Aristophane disait qu'enseigner, ce n'est pas emplir des cruches, mais allumer des brasiers. Quoi de mieux, donc, qu'un tel message, reçu à l'instant même :
Bonjour Monsieur,
Il y a environ deux ans vous avez donné une conférence exposant la gastronomie moléculaire et la cuisine note à note à des classes de lycée à Paris, cette dernière m'a laissé une forte impression.
Aujourd'hui je suis en Terminale S et vos recherches, alliant sciences et gastronomie, m'ont grandement intéressé, j'aimerais pouvoir étudier la cuisine note à note.
Je me retrouve alors cette année à devoir choisir des études supérieures mais vos recherches étant récentes, il n'a pas à ma connaissance de master spécialisé dans cette matière.
Sans trop vouloir vous déranger, pourrais-je vous demander quel serait le chemin universitaire à suivre afin de déboucher sur vos recherches, serait il possible que vous me recommandiez une ou plusieurs universités dans lesquelles je pourrais formuler mes vœux?
Je réponds donc sans tarder, même si notre jeune ami a un peu de temps devant lui.
Mais, pour répondre, j'analyse :
1. Oui, je fais souvent des conférences devant des collégiens ou des lycéens, et l'objectif est faire valoir les beautés de la science, de la technologie (le métier d'ingénieur) et de la technique, mais il est vrai que, également, je cherche à montrer les beautés de l'art (culinaire).
Plus généralement, mes conférences pourraient être résumées par un vigoureux "Vive la connaissance produite et partagée", même s'il y a en écho un puissant "Vive la chimie, plus hier et bien moins que demain".
2. Le but de mes conférences n'est pas de transmettre des connaissances, mais de faire une forte impression, qui permettra à nos amis d'avoir un élan.
3. Notre ami est en classe de Terminale S et il est intéressé par la gastronomie moléculaire et la cuisine note à note ? Il est donc bien parti plutôt pour les sciences et technologies, de sorte que, s'il travaille, je ne doute pas qu'il puisse passer des concours des grandes écoles, et viser l'ESPCI Paris, ou l'Ecole normale supérieure, ou l'Ecole Polytechnique, par exemple.
En effet, notre ami a face à lui des universités, au niveau très hétérogène, et des grandes écoles, où il s'agira de faire ses preuves initialement, une sélection dont il pourra se prévaloir toute sa vie. J'ajoute que, pour moi, les classes de Mathématiques supérieures et de Mathématiques spéciales furent un grand bonheur, puisque j'ai pu, enfin !, me consacrer à ce que j'aimais : les mathématiques, la chimie, la physique. Et, d'autre part, il n'est pas vrai que l'on y travaille beaucoup : je travaille bien plus aujourd'hui !
Enfin, certains critiquent l'esprit "concours"... mais pour quelqu'un qui se contente de travailler, cela n'existe pas : seul compte le bonheur d'apprendre !
4. A l'issue d'études de type Grandes Ecoles, ou Universités scientifiques (chimie, ou physique, ou physico-chimie, par exemple, pour notre ami), il y aura le choix entre la recherche scientifique (la gastronomie moléculaire, par exemple), ou la "cuisine note à note"... Mais il faut observer que notre ami, s'il est scientifique ou ingénieur, ne fera pas de cuisine note à note, car il ne sera pas cuisinier, donc artiste. En revanche, je le vois bien ingénieur et capable d'orchestrer des développements technologiques autour de la cuisine note à note, par exemple.
D'ailleurs, soucieux de l'orienter plutôt vers une carrière industrielle, je le vois bien aussi avec de la gastronomie moléculaire pendant ses études pour une formation d'ingénieur dans l'industrie alimentaire, par exemple.
5. Mais la cuisine note à note, ou l'aliment en général, peut s' "étudier" de mille façons : chimique, physique, biologique, rhéologique, microbiologique, nutritionnelle, économique, réglementaire, analytique, symbolique, sociale, historique... De sorte que l'on voit une foule de métiers se dessiner devant notre ami... qui devra plutôt s'interroger sur son quotidien. Et je renvoie vers des billets plus anciens : https://hervethis.blogspot.com/search?q=m%C3%A9tier
Dans l'un d'entre eux, je parle du travail pratique que l'on fait, minute par minute.
