Affichage des articles dont le libellé est chimie. Afficher tous les articles
Affichage des articles dont le libellé est chimie. Afficher tous les articles

jeudi 22 décembre 2022

vendredi 16 décembre 2022

Les extractions

 

À propos d'extractions,  nous avons considéré précédemment la distillation, que j'ai dit être un procédé de séparation physique, plutôt que chimique, car les molécules présentes au début sont les mêmes que les molécules présentes à la fin.
Les atomes ne se sont pas réorganisés en molécules différentes, parce que l'énergie n'était pas suffisante pour produire ce résultat.

Dans nombreux procédés d'extraction, il en va de même.

Par exemple, quand on sépare le gluten et l'amidon, par cette expérience de lixiviation qui date du 18e siècle, les molécules qui étaient présentes dans la farine sont les mêmes que celles qui sont présentes à la fin de la séparation, soit dans le gluten soit dans l'amidon. Mais elles ne sont pas organisées la même façon.

De la de même, si l'on broie une feuille de laitue, on peut filtrer et récupérer de l'eau, composée de molécules d'eau.
Cette eau se trouvait déjà dans la feuille sous forme de molécules d'eau et il n'y a pas eu création de nouvelles molécules d'eau, ni d'ailleurs disparition de molécules d'eau initialement présentes. Ce sont les mêmes molécules d'eau avant et après le broyage, suivi de la filtration, opérations qui ne sont donc pas chimiques mais physiqus.

Je rappelle à nouveau  que, pour qu'il y ait chimie, il faut que des chimistes étudient des réorganisation d'atomes en molécules différentes.

Testons notre définition sur un cas différent :  la récupération de sel à partir d'eau salée.
Si l'on chauffe de l'eau salée, on récupère une vapeur, que l'on peut recommencer pour former de l'eau,  et il restera du sel solide quand toute l'eau initiale aura été évaporée.
Initialement dans l'eau salée, il y avait des molécules d'eau, des atomes de sodium et des atomes de chlore. C'est exactement ce que l'on retrouve en fin de séparation : des molécules d'eau dans l'eau, et des atomes de chlore et des atomes de sodium pour former les grains de sel.
L'évaporation de l'eau de mer ne s'accompagne pas de réactions, mais seulement d'une séparation des molécules.

Évidemment, j'ai simplifié pour bien faire comprendre, mais je dois y revenir pour donner une précision à propos du broyage de la feuille de laitue  : quand on broye une feuille de laitue, en réalité, on dégrade les structures cellulaires mais on libère aussi des composés qui se trouvaient dans les feuilles, tel des phénols et des protéines nommées des phénol oxydases (ce sont des protéines d'une cagégorie particulière : celle des enzymes).
Lors de cette libération, les  enzymes modifient les phénols et provoquent le brunissement de la couleur initialement verte. Il y a donc bien une réaction, mais les quantités concernées sont très faibles par rapport  aux quantité d'eau qui ont été libérées puisque je rappelle qu'une laitue, c'est 99 pour cent d'eau.
Et voilà pourquoi je me suis permis de ne pas considérer cette réaction biochimique dans ma première description.

D'ailleurs, dans la distillation que j'ai considéré dans un précédent billet, il en va de même :  il y a peut-être quelques modifications de molécules, lors de la distillation, mais pas assez pour fausser la description initiale que j'ai donnée.

Plus généralement, dans les extractions, dans les séparations, et cetera,  on cherche d'ailleurs le plus souvent à ne pas opérer de transformations moléculaires, et il est considéré comme favorable de respecter au mieux les composés initialement présent, puisque ce sont eux que l'on veut extraire.

Je ne dis pas que l'on ne peut pas concevoir des opérations où l'on effectue une extraction et aussi des transformation moléculaires, mais il y a lieu de bien comprendre ce que l'on veut, de bien définir l'objectif et de bien comprendre ensuite comment le procédé que l'on met en œuvre nous conduit à l'objectif initialement fixé.

mercredi 14 décembre 2022

Le beurre noisette, le merveilleux beurre noisette

 

Examinons maintenant la formation du beurre noisette, ce merveilleux beurre noisette, que l'on oublie trop souvent d'utiliser, en cuisine, alors qu'il améliore les financiers, les tartes, les biscuits...

Cette préparation s'obtient par cuisson du beurre, c'est-à-dire par chauffage.

Quand on met du beurre dans une casserole et que l'on chauffe, alors on voit le beurre fondre, tout d'abord.

Si l'on chauffe très doucement, alors on peut obtenir du beurre clarifié, avec une couche laiteuse au fond de la casserole et une couche grasse transparente et un peu jaune par-dessus. On a séparé le petit lait et la matière grasse fondue, que l'on nomme beurre clarifié.

Si l'on chauffe un peu plus fort, alors la clarification ne se fait pas et l'on a plutôt une sorte de système laiteux, la matière grasse étant dispersé dans la partie aqueuse comme le montre l'examen au microscope.

Mais si l'on chauffe encore plus fort, alors on voit un phénomène différent se produire : d'abord il y a des bulles. Ces bulles résultent de l'évaporation de l'eau au contact du fond de la casserole : il est bon de savoir qu'un gramme d'eau qui est chauffé forme plus d'un litre de vapeur, de sorte que l'on comprend que le chauffage de l'eau au fond de la casserole,  formant de la vapeur, fait des bulles qui viennent crever en surface.

Tant qu'il y a de l'eau, le contenu de la casserole ne peut pas avoir une température supérieure à 100 degrés. Mais  on voit bien, si l'on prolonge le chauffage, que progressivement les bulles disparaissent... et c'est le signe qu'il n'y a plus d'eau.

A ce stade, on voit simultanément le beurre cuit changer de couleur, devenir blond, puis brun.

Quand le beurre est blond, il a aussi une odeur merveilleuse et un goût remarquable : c'est cela un beurre noisette.

Mais si l'on poursuit trop le chauffage, alors la couleur est d'un brun soutenu, voire noir,  et cela qui correspond plutôt au "beurre noir",  à cela près que l'expression beurre noir, en cuisine,  correspond non seulement au noircissement du beurre mais aussi à l'ajout de vinaigre.

Qu'il y ait eu brunissement, léger ou soutenu, les molécules de protéines qui étaient présentes dans l'eau du beurre ont été transformées, dégradées, et c'est cette dégradation des protéines  qui a conduit au brunissement.
C'est une opération de réarrangement d'atomes, de formation de nouvelles molécules, ce qui fait l'objet de l'étude par les chimistes.

