, ou de la technique. Il faut donc absolument militer pour changer cette terminologie fautive : aidez-moi s'il vous plaît, militez avec moi. La science, c'est la science !
D'autre part, il y a des brunissements de très nombreuses sortes, comme je crois l'expliquer bien dans mon Traité élémentaire de cuisine. Par exemple, quand vous mettez dans de l'eau un sucre nommé acide galacturonique (un "maillon" des molécules de pectine) et quand vous chauffez cette solution limpide et incolore... vous obtenez un brunissement terrible, en quelques heures, alors qu'il n'y a qu'un sucre. Pas d'acides aminés ! Pas de protéines !
Autre exemple : quand vous coupez une pomme, elle brunit... mais là encore, il ne s'agit pas de réactions de Maillard.
Les réactions de Maillard ont été galvaudées à l'infini, par des gens (y compris des auteurs de manuels : d'ailleurs, où est la preuve de leur compétence, à part leur prétention à enseigner aux autres ?) qui ont souvent été bien ignorants...
... et je suis partiellement responsable, parce qu'il est vrai que, dans les années 1980, j'ai popularisé les réactions de Maillard, qui étaient méconnues.
Mais, depuis, je rencontre des cuisiniers qui vont même jusqu'à me donner des cours... d'erreurs. Par exemple, il n'est pas vrai que les réactions de Maillard se font seulement à haute température : la preuve est que l'opacification du cristallin des personnes diabétiques est le résultat de réactions de Maillard... qui se font à 37 degrés. Où est la haute température ?
Je terminerai en disant que, le plus souvent, à haute température, les réactions sont des "pyrolyses" (il existe une journal scientifique international tout entier consacré à ce sujet). Ce ne sont pas les seules, comme je vous l'ai indiqué avec le brunissement de l'acide galacturonique : il y a des oxydations, des hydrolyses, des "déshydratations", des pyrolyses, des réactions de Maillard, des foules de réactions possibles, qui conduisent à des brunissements, notamment d'un rôti.
Et pour en revenir à l'enseignement, il faut donc se poser la question de savoir ce que l'on veut enseigner : si l'on dit au jeunes que le brunissement des viandes résulte de réactions de Maillard, ou de pyrolyses, à quoi cela leur servira-t-il ?
La question était au coeur de mon Traité élémentaire de cuisine, écrit spécifiquement pour les professeurs et les élèves, au moment de la réforme du CAP. Je sais que quelques vieux professeurs ou professionnels résistent à la vérité, mais je crois que nos jeunes méritent mieux. Je reste atterré, par exemple, de voir des cuisiniers étoilés confondre les mousses et les émulsions. Voilà un combat bien plus important, je crois, que de nommer les réactions du brunissage des viandes lors d'un rôtissage.
On demande à l'inspecteur général d'organiser des états généraux de l'enseignement culinaire ?
samedi 21 mai 2016
A propos de réactions de Maillard
Pourtant... Pourtant, les réactions de Maillard n'incluent pas les caramélisations, qui ont également lieu à haute température. Pourtant les réactions de Maillard ont également lieu (hélas) à température ambiante, étant notamment responsables de l'opacification du cristallin des personnes souffrant de diabète !
Et puis, qu'est-ce qu'une réaction de Maillard ? Même le milieu des sciences de la nature, notamment des sciences et technologies des aliments, ont des idées parfois bien vagues à propos des réactions de Maillard.
Là, à l'occasion du Colloque du 4 février 2016, consacré aux "réactions et produits de Maillard", j'ai refais une histoire chimique des réactions de Maillard, et je crois que tout est clair : alors que les réactions des sucres et des acides aminés étaient connues dès Schiff, Maillard n'a découvert qu'une chose, à savoir que les mêmes réactions avaient lieu avec des peptides ou des protéines à la place des acides aminés.
Un texte précis est en ligne sur http://www.academie-agriculture.fr/publications/n3af/n3af-2016-3-maillard-products-and-maillard-reactions-are-much-discussed-food.
Ref: Hervé This, 2016. “Maillard products” and “Maillard reactions” are much discussed in food science and technology, but do such products and reactions deserve their name? Notes Académiques de l'Académie d'agriculture de France / Academic Notes from the French Academy of Agriculture , 3, 1-10.