6. Des masters spécialisés en gastronomie moléculaire ? Pour les études supérieures, il y a plusieurs choses :
- un module de gastronomie moléculaire dans le Master Erasmus Mundus Plus "Food innovation and Product Design" (http://www.fipdes.eu/)
- des cours de gastronomie moléculaire dans le Master IPP d'AgroParisTech
- des cours de Licence "Biochimie alimentaire et gastronomie moléculaire" de l'Université Paris 6.
Mais mon conseil : toujours viser haut, et se donner les moyens de réussir en travaillant avec bonheur !
Ce blog contient: - des réflexions scientifiques - des mécanismes, des phénomènes, à partir de la cuisine - des idées sur les "études" (ce qui est fautivement nommé "enseignement" - des idées "politiques" : pour une vie en collectivité plus rationnelle et plus harmonieuse ; des relents des Lumières ! Pour me joindre par email : herve.this@inrae.fr
lundi 28 janvier 2019
dimanche 27 janvier 2019
Je vous présente l'acide citrique
Nous sommes bien d'accord : l'acide citrique n'est pas du jus de citron !
Mais j'explique aussitôt cette phrase introductive. Le jus de citron, chacun sait ce que c'est : c'est le jus que l'on obtient quand on presse un citron.
Il est très majoritairement composé d'eau, mais, en solution dans cette eau, il y a notamment de l'acide citrique, de l'acide malique et d'autres composés, tels des composés odorants comme ceux que l'on trouve dans la pulpe. Il y a aussi des sucres, plein de sels minéraux, etc. ... en petites quantités. La couleur ? Souvent elle résulte de la présence de pulpe, mais pas seulement : il y a divers pigments naturels.
Reste que le jus de citron et l'acide citrique dilué dans de l'eau se ressemblent beaucoup, au point que, lors d'un séminaire de gastronomie moléculaire, nous avons eu beaucoup de difficultés, lors de tests sensoriels, à distinguer les deux produits !
En cuisine !
Et puisqu'il y a une grande ressemblance, pourquoi ne pas utiliser de l'acide citrique en cuisine ? C'est ce que je fais : près de mon "fourneau", à côté du gros sel, du sucre, il y a de l'acide citrique, poudre blanche cristallisée, qui fait un goût citronné dès qu'on l'utilise.
Car, en y pensant, pourquoi faire venir des citrons de l'autre côté de la terre quand on a de l'acide citrique ? Parce qu'il serait "chimique" ? Pas plus que le sel de cuisine ou que le sucre. En l'occurrence, l'acide citrique est produit à la tonne par l'industrie, par fermentation de saccharose (le sucre de table) ou de glucose (obtenu par traitement du maïs).
Bref, je vous recommande l'acide citrique !
Mais j'explique aussitôt cette phrase introductive. Le jus de citron, chacun sait ce que c'est : c'est le jus que l'on obtient quand on presse un citron.
Il est très majoritairement composé d'eau, mais, en solution dans cette eau, il y a notamment de l'acide citrique, de l'acide malique et d'autres composés, tels des composés odorants comme ceux que l'on trouve dans la pulpe. Il y a aussi des sucres, plein de sels minéraux, etc. ... en petites quantités. La couleur ? Souvent elle résulte de la présence de pulpe, mais pas seulement : il y a divers pigments naturels.
Reste que le jus de citron et l'acide citrique dilué dans de l'eau se ressemblent beaucoup, au point que, lors d'un séminaire de gastronomie moléculaire, nous avons eu beaucoup de difficultés, lors de tests sensoriels, à distinguer les deux produits !
En cuisine !
Et puisqu'il y a une grande ressemblance, pourquoi ne pas utiliser de l'acide citrique en cuisine ? C'est ce que je fais : près de mon "fourneau", à côté du gros sel, du sucre, il y a de l'acide citrique, poudre blanche cristallisée, qui fait un goût citronné dès qu'on l'utilise.
Car, en y pensant, pourquoi faire venir des citrons de l'autre côté de la terre quand on a de l'acide citrique ? Parce qu'il serait "chimique" ? Pas plus que le sel de cuisine ou que le sucre. En l'occurrence, l'acide citrique est produit à la tonne par l'industrie, par fermentation de saccharose (le sucre de table) ou de glucose (obtenu par traitement du maïs).