Lors de cette réaction, la dégradation des protéines n'est pas la seule réaction, car le beurre contient également un sucre nommé lactose, qui peut réagir avec les protéines ou avec certains de leurs fragments. C'est là une réaction que l'on nomme glycation.
Par le passé, j'ai fait l'erreur de la nommer "réaction de Maillard", mais j'ai finalement découvert, d'une part, que Maillard n'en était pas le découvreur, de sorte qu'il est indu de donner son nom à la réaction, et, d'autre part,  que l'Union internationale de chimie pure et appliquée avait considéré la question du nom de cette réaction, et avait finalement résolu de la nommer "glycation" : oublions l'expression "réaction de Maillard", et acceptez mes excuses d'avoir promu cette dénomination !  

lundi 12 décembre 2022

Les macromolécules, mais c'est très simple

 
Dans la série des matières que l'on rencontre en cuisine, il me faut maintenant considérer des systèmes qui sont faits de molécules, certes, mais des molécules faites d'un très grand nombre d'atomes, ce que l'on nomme des macromolécules.

Disons d'abord que ce fut un progrès extraordinaire de la chimie, quand on finit par admettre l'existence des macromolécules. Et un progrès récent : il ne date que de 1922, quand elle fut introduite par le chimiste allemand Hermann Staudinger.

Pour bien comprendre ce dont il s'agit, considérons une petite molécule qui pourrait réagir avec une molécule identique à elle-même. Si la molécule formée, environ deux fois plus grosse que la molécule initiale, peut réagir encore avec une petite molécule identique à la petite molécule initiale, alors on obtient une molécule environ trois fois plus grosse que la molécule initiale. Et ainsi de suite, avec des enchaînements résultat de la réaction de dizaines, de centaines, de milliers, etc. de copies de la molécule initiale : l'assemblage moléculaire peut devenir énorme, et c'est cela, une macromolécule.

Où trouve-t-on des macromolécules, en cuisine ? Dans bien des matières, mais, notamment, dans ce que l'on nomme des  "matières plastiques".

dimanche 11 décembre 2022

Les bases de la chimie : les métaux


En cuisine, il y a des ingrédients et des matériels.

Dans des billets précédents j'ai parlé de la constitution des ingrédients : de quoi le sel, le sucre,  l'eau,  le beurre, etc. sont ils faits ? Et la réponse était : d'atomes, regroupés (pour l'eau, pour le sucre) ou non (le sel) en molécules.

Mais je n'ai pas encore parlé des matériels, qui, pourtant, sont également faits d'atomes.

Dans les métaux, les atomes ne sont pas groupés en molécules, mais ils sont quand même groupés en métaux.

Pas de raison de nous surprendre : nous avons déjà   vu des atomes qui n'étaient pas groupés en molécules dans le cas du sel : dans les cristaux de sel, les atomes de chlore et les atomes de sodium forment un empilement régulier (ce que l'on nomme un  cristal), en se liant grâce à l'échange de particules nommées électron.
D'ailleurs, nous avons vu que l'on nommait "ions" des atomes qui ont perdu ou gagné des électrons.

Pour les métaux, c'est un peu différent mais il n'en reste pas moins qu'un morceau de fer, c'est une collection d'atomes de fer, liés ensemble non pas par l'échange d'électrons mais par la mise en commun de certains de leurs électrons, en une sorte de grand nuage.

De même, dans un morceau de cuivre, il y a un très grand nombre d'atomes de cuivre qui ont mis en commun certains de leurs électrons, ce qui forme une sorte de grand nuage autour des atomes, dans le bloc et autour.

De même pour du zinc, pour de l'aluminium, de l'argent, de l'or, du vanadium, du cobalt, du nickel...

Reste que toutes ces matières sont faites d'atomes. Pas des atomes regroupés en molécule comme pour le sucre ou pour l'eau,  mais,  quand même, des atomes.

vendredi 9 décembre 2022

 La décantation



La décantation ? C'est une opération physique et non chimique.

La décantation est un procédé utilisé en cuisine depuis longtemps. Par exemple, si l'on réunit de l'eau et de l'huile dans un récipient, nous savons tous bien que l'huile viendra flotter à la surface de l'eau.
Il suffit donc d'incliner doucement le récipient contenant l'eau et l'huile pour que s'écoule d'abord l'huile, et que l'on ne conserve que l'eau dans le récipient.
La séparation est une décantation.

De même, quand il y a des particules qui sédimentent au fond d'un liquide, on peut effectuer une décantation, en inclinant le liquide pour récupérer le liquide qui surnage.

La décantation est un procédé très ancien qui, dans la mesure où l'on chauffe pas, ne s'accompagne pas de réarrangement d'atomes en molécules nouvelles : les molécules initialement présentes, d'eau d'une part et d'huile d'autre part,  dans le premier des exemples considérés, restent des molécules d'eau ou des molécules d'huile.
Il y a à la fin, en deux groupes séparés certes, les mêmes molécules qu'au début.
De même pour l'exemple de la décantation du liquide avec les particules solides : les molécules du liquide ne changent pas au cours du procédé, et les particules solides, également, restent identiques à elles-mêmes.

Car on a dit il y a juste titre que la chimie est la "science du feu" : cela signifie que les modifications qui ont lieu lors de réactions étudiées par la chimie sont d'une énergie comparable à celle d'un chauffage.

Et il est vrai que si l'on chauffe du sucre, ou du fer réduit en poudre, ce que l'on nomme de la limaille de fer, alors il y a des rangements des atomes : le sucre caramélise, parce que les atomes des molécules de saccharose du sucre se réorganisent. Et, dans le deuxième cas, le dioxygène de l'air vient réagir avec les atomes de fer pour former des oxyde de fer : le dioxygène a été transformé, le fer aussi. Et c'est cela qu'étudient les chimistes, raisons pour laquelle on peut parler de "réactions chimiques" (mais quand les chimistes n'étudient pas les réactions, ce sont seulement des réactions moléculaires, ou des réarrangements d'atomes).

jeudi 8 décembre 2022

 Pour les légumes, fruits, viandes, poissons

 Pour les légumes, fruits, viandes, poissons

Dans des billets précédents, nous avons vu que l'eau est faite d'objets sous identiques que nous avons nommés des molécules d'eau, que l'huile est quasiment faite d'objets tout très semblables, que nous avons nommés des molécules de triglycérides, que les cristaux de sucre sont des empilements d'objets tout identiques que nous avons nommés des molécules de saccharose, et nous avons conclu qu'il y avait des molécules partout dans la matière que nous avons en cuisine.

C'est exact, et c'est  également exact pour des matières plus compliquées comme les tissus animaux végétaux, c'est-à-dire les viandes, poisson, fruit, légumes...

Nous avons commencé l'examen des tissus vivants avec le blanc d'oeuf, que nous avons vu être constitué de beaucoup de molécules d'eau et de quelques molécules de protéines, mais nous voulons maintenant nous attaquer à des tissus vivants, et plus particulièrement à ces tissus vivants que sont les feuilles de végétaux.

Cette fois-ci, à l'œil nu, nous voyons une matière molle, mais qui ne coule pas et verte généralement.

Et là, si la loupe ne nous montre rien de particulier, le microscope, lui, est utile parce qu'il nous montre une compartimentation : la feuille est faite de petit sacs collés les uns aux autres, ce que la biologie a nommé des "cellules".

J'insiste : pas des "molécules", mais des "cellules".

En revanche, je n'insiste pas sur le fait que ces cellules sont vivantes, car je veux me concentrer sur leur matière.

Pour ces cellules, il y a donc l'intérieur et l'enveloppe. Et l'Intérieur, semble assez homogène, mais un microscope très puissant nous montrerait, là encore, qu'il y a essentiellement des molécules d'eau.
Pas exclusivement, bien sûr, mais en très grande proportion.

Pour les parois des cellules, en revanche, le microscope extraordinairement puissant nous montrerait qu'il y a des sortes de piliers, ce que l'on nomme de la cellulose, les fibres de cellulose plus exactement, qui sont reliés par des sortes de cordages, qui sont encore des molécules, mais, cette fois, des molécules de pectine.

Les fibres de cellulose sont constitués de molécules de cellulose, et l'on voit donc que la cellule est à nouveau un assemblage structuré de molécules.

J'ai dit qu'il y avait beaucoup d'eau dans les feuilles des végétaux, et cela est vrai : dans une feuille de laitue par exemple,  99 % de la masse, c'est de l'eau, des molécules d'eau, et c'est seulement ce petit 1 % supplémentaire qui fait que la feuille ne coule pas, d'une part, et, également que la cellule est vivante, qu'elle peut fabriquer d'autres molécules à partir de l'humidité de l'atmosphère, du dioxyde de carbone de l'air et de la lumière.

Oui, les cellules sont comme des "usines" faites de molécules et qui fabriquent d'autres molécules.

Ce phénomène de fabrication de molécules est nommé photosynthèse, et il résulte de l'action d'une foule de molécules présentes dans la cellule et que je n'ai pas  encore discutées, parce que leur quantité est très faible : je répète qu'une feuille, c'est 99 % d'eau.

Mais là le un pour cent, qui est secondaire en masse, est évidemment essentiel  pour le fonctionnement de la cellule, pour sa vie et pour la production des molécules qui sont fabriquées dans la feuille.

Ces molécules fabriquées dans la feuille, ce sont surtout des sucres, des acides aminés qui sont ensuite redescendus dans les autres parties du végétal.

Concluons cette affaire en répétant que les tissus végétaux sont donc majoritairement faits d'eau mais que la structure qui est la leur permet la vie de la plante et, par le dioxygène qu'elle produit, la vie des animaux.

mercredi 7 décembre 2022

 Le blanc d'oeuf

Ici, je veux décrire le blanc d'oeuf.

Nous savons tous qu'il s'agit d'un liquide un peu gluant, épais, jaune tirant vers le vert et, en réalité, structuré :  comme on le voit quand on casse un œuf dans une assiette très plate ; autour du jaune, le blanc se répartit en une couche avec des marches, et d'autant plus de marches d'ailleurs que l'oeuf est plus frais.

Évidemment, s'il y a du liquide en hauteur, en haut des marches, c'est qu'il ne coule pas, et s'il ne coule pas, cela prouve que ce liquide est retenu.
Effectivement, il est en quelque sorte gélifié : le blanc d'oeuf est un gel  très fragile, mais un gel quand même, et les marches sont toutes des gels différents.

Cela dit, ce qui nous intéresse cette fois, c'est la constitution de ce blanc d'oeuf en molécules puisque nous avons vu que les molécules sont l'essentiel de la matière de la cuisine.

Quand on regarde un blanc d'œuf à la loupe, il est donc transparent et légèrement jaune tirant vers le vert d'ailleurs. Mais il paraît homogène.

Il faut encore un microscope extraordinairement puissant pour voir un tableau bien différent : cette fois, on voit les très nombreux objets tous identiques, que l'on a nommé des molécules d'eau, qui bougent en tous sens, se heurtent, rebondissent les uns contre les autres, à des vitesses de plusieurs centaines de mètres par seconde. Mais contrairement à l'eau pure, le "tableau moléculaire" ne s'arrête pas là : il y a aussi, entre les molécules d'eau,  des objets bien plus gros que les molécules d'eau, comme des fils repliés sur eux-mêmes.
Ces objets-là ce sont ce que l'on nomme des molécules de protéines.

Dans le blanc d'oeuf, il y a des molécules de protéines d'environ 300 sortes.
Et au total, la masse des protéines dans un blanc d'oeuf est environ 10 fois plus faible que la masse des molécules d'eau.

Ces molécules de protéines bougent également mais bien plus lentement que les molécules d'eau.

mardi 6 décembre 2022

La distillation, c'est une séparation physique, pas de réaction chimique

Au premier ordre, la distillation est une opération de physique et pas de chimie.

J'ai expliqué que les matières alimentaires étaient le plus souvent fait de molécules, très petits objets de différentes sortes  :  molécule d'eau dans l'eau, molécule de triglycérides dans les huiles, molécules de saccharose dans les cristaux de sucre....

La chimie est cette science qui explore les transformations des molécules.
Par exemple, quand on chauffe énergiquement du sucre, alors il se transforme comme chacun sait quand on fait du caramel : on part de cristaux transparents, et l'on obtient une matière brune, avec une saveur moins sucrée, un peu amère, et une belle odeur de caramel.

Lors de cette transformation qu'est la caramélisation, les objets tous identiques qui étaient les molécules de saccharose du sucre sont cassés, et certains morceaux se ré-associent de sorte que finalement on obtient des molécules différentes de celles du saccharose initial.

Il n'y a pas de "molécule de caramel" au sens d'une seule sorte de molécules, mais des molécules de tas de sortes différentes avec des noms qui n'ont pas d'intérêt ici.

Dans d'autres cas, il n'y a pas de réorganisation des molécules  (brisure, morceaux qui se lient, etc.), mais simplement une séparation.

C'est le cas de la distillation.