Bref, je vous recommande l'acide citrique !
Les bonnes pratiques du professorat : une question tabou ?
Je vois une question amusante, mais qui risque de faire du bruit : nous parlons ici de bonnes pratiques scientifiques, mais au fond, les "enseignants-chercheurs" ont ce que l'on nomme des "charges d'enseignements" et même les chercheurs aujourd'hui sont sollicités pour une activité d'"enseignement".
Sans tarder, je vous renvoie à mes billets du chapitre consacré aux études (http://www2.agroparistech.fr/-A-propos-d-etudes-superieures-mais-pas-seulement-.html) pour voir pourquoi je me refuse à parler d'enseignements et je propose de parler d'études : en substance, je dis que l'essentiel n'est as que des enseignants enseignent, mais que les étudiants étudient ! D'autre part, il y a le fait que le mot "enseignant" se rapporte, par un affreux néologisme, à une activité impossible, et que nous devons parler de professeurs.
Mais, au delà de la parole prononcée devant un ou plusieurs étudiants, il y a le fait qu'il faut orchestrer les études, les coordonner. De sorte que la phrase précédente appelle deux questions :
1. comment bien professer ?
2. comment bien orchestrer les études ?
La question est difficile, ou, du moins, jusqu'à présent, on s'en est débarrassé en disant que le professeur est maître dans sa classe.
Mais sa formation ? Alors qu'il y a des instituts de formation des professeurs pour l'Education nationale, il faut bien reconnaître que la formation des professeurs d'université est extrêmement réduite. Lors de la thèse, la soutenance doit être la preuve que le professeur est capable de faire cours. Puis l'habilitation à diriger des recherches et une autre façon de sanctionner une compétence. Mais où sont les informations nécessaires pour bien professer ? Où où tout cela est-il écrit ? Quelles sont les règles pour bien faire ? En existe-t-il ?
En 2017, un décret a imposé une formation, mais on en est environ à un état des lieux ! Et en mars 2018, on n'en était qu'à une réunion de concertation : http://www.enseignementsup-recherche.gouv.fr/cid128659/lancement-de-la-concertation-sur-la-reconnaissance-de-la-mission-de-formation-des-enseignants-chercheurs.html !
J'observe aussi que le mot "pédagogie" revient souvent, alors que son étymologie fait référence à des enfants... alors que les étudiants de l'université sont majoritairement des adultes qui ont le droit de vote. C'est indique.
Le mot "didactique" serait-il meilleur ? Il se rapporte à ce qui vise à "instruire". Instruire ? Il s'agit de "Former l'esprit, la personnalité de quelqu'un par une somme de connaissances liées à l'expérience, à la vie, aux événements." Pourquoi pas, mais, au risque de me répéter, je préfère que les étudiants se forment eux-même l'esprit, et j'aime pas l'idée du bétail que l'on nourrit !
Bref, je me demande s'il n'est pas possible de produire des billets de bonnes pratiques pour l'encadrement des études comme je l'ai fait pour la pratique scientifique ? Question tabou ?
Sans tarder, je vous renvoie à mes billets du chapitre consacré aux études (http://www2.agroparistech.fr/-A-propos-d-etudes-superieures-mais-pas-seulement-.html) pour voir pourquoi je me refuse à parler d'enseignements et je propose de parler d'études : en substance, je dis que l'essentiel n'est as que des enseignants enseignent, mais que les étudiants étudient ! D'autre part, il y a le fait que le mot "enseignant" se rapporte, par un affreux néologisme, à une activité impossible, et que nous devons parler de professeurs.
Mais, au delà de la parole prononcée devant un ou plusieurs étudiants, il y a le fait qu'il faut orchestrer les études, les coordonner. De sorte que la phrase précédente appelle deux questions :
1. comment bien professer ?
2. comment bien orchestrer les études ?
La question est difficile, ou, du moins, jusqu'à présent, on s'en est débarrassé en disant que le professeur est maître dans sa classe.