Partons par exemple de vodka, qui est faite de 60 pour cent d'eau et de 40 pour cent (en volume, mais c'est un détail) d'un alcool que l'on nomme éthanol : avec un super microscope ,on verrait environ 6 molécules d'eau pour 4 molécules d'éthanol.

Et tout cela grouille en tous les sens, car la vodka est liquide à la température ambiante.

Si l'on chauffe cette vodka, alors les molécules d'éthanol partent les premières du liquide, formant une vapeur  (invisible) qui s'élève au-dessus du récipient qui contient la vodka chauffée.
Cette vapeur, à ce stade, est faite quasi exclusivement de molécules d'éthanol. Et, à ce stade, la température, du liquide, comme celle de la vapeur, est alors d'un peu moins de 80 degrés.

Mais quand toutes les molécules d'éthanol sont parties sous la forme de vapeur, il ne reste presque que des molécules d'eau dans le liquide.
Si l'on chauffe alors d'avantage, alors la vapeur qui s'échappera sera constituée de molécules d'eau.

La vodka, c'est donc un mélange de deux sortes de molécules : des molécules d'eau, et des molécules d'éthanol.

Et la distillation consiste à chauffer pour évaporer, puis refroidir les vapeur pour qu'elles se "recondensent", qu'elles forment un liquide.
Et c'est ainsi que le liquide obtenu d'abord, c'est de l'éthanol bien plus concentré, tandis que l'eau reste dans le liquide.

La distillation, qui ne casse pas les molécules, n'est pas une transformation moléculaire, ce n'est pas de la chimie, mais de la physique, comme ces opérations que la filtration, le broyage, la décantation...



 Le monde (de la cuisine) est fait de molécules

Puisqu'il y a lieu d'expliquer la chimie commençons par les principales matières que nous rencontrons en cuisine : l'eau, l'huile, le sel, le sucre, la farine, le beurre.


Commençons donc avec l'eau


Pour l'eau, imaginons un verre d'eau devant nous. Nous percevons un liquide incolore et transparent, homogène.
Si nous le regardons avec une loupe, nous continuons à voir ce liquide incolore et transparent, apparemment homogène.
Il faut un microscope extraordinairement puissant pour finalement distinguer que l'homogénéité n'est qu'apparente et que, en réalité, l'eau est faite d'une myriade de petits objets tous identiques, qui bougent en tous sens et très rapidement (plusieurs centaines de mètres par seconde).

Il ne nous sera pas difficile d'accepter de nommer ces objets des "molécules d'eau", n'est-ce pas ?

Je propose ici de ne pas aller plus loin dans la description de ces molécules et de nous contenter de dire que l'eau est en réalité constitué de ces molécules d'eau entre lesquelles il n'y a rien, du vide.
La masse de l'eau, c'est la somme des masses de tous ces petits objets tous identiques.

Et la différence entre l'eau du robinet, ou  l'autre pluie, ou l'eau de mer, et cetera,  cela tient à la présence, parmi ces molécules d'eau, d'autres molécules de nature différente, ce que l'on pourrait nommer en quelque sorte des impuretés si l'on se réfère à l'eau parfaitement pure.
Il faut d'ailleurs ajouter que le mot "impureté" ne doit pas avoir de connotation péjorative, car la neige fondue , qui fait de l'eau très pure, et néfaste pour  notre organisme, et nous avons besoin de la présence de ce que l'on nomme des "ions",  parmi les molécules d'eau.

Mais là , avec le mot "ion",  je sais  que je suis allé trop trop loin, et je propose de passer à la seconde matière que j'avais annoncée,  à savoir l'huile.

L'huile est encore un liquide, également transparent, plutôt jaune... bien que cette couleur soit encore due à des "impuretés" : l'huile parfaitement purifiée serait incolore.  

À nouveau, à l'œil nu, l'huile paraît homogène ;  et, à la loupe, elle le paraîtrait aussi.
Et là encore, il faut un microscope extraordinairement puissant pour voir que l'huile est composée d'une myriade d'objets très semblables (pas parfaitement identiques),  et différents des molécules d'eau.
Nommons-les "molécules de triglycérides".

Avec ces deux exemples,  on voit  on comprend que la matière est souvent faite de molécules, et c'est exact  : nous avons déjà rencontré les molécules d'eau et les molécules de triglycérides.


Passons donc au sucre.

Cette fois, c'est un solide.
Si nous regardons les grains de sucre au microscope, nous voyons que ce sont des solides transparents, avec des faces planes.
Avec un très gros microscope, les grains sont encore homogènes, dans l'intérieur du grain.
Mais  si l'on prend maintenant un microscope extraordinairement puissant, alors, là encore, on s'aperçoit que le sucre est composé d'objets en très grand nombre, tous identiques : nous les  nommerons des molécules de saccharose.

Cette fois, dans le cristal, les molécules de saccharose ne bougent pas ou, plus exactement, elle se contentent de vibrer sur place, car elles sont empilées régulièrement. C'est d'ailleurs cela qui distingue un solide d'un liquide.


Passons maintenant au sel.

Cette fois, nous voyons encore, à la loupe, que le sel est fait de cristaux tous transparents. D'ailleurs pour le sel comme pour le sucre, la couleur blanche d'un tas de sel ou d'un tas de sucre n'est pas due aux grains, qui sont individuellement transparents et incolore, mais résulte de la réflexion de la lumière blanche du jour sur les faces de ces cristaux ; plus il y a le cristaux, plus le tas apparaît blanc, alors même que chaque cristal est transparent.

Pour le sel, si nous utilisions notre super microscope, nous verrions deux types d'objets : ces objets sont des "atomes de chlore" et des "atomes de sodium". Ils sont régulièrement empilés comme des cubes, et c'est leur liaison très forte qui assure la solidité du cristal de sel.

En réalité, ces atomes de chlore et les atomes de sodium, dans un cristal de sel, se sont échangés une petite partie qui est nommée "électron", ce qui a changé leur nom, d'atome en ion.
Mais c'est vraiment secondaire pour notre propos et je propose de rester à l'idée que  les cristaux de sel sont composés de ce qu'on nomme le chlorure de sodium, une entité où l'on imagine groupés un atome de chlore et un atome de sodium.


Avec le beurre, les choses se compliquent un peu.


Oui, le beurre est plus complexe... comme on le pressant quand on chauffe doucement du beurre : dans le beurre que l'on clarifie ainsi en chauffant très doucement et longtemps, on voit deux liquides se séparer, avec un liquide blanchâtre en bas et un liquide transparent et jaune par-dessus.

Le liquide blanchâtre du bas, c'est pratiquement de l'eau, et le liquide transparent et jaune par-dessus, c'est pratiquement de l'huile.
D'ailleurs on dit que le beurre fondu fait huile.

Effectivement, dans la partie inférieure, le super microscope montrerait essentiellement des molécules d'eau, tandis qu'il montrerait des molécules de triglycérides dans le liquide supérieur.
Dans le beurre lui-même, l'organisation de ces molécules est un peu compliquée, et je propose de garder ça pour une autre fois.


Pour passer maintenant à la farine, plus compliquée que le beurre.

La farine s'obtient par mouture de grains de blé, dont on élimine d'abord les enveloppes, ce que l'on nomme les sons.
Il reste, quand on moud la farine, une poudre blanche, d'autant plus blanche d'ailleurs que l'on s'est plus approché du cœur du grain.

Cette fois, une expérience encore nous permet de voir que la farine n'est pas une matière homogène : cette expérience fut faite  pour la première fois au 18e siècle, par des chimistes, et elle a pour nom  "lixiviation" :  
- on part de farine,
- on ajoute un peu d'eau,
- on travaille beaucoup pour faire une pâte qui devient de plus en plus dure à mesure que l'on travaille,
- puis on met cette pâte dans une grande bassine d'eau claire
- et on la malaxe doucement : en sort une poudre blanche que l'on a nommé l'amidon, et il reste entre les doigts une sorte de chewing-gum jaunâtre que l'on a nommé le gluten.

Je me hâte de dire que ni l'amidon ni le gluten ne sont chacun composés de molécules toute identiques, et l'on pourrait continuer à fractionner comme on vient de le faire, pour séparer l'amidon en plusieurs types de molécules dites de polysaccharide ; de même, le gluten en plusieurs sortes de protéines.

Mais on retrouve encore notre même idée la farine est faite de molécules,  certes de plus de variétés que dans l'eau ou dans l'huile, mais quand même, des molécules.

Et c'est ainsi que  le monde matériel de la cuisine est essentiellement fait de molécules.
Dans la farine, nous sommes sur la piste d'une complexité croissante qui augmenterait encore par exemple avec les viandes, les poissons, les fruits ou les légumes... mais ce sera pour une autre fois.

lundi 5 décembre 2022

La cuisine des plantes

 
La cuisine des plantes ? Cela vaut le coup de savoir ce que l'on transforme.

Commençons par observer que cette question des "plantes" est minée : certains croient qu'elle serait "naturelle"... et ils ont tort.

Car, selon la définition du dictionnaire,  les aliments sont artificiels et non pas naturels puisque est naturel, en français, ce qui ne fait pas l'objet de la transformation par un être humain.
Or la cuisine, c'est bien une transformation par un être humain :  la cuisinière ou le cuisinier.

Cela étant dit, il faut maintenant se préoccuper de la constitution des ingrédients que nous utilisons pour cuisiner.

Et c'est ainsi que récemment, recevant la visite d'une journaliste néerlandaise, je crois que j'ai eu raison de lui expliquer d'abord les possibilités de transformation en partant de la constitution microscopique et moléculaire des tissus végétaux.

Considérons, par exemple, des feuilles d'épinard : si nous les regardons au microscope, nous voyons qu'elles sont constituées de très nombreux petits compartiments, cimentés entre eux par ce que l'on nomme une "paroi végétale".

Des compartiments ? Ce sont des "cellules". Ces cellules sont vivantes, et la plante elle-même et donc une sorte de colonie d'êtres vivants.

Chaque cellule est composée principalement d'eau, et,  aussi, de tout ce qui la rend vivante.
Elle est limitée par une membrane et cette membrane est sous ce que l'on nomme une "paroi".

Cela ne se voit pas au microscope optique courant, mais la paroi , est fait de fibres de cellulose et de molécules de pectine, principalement.

Les  molécules de pectine sont comme des cordes qui relient les fibres de cellulose des parois des cellules voisines et l'aurait donc raison de dire que ce sont les molécules de pectines qui font le lien.

Les pectines ? On les connaîts pour les confitures, parce que, quand on cuit des tissus végétaux, les molécules de pectine sont libérées dans le liquide de cuisson et, au refroidissement, elles viennent se relier en une sorte de grand filet pour faire ce que l'on nomme un gel : c'est la confiture, ou la gelée.

Les fibres de cellulose ? Que l'on pense à un mouchoir en coton, un t-shirt en coton, du coton hydrophile... : tout cela, ce sont des fibres de cellulose plus ou moins organisées.
D'ailleurs, le papier est fait de fibre de cellulose que l'on peut même voir à l'aide d'une loupe : le papier est un "non tissé".

Ces "fibres de cellulose" sont faites... de molécules de cellulose, des molécules très résistantes à la chaleur, comme le prouve l'expérience qui consiste à faire bouillir un t-shirt quand on le lave : même après de nombreux lavages, il ne se dissout pas dans la machine à laver.

Cette inertie chimique diffère complètement de la fragilité des pectines : si l'on cuit trop longtemps de la confiture, elle ne prendra plus, car les molécules de pectine auront été dégradées et le grand filet ne pourra pas se faire.

Ayant ces informations sur la constitution des tissus végétaux, nous pouvons passer maintenant à la cuisson des légumes.

Lors d'une cuisson de légumes, les parois végétales sont désorganisées et les molécules de pectine sont libérés, ce qui permet la séparation des cellules.
Et c'est ainsi que quand on cuit des carottes, par exemple, on peut,  après cuisson,  les écraser pour faire une purée : les cellules sont alors intègres mais séparées.
Évidemment, il peut y en avoir qui sont endommagées, mais ce n'est pas là le phénomène principal : lors de la confection d'une purée, lorsqu'on écrase un tissu végétal qui a été cuit, alors ce sont surtout des groupes de cellules que l'on récupère et que l'on sépare.

dimanche 4 décembre 2022

Sel, chlorure de sodium : quelles différences ?

Ayant discuté d'ilchimisme dans des billets précédents, il me faut maintenant chercher des remèdes à cette insuffisance, et la première consiste à prendre toute occasion pour la combattre.

Aujourd'hui, considérons la différence entre le sodium, le chlorure de sodium et le sel.

Le sel, c'est le sel : connu depuis des temps immémoriaux, extrait de la mer par évaporation de l'eau ou récupéré dans des mines.

Dans le premier cas, c'est le sel de mer, et dans le second, c'est le sel gemme.

Le sel est salé, et quand il est pur, parfois un peu amer ; il se présente sous l'aspect de cristaux individuellement transparents, mais qui paraissent blanc quand leur facettes réfléchissent la lumière blanche du jour.
Et quand on met du sel dans l'eau, on obtient de l'eau salée.