Mais sa formation ? Alors qu'il y a des instituts de formation des professeurs pour l'Education nationale, il faut bien reconnaître que la formation des professeurs d'université est extrêmement réduite. Lors de la thèse, la soutenance doit être la preuve que le professeur est capable de faire cours. Puis l'habilitation à diriger des recherches et une autre façon de sanctionner une compétence. Mais où sont les informations nécessaires pour bien professer ? Où où tout cela est-il écrit ? Quelles sont les règles pour bien faire ? En existe-t-il ?
En 2017, un décret a imposé une formation, mais on en est environ à un état des lieux ! Et en mars 2018, on n'en était qu'à une réunion de concertation : http://www.enseignementsup-recherche.gouv.fr/cid128659/lancement-de-la-concertation-sur-la-reconnaissance-de-la-mission-de-formation-des-enseignants-chercheurs.html !
J'observe aussi que le mot "pédagogie" revient souvent, alors que son étymologie fait référence à des enfants... alors que les étudiants de l'université sont majoritairement des adultes qui ont le droit de vote. C'est indique.
Le mot "didactique" serait-il meilleur ? Il se rapporte à ce qui vise à "instruire". Instruire ? Il s'agit de "Former l'esprit, la personnalité de quelqu'un par une somme de connaissances liées à l'expérience, à la vie, aux événements." Pourquoi pas, mais, au risque de me répéter, je préfère que les étudiants se forment eux-même l'esprit, et j'aime pas l'idée du bétail que l'on nourrit !
Bref, je me demande s'il n'est pas possible de produire des billets de bonnes pratiques pour l'encadrement des études comme je l'ai fait pour la pratique scientifique ? Question tabou ?
samedi 26 janvier 2019
La dénaturation des aliments ? Non, la dénaturation des protéines
La dénaturation ? Le mot recouvre un vaste ensemble de phénomènes, mais, notamment, il s'applique aux protéines, ces composés dont les molécules sont des enchaînements de résidus d'acides aminés. Les acides aminés ? Des composés dont les molécules comportent au moins un groupe amine, avec un atome d'azote lié à deux atomes d'hydrogène (-NH2) et un groupe acide carboxylique, avec un atome de carbone lié, d'une part doublement à un atome d'oxygène, et, d'autre part à un atome d'oxygène lié à un atome d'hydrogène. On représente la molécule ainsi :
Les protéines, pour y revenir, sont faites de dizaines à milliers de résidus d'acides aminés, et, quand on les représente, on ne peut évidemment pas montrer tous les atomes, de sorte qu'il faut plutôt penser à une sorte de pelote:
Et nous sommes maintenant prêts pour savoir ce qu'est la dénaturation des protéines : c'est un changement de conformation plus ou moins grand (pour des définitions de ce type, voir le Gold Book de l'International Union of Pure and Applied Chemistry, en l'occurrence https://goldbook.iupac.org/html/D/D01586.html).
Et nous pouvons maintenant examiner une question que je reçois ce matin:
Dans le cadre d'un travail portant sur la consommation sans utilisation de chaleur, c'est à dire le moyen d'obtenir des effets similaires à la chaleur sans pourtant l'utiliser, nous sommes ammenés à travailler sur la dénaturation.
Cependant, la dénaturation avec un effet mécanique nous pertube beaucoup car nous ne savons pas si elle est reproductible sur d'autres aliments que l'oeuf (lorsque qu'ils sont montés en neige).
Pourriez-vous, s'il vous plait, nous éclairés sur le sujet et si possible nous indiqués d'autres aliments sur lesquels cette effet est possible ?
Observons tout d'abord que la première phrase est étrange : une étude de "la consommation sans utilisation de chaleur"... Mais une consommation de quoi ? Le "c'est-à-dire" s'impose... mais là encore, je tique : "obtenir des effets similaires à la chaleur sans l'utiliser".
Bon, je suppose que mes interlocuteurs veulent savoir si d'autres moyens que la chaleur permettent d'obtenir des moyens que permet la chaleur. Et là, il y en a beaucoup... notamment depuis que Rumford et Joule ont établi une équivalence entre chaleur et travail mécanique, ou que l'on a compris que la lumière était une forme d'énergie, par exemple. En réalité, les formes d'énergie sont interconvertibles, jusqu'à la matière, qui correspond à de l'énergie (on se souvient de la fameuse équation dite d'Einstein E = m c²).