De quoi ce sel est-il fait ? Si on le regarde  avec un microscope extraordinairement puissant, alors on voit que les cristaux de sel sont des empilements assez réguliers, comme des cubes empilés,  avec principalement deux sortes d'objets que l'on a nommés "atomes de chlore" et "atome de sodium". Ne nous effrayons pas, ce ne sont là que des mots, des noms arbitraires.

Mais précisons que, en réalité, dans un cristal de sel, les atomes de chlore et les atomes de sodium sont fortement liés les uns aux autres parce qu'ils ont échangé un tout petit objet nommé électron et que cet échange les conduit à s'attirer comme deux aimants.

Si l'on est plus précis, on dit que les atomes de sodium qui ont cédé un électron sont devenus des "ions sodium" (un autre nom),  et que les atomes de chlore qui ont gagné un électron sont devenus des "ions chlorure".
Mais c'est véritablement un détail du deuxième ordre.

Quelle est la différence entre le sel et cette matière que l'on nomme chlorure de sodium et qui est faite exclusivement d'ions chlorure et d'ions sodium ?

Tout tient dans les impuretés, car quand on part d'eau de mer pour produire du sel (de mer, donc), alors on récupère un sel qui est qui contient non seulement des atomes de chlore et des atomes de sodium, mais aussi tout une série d'autres atomes : iode, calcium, potassium, et cetera.

Le "chlorure de sodium", en revanche, c'est seulement des atomes de chlore et des atomes de sodium, tandis que le sel, c'est seulement principalement des atomes de chlore et des atomes sodium, mais aussi beaucoup d'autres atomes de types différents.

Le sel gemme non raffiné, aussi, n'est pas du chlorure de sodium : selon les mines, il se présente sous la forme de bloc blancs, un bruns grisâtres, ou bleus, ou roses, ou rouger,  selon qu'il contient des atomes de fer, de cuivre, et cetera.

Ne confondons donc pas le sel et le chlorure de sodium.


Et le sodium ?

Comme il est parfois  question due sodium indépendamment du sel  ou du chlorure de sodium, il faut maintenant expliquer que le sodium n'est pas le sel, comme on l'a compris à l'explication précédente puisque dans le sel il y a des atomes de chlore et des atomes de sodium.

Et ce n'est pas le sodium qui donne la saveur principalement salée du sel, mais les ions sodium.
Car le "sodium", c'est un élément, une catégorie abstraite de la chimie, alors qu'un ion sodium est un objet matériel.

En effet, les atomes qui font la matière de notre monde sont de différentes sortes :  la chimie en a découvert environ 200 sortes qui ont pour nom hydrogène, hélium, lithium, bore, carbone...

Ce sortes sont ce que l'on nomme des éléments, et un élément est donc une catégorie, une chose abstraite,  plutôt qu'un objet concret.

Ce qui est concret, c'est l'atome d'hydrogène, ou l'atome d'hélium, et cetera.

De sorte que quand on dit "le sodium", c'est la catégorie d'atomes de sodium que l'on considère, et non pas les atomes de sodium eux-mêmes.

De ce fait, il est juste de dire que les atomes de sodium donnent la sensation salée,  et il est donc inexact de dire que le sodium donne la sensation salée.

D'ailleurs, si l'on voulait être tout à fait précis, on dirait que ce sont les ions sodium qui donnent la sensation salée.

Là, je crois que j'ai fait le tour de cette question et je vois aussi que nous pourrons régulièrement donner des informations utiles pour que nos amis comprennent mieux le mot matériel où ils vivent.

samedi 3 décembre 2022

 De l'illettrisme, de l'anumérisme, de l'alchimisme


Il y a d'abord l'illettrisme qui touche une partie trop grande de nos populations, malgré des années passées sur le banc des écoles, des collèges et des lycées : 7 % de la population adulte âgée de 18 à 65 ans ayant été scolarisée en France est en situation d’illettrisme, soit 2 500 000 personnes en métropole (je trouve ce chiffre sur un site officiel : http://www.anlci.gouv.fr/Illettrisme/Les-chiffres/Niveau-national).

Et j'ajoute aussitôt que ce billet n'est en aucun cas un jugement, mais une observation et une réflexion en vue d'une action pour améliorer les choses.

Mais l'illettrisme n'est pas la question que je veux discuter ici, meme si, comme l'a dit justement Lavoisier après Condillac, la science et les mots vont de pair. Non, c'est bien de science dont il est question ici.

De même qu'il y a de l'illettrisme, il y a de l'anumérisme, cette incapacité à comprendre les ordres de grandeur de notre environnement.
Par exemple, lors d'une réunion avec des collègues universitaires, je me suis aperçu aucun d'entre eux n'avait une idée de l'ordre de grandeur de la masse d'une pincée de sel.
Et, plus généralement, si l'on écoute la radio, et notamment les discussions à propos du budget de l'Etat, que représente un million d'euros ? Et un milliard ?

Nous ne sommes pas familiers, en général, avec de telles valeurs, et les mots glissent sur nous comme l'eau sur les plumes du canard.
Il en va de même pour toutes les valeurs très grandes ou très petites, et l'on aura raison de rappeler avec le philosophe grec antique Protagoras que l'homme et la mesure de toute chose.

Bref, nous manquons d'ordres de grandeur, et cela vaut la peine de rappeler que Pierre Gilles de Gennes, prix Nobel de physique, avait fait sienne cette méthode intime d'Enrico Fermi, également prix Nobel de physique, à savoir s'entraîner quotidiennement à calculer des ordres de grandeur.

C'est ainsi que Fermi sélectionnait les étudiants qui postulaient à son laboratoire en leur demandant combien il y avait d'accordeurs de piano à Chicago.
Et pour moi, sans idée de sélection, je discute souvent avec les étudiants en sciences que je rencontre de la question du nombre de cheveux sur une tête, par exemple.

Oui, les calculs d'ordres de grandeur sont essentiels parce qu'ils nous familiarisent avec autre chose que notre petit monde.