Bon, mais cela, c'est presque toute l'histoire de la physique, et je ne vais pas résumer cela dans un billet de blog ! J'arrive donc à la suite de la question, à savoir la dénaturation. Mes interlocuteurs parlent de la dénaturation des aliments... mais à part pour l'acception "changer la nature de", il n'y a pas, en cuisine, de dénaturation des aliments, mais seulement de dénaturation des protéines ou des autres macromolécules, comme dit dans la définition du Gold Book de l'IUPAC.
J'explique : un blanc d'oeuf, c'est 90 pour cent d'eau et 10 pour cent de protéines (une vingtaine de sortes). Quand on le chauffe, les molécules de protéines sont heurtées par les molécules d'eau qui sont alors plus rapides, et la structure repliée des protéines se déroule : les molécules de protéines sont dénaturées. Il se trouve que certaines de ces molécules dénaturées peuvent établir des liaisons assez fortes, et cela correspond à la coagulation (on observera que l'interface eau-air semble important : C. R. Thomas, D. Geer. Effects of shear on proteins in solution Biotechnology Letters, Springer Verlag, 2010, 33 (3), pp.443-456).
Mais il y a d'autres protéines pour lesquelles la dénaturation ne s'accompagne pas de coagulation : par exemple, quand on chauffe du tissu collagénique, il est dissocié, le collagène est dénaturé, mais il n'y a pas de coagulation.
Sans chaleur, maintenant
Il est exact que quand on cisaille un blanc d'oeuf, les protéines subissent les mêmes types de déformation, et peuvent également coaguler : c'est peut-être là l'explication du grainage des blancs d'oeufs trop battus.
Et cela vaut pour n'importe quelle protéine... mais pas pour des aliments ! Ainsi, les protéines globulaires se trouvent aussi bien dans l'oeuf que dans les viandes, les poissons, mais aussi les légumineuses... et tous les tissus vivants, végétaux ou animaux : les êtres vivants utilisent des protéines comme "briques" (par exemple, le collagène) ou comme "ouvriers", qui sont nommés enzymes.
Mais, je le répète, ce sont les protéines qui sont dénaturées, pas les aliments.
Les protéines, pour y revenir, sont faites de dizaines à milliers de résidus d'acides aminés, et, quand on les représente, on ne peut évidemment pas montrer tous les atomes, de sorte qu'il faut plutôt penser à une sorte de pelote:
Et nous sommes maintenant prêts pour savoir ce qu'est la dénaturation des protéines : c'est un changement de conformation plus ou moins grand (pour des définitions de ce type, voir le Gold Book de l'International Union of Pure and Applied Chemistry, en l'occurrence https://goldbook.iupac.org/html/D/D01586.html).
Et nous pouvons maintenant examiner une question que je reçois ce matin:
Dans le cadre d'un travail portant sur la consommation sans utilisation de chaleur, c'est à dire le moyen d'obtenir des effets similaires à la chaleur sans pourtant l'utiliser, nous sommes ammenés à travailler sur la dénaturation.
Cependant, la dénaturation avec un effet mécanique nous pertube beaucoup car nous ne savons pas si elle est reproductible sur d'autres aliments que l'oeuf (lorsque qu'ils sont montés en neige).
Pourriez-vous, s'il vous plait, nous éclairés sur le sujet et si possible nous indiqués d'autres aliments sur lesquels cette effet est possible ?
Observons tout d'abord que la première phrase est étrange : une étude de "la consommation sans utilisation de chaleur"... Mais une consommation de quoi ? Le "c'est-à-dire" s'impose... mais là encore, je tique : "obtenir des effets similaires à la chaleur sans l'utiliser".
Bon, je suppose que mes interlocuteurs veulent savoir si d'autres moyens que la chaleur permettent d'obtenir des moyens que permet la chaleur. Et là, il y en a beaucoup... notamment depuis que Rumford et Joule ont établi une équivalence entre chaleur et travail mécanique, ou que l'on a compris que la lumière était une forme d'énergie, par exemple. En réalité, les formes d'énergie sont interconvertibles, jusqu'à la matière, qui correspond à de l'énergie (on se souvient de la fameuse équation dite d'Einstein E = m c²).