Mais, après l'illettrisme et l'anumérisme, je veux surtout considérer la chimie et l'ilchimisme, cette méconnaissance des objets de cette science, de ses phénomènes. Il faut la vaincre dès l'école primaire !

jeudi 1 décembre 2022

 L'ilchimisme ? Il ne faut pas le sous-estimer


À propos d'ilchimisme (que je vois tout à fait parallèle à l'illettrisme, mais pour la chimie), nous devons nous souvenir de cet épisode tout à fait terrible qui eut lieu dans mon laboratoire il y a quelques années : alors que je discutais du sujet de stage d'une étudiante venue d'un IUT français de chimie, je me suis aperçu que celle-ci ignorait que l'eau était faite d'objets très petits (des molécules), en mouvement incessant. Quand je lui demandais de quoi l'eau était faite,  l'étudiante me répondit "De H2O", mais elle ne faisait pas la relation entre ce mot, qui désigne la constitution des molécules d'eau en atomes (d'oxygène O et d'hydrogène H) et le fait que l'eau était faite de molécules d'eau, composées chacune, donc, d'un atome d'oxygène et de deux atomes d'hydrogène.

Le même matin, recevant ensuite dans mon bureau une étudiante d'un autre IUT français de chimie, j'ai eu l'occasion, en l'interrogeant, de voir que cette étudiante-là savait que l'eau était faite de molécules, petits objets très nombreux, mais qu'elle n'avait pas la notion d'un quelconque mouvement de ces objets. J'explique que l'image suivante est assez juste : 



... mais à condition de ne pas oublier le mouvement, que l'on trouvera sur : https://www.youtube.com/watch?v=x8Atqz5YvzQ
Et un troisième étudiant, venu d'une université, croyait que l'eau était comme une sorte de matière élastique qui se serait allongée à l'infini, ignorant également la constitution moléculaire de la matière, "granulaire" en quelque sorte mais avec une idée dynamique.



De l' "élite" à la population générale


Si les étudiants de l'enseignement supérieur,  de chimie de surcroît, en sont là; on voit que la population française n'a pas de raison d'être mieux lotie,  jusqu'aux prétendues élites de domaines qui ne sont pas scientifiques (et je l'ai vérifié mille fois).

Quand je parle d'ilchimisme, ce n'est pas une critique que je fais mais une observation.

Et si ilchimisme il y a, il doit être combattu car comment nos concitoyens pourraient-ils se comporter dans un monde aussi technique que celui d'aujourd'hui, s'ils ignorent les bases de la constitution de ce monde ?

 Le contenu du livre de Jane Marcet, qui inspira Michael Faraday

 Le contenu du livre de Jane Marcet, qui inspira Michael Faraday


1
CONVERSATIONS ON CHEMISTRY
IN WHICH THE ELEMENTS OF THAT SCIENCE ARE FAMILIARLY EXPLAINED AND ILLUSTRATED
BY EXPERIMENTS; IN TWO VOLUMES.
VOL. I: ON SIMPLE BODIES
BY JANE MARCET
Contents of the First Volume on Simple Bodies
CONVERSATION I.
On the General Principles of Chemistry..............................................................................
Connection between Chemistry and Natural Philosophy.
Improved State of modem Chemistry.
Its Use in the Arts.
The general Objects of Chemistry.
Definition of Elementary Bodies.
Definition of Decomposition.
Integrant and Constituent Particles.
Distinction between Simple and Compound Bodies.
Classification of Simple Bodies.
Of Chemical Affinity, or Attraction of Composition.
Examples of Composition and Decomposition.
CONVERSATION II.
On Light and Heat...........................................................................................................................
Light and Heat capable of being separated.
Dr. Herschel’s Experiments.
Phosphorescence.
Of Caloric.
Its two Modifications.
Free Caloric.
Of the three different States of Bodies, solid, fluid, and aeriform.
Dilatation of Solid Bodies.
Pyrometer.
Dilatation of Fluids.
Thermometer.
Dilatation of Elastic Fluids.
Air Thermometer.
........1
........27
2
Equal Diffusion of Caloric.
Cold a negative Quality.
Professor Prevost's Theory of the Radiation of Heat.
Professor Pictet's Experiments on the Reflection of Heat.
Mr. Leslie’s Experiments on the Radiation of Heat.
CONVERSATION III.
Continuation of the Subject..........................................................................................................
Of the difierent Power of Bodies to conduct Heat.
Attempt to account for this Power.
Count Rumford's Opinion respecting the non-conducting Power of Fluids.
Phenomena of Boiling.
Of Solution in general.
Solvent Power of Water.
Difference between Solution and Mixture.
Solvent Power of Caloric— Of Clouds, Rain.
Dr. Wlls' Theory of Dew, Evaporation, &c.
Influence of Atmospherical Pressure on Evaporation.
Ignition.
CONVERSATION IV.
On Combined Caloric, Comprehending Specific and Latent Heat..........................................
Of Specific Heat.
Of the different Capacities of Bodies for Heat.
Specific Heat, not perceptible by the Senses.
How to be ascertained.
Of latent Heat.
Distinction between Latent and Specific Heat.
Phenomena attending the Melting of Ice and the Formation of Vapour.
Phenomena attending the Formation of Ice, and the Condensation of Elastic Fluids.
Instances of Condensation, and consequent Disengagement of Heat, produced by
Mixtures, by the slaking of Lime.
General Remarks on Latent Heat.
Explanation of the Phenomena of Ether boiling, and Water freezing, at the same
Temperature.
Of the Production of Cold by Evaporation.
Calorimeter.
Meteorological Remarks.
........67
......118
3
CONVERSATION V.
On the Steam-Engine......................................................................................................................
Origin of the Steam-Engine.
Marquis of Worcester's Invention.
Savary and Newcomen's Engine.
Watt's Double Steam-Engine described.
Wolff's Engine.
Advantages derived from the Steam-Engine.
CONVERSATION VI.
On the Chemical Agencies of Electricity......................................................................................
Electricity, positive and negative.
Galvani's Discoveries.
Galvanism.
Voltaic Battery.
Electrical Machine.
Theory of Voltaic Excitement.
Its Influence on the Magnetic Needle.
CONVERSATION VII.
On Oxygen and Nitrogen...............................................................................................................
The Atmosphere composed of Oxygen and Nitrogen in the State of Gas.
Definition of Gas.
Mr. Faraday's Experiments on the Liquefaction and Solidification of Gases.
Oxygen essential to Combustion and Respiration.
Decomposition of the Atmosphere by Combustion.
Nitrogen Gas obtained by this Process.
Of Oxygenation in general.
Of the Oxidation of Metals.
Oxygen Gas obtained from Oxide of Manganese.
Description of a Water-bath for collecting and preserving Gases.
Combustion of Iron Wire in Oxygen Gas.
Fixed and volatile Products of Combustion.
Patent Lamps.
Decomposition of the Atmosphere.
......152
......175
......190
4
CONVERSATION VIII.
On Hydrogen....................................................................................................................................
Of Hydrogen.
Of the Formation of Water by the Combustion of Hydrogen.
Of the Decomposition of Water.
Detonation of Hydrogen Gas.
Description of Lavoisier's Apparatus for the Formation of Water.
Hydrogen Gas essential to the Production of Flame.
Musical Tones produced by the Combustion of Hydrogen Gas within a Glass Tube.
Combustion of Candles explained.
Gas Lights.
Detonation of Hydrogen in Soap Bubbles.
Air Balloons.
Meteorological Phenomena ascribed to Hydrogen Gas.
Miner's Lamp.
CONVERSATION IX.
On Sulpher and Phosphorus..........................................................................................................
Natural History of Sulphur.
Sublimation.
Alembic.
Combustion of Sulphur in Atmospheric Air.
Of Acidification in general.
Nomenclature of the Acids.
Combustion of Sulphur in Oxygen Gas.
Sulphuric Acid.
Sulphurous Acid.
Decomposition of Sulphur.
Sulphuretted Hydrogen Gras.
Harrowgate, or Hydro-Sulphuretted Waters.
Phosphorus.
Decomposition of Phosphorus.
History of its Discovery.
Its Combustion in Oxygen Gas.
Phosphoric Acid.
Phosphorous Acid.
Eudiometer.
Combination of Phosphorus with Sulphur.
......219
......257
5
Phosphoretted Hydrogen Gas.
Nomenclature of Binary Compounds.
Phosphoret of Lime burning under Water.
CONVERSATION X.
On Carbon........................................................................................................................................
Method of obtaining pure Charcoal.
Method of making common Charcoal.
Pure Carbon not to be obtained by Art.
Diamond.
Properties of Carbon.
Combustion of Carbon.
Production of Carbonic Acid Gas.
Carbon susceptible of only one Degree of Acidification.
Gaseous Oxide of Carbon.
Of Seltzer Water, and other Mineral Waters.
Effervescence.
Decomposition of Water by Carbon.
Mr. Bunsen's Experiments to produce Light at a cheap Rate.
Carburet of Iron.
Oils.
Vegetable Acids.
Of the Power of Carbon to revive Metals.
CONVERSATION XI.
On Metals.........................................................................................................................................
Natural History of Metals.
Of Roasting, Smelting, &c.
Oxidation of Metals by the Atmosphere.
Change of Colours produced by different Degrees of Oxidation.
Combustion of Metals.
Perfect Metals burnt by Electricity only.
Some Metals revived by Carbon and other Combustibles.
Perfect Metals revived by Heat alone.
Of the Oxidation of certain Metals by the Decomposition of Water.
Power of Acids to promote this Effect.
Oxidation of Metals by Acids.
Metallic Neutral Salts.
......281
......308
6
Previous Oxidation of the Metal requisite.
Crystallisation.
Solution distinguished from Dissolution.
Five Metals susceptible of Acidification.
Meteoric Stones.
Alloys, Soldering, Plating, Gilding, new Mode by Electricity.
Of Arsenic, and of the caustic Effects of Oxygen.
Of Verdigris, Sympathetic Ink, &c.
Of the new Metals discovered by Sir H. Davy, by means of Electricity.



jeudi 3 novembre 2022

Les applications de la chimie en cuisine

 Cette image ? 






Elle dit tout ce qui concerne l'application des résultats des sciences de la nature à la cuisine : Hermès, le dieu de la chimie, parle à Bacchus, le dieu du bien manger. 



dimanche 19 juin 2022

Tanins, polyphénols, phénols

 

Cela fait des années que je conseille à mes amis des métiers du goût de parler plutôt de "polyphénols", pour de nombreux composés des vins, plutôt que de "tanins", qui ne sont que les composés qui tannent. Dans la même veine, j'ai largement critiqué l'emploi d'expressions comme "les tanins fondent lors du vieillissement de vins", et notamment parce que, en réalité, l'affaiblissement ou la disparition de l'astringence, dans des vins qui vieillissent, n'est pas due à des tanins qui "fondraient", mais à des association de composés phénoliques en structures plus grosses, qui perdent les propriétés taniques.

Les tanins ?

 

 

La suite de ce long billet ici : https://scilogs.fr/vivelaconnaissance/des-polyphenols-disons-simplement-phenols-des-vegetaux/

jeudi 5 mai 2022

Let's avoid using the word "polyphenoll"

Indeed there is no reason to speak of polyphenols, as the International Union of Chemistry decided : 


Phenols : Compounds having one or more hydroxy groups attached to a benzene or other arene ring, e.g. 2-naphthol:
Source : PAC, 1995, 67, 1307. (Glossary of class names of organic compounds and reactivity  intermediates based on structure (IUPAC Recommendations 1995)) on page 1357
https://doi.org/10.1351/goldbook.P04539

From now on, I shall speak of phenols. 

PS. By the way, tannins are very specific phenols.

lundi 2 mai 2022

On reconnaît les chimistes à ses gestes


 
Il y a des gestes professionnels, que l'on apprend à faire, et sans doute dans tous les métiers,  mais pour la chimie en particulier, il y en a un qui consiste à ne pas poser sur la table le bouchon d'une bouteille.

Plus exactement, dans un laboratoire, n'y a pas de table, mais des paillasses, qui sont des tables professionnelles sur lesquelles on peut expérimenter sans dommage pour le meuble.
Souvent, elle sont couvertes de carreaux de céramique, ou, aujourd'hui, par des verres spéciaux.

Mais qu'importe. Je veux surtout arriver à ce geste courant en chimie qui consiste à prendre un flacon de réactif pour en utiliser une partie.

C'est là que survient la question d'ouvrir la bouteille, et de verser une partie du réactif dans un récipient plus petit, qui sera utilisé pour l'expérience.

On prend la bouteille, on la pose donc sur la paillasse, et long dévisse le capuchon.

La pire des fautes consisterait à poser le capuchon directement sur la paillasse dans la même position qu'il avait sur la bouteille, car ce capuchon est vraisemblablement souillé du réactif et il souillerait la paillasse, en  même temps que des souillures de la paillasse viendraient sur le capuchon... qui contaminerait tout le réactif.

Autre possibilité : poser le capuchon à l'envers sur la paillasse : c'est guère mieux, car la pailasse souillerait ensuite le capuchon, et tout ceux qui manipuleraient le flacon.

C'est la raison pour laquelle les chimistes font différemment  : ayant ouvert la bouteille, ils conservent le capuchon dans le creux de la main pendant qu'ils utilisent la bouteille de réactif.

Ce n'est pas un geste difficile, mais c'est la signature la chimiste qui a réfléchit à ce qu'il fait. Une "compétence professionnelle", donc.