Bon, mais cela, c'est presque toute l'histoire de la physique, et je ne vais pas résumer cela dans un billet de blog ! J'arrive donc à la suite de la question, à savoir la dénaturation. Mes interlocuteurs parlent de la dénaturation des aliments... mais à part pour l'acception "changer la nature de", il n'y a pas, en cuisine, de dénaturation des aliments, mais seulement de dénaturation des protéines ou des autres macromolécules, comme dit dans la définition du Gold Book de l'IUPAC.
J'explique : un blanc d'oeuf, c'est 90 pour cent d'eau et 10 pour cent de protéines (une vingtaine de sortes). Quand on le chauffe, les molécules de protéines sont heurtées par les molécules d'eau qui sont alors plus rapides, et la structure repliée des protéines se déroule : les molécules de protéines sont dénaturées. Il se trouve que certaines de ces molécules dénaturées peuvent établir des liaisons assez fortes, et cela correspond à la coagulation (on observera que l'interface eau-air semble important : C. R. Thomas, D. Geer. Effects of shear on proteins in solution Biotechnology Letters, Springer Verlag, 2010, 33 (3), pp.443-456).
Mais il y a d'autres protéines pour lesquelles la dénaturation ne s'accompagne pas de coagulation : par exemple, quand on chauffe du tissu collagénique, il est dissocié, le collagène est dénaturé, mais il n'y a pas de coagulation.
Sans chaleur, maintenant
Il est exact que quand on cisaille un blanc d'oeuf, les protéines subissent les mêmes types de déformation, et peuvent également coaguler : c'est peut-être là l'explication du grainage des blancs d'oeufs trop battus.
Et cela vaut pour n'importe quelle protéine... mais pas pour des aliments ! Ainsi, les protéines globulaires se trouvent aussi bien dans l'oeuf que dans les viandes, les poissons, mais aussi les légumineuses... et tous les tissus vivants, végétaux ou animaux : les êtres vivants utilisent des protéines comme "briques" (par exemple, le collagène) ou comme "ouvriers", qui sont nommés enzymes.
Mais, je le répète, ce sont les protéines qui sont dénaturées, pas les aliments.
vendredi 25 janvier 2019
Les deux dimensions de la cuisson de la viande
Il y a des cas simples où une cause provoque un effet et un seul : si j'appuie sur une sonnette, ça sonne ; ou si je fouette un blanc en neige, il mousse.
Mais il y a des cas plus compliqués où il y a plusieurs effets simultanés, et c'est le cas pour la cuisson de la viande.
Commençons par indiquer que la viande (pensons à un biceps, ou un quadriceps), c'est donc un morceau de chair, fait essentiellement de tissu musculaire. Cette matière est elle-même faite de "fibres musculaires", sorte de tubes très fins, alignés parallèlement, et groupés en "faisceaux" par du "tissu collagénique", lequel tissu fait d'ailleurs aussi la "peau" des fibres. A l'intérieur des fibres, de l'eau et des protéines, principalement.
Pour comprendre ce qui se passe quand on cuit, il faut avoir, de surcroît, l'information selon laquelle il existe des protéines qui coagulent à la chaleur (pensons au blanc d'oeuf), et d'autres qui ne coagulent pas.
Or l'intérieur des fibres musculaires comprend de l'eau et des protéines qui coagulent, comme le blanc d'oeuf, alors que le tissu collagénique est fait de protéines (le "collagène") qui ne coagulent pas ; en revanche, le tissu collagénique chauffé se défait, libérant dans un liquide environnant du collagène dégradé, que l'on nomme la gélatine. Ajoutons enfin qu'avant de se défaire, le tissu collagénique se contracte, ce qui explique que la viande chauffée perde du jus : du liquide de l'intérieur est expulsé lors de cette contraction.
Avec cela, nous voyons que quand on chauffe à haute température, il y a plusieurs effets :
- à court terme, la viande se contracte et perd du jus... tandis que l'intérieur des fibres coagule, donc durcit. La viande devient dure, donc perd sa tendreté ; simultanément elle perd de la jutosité
- à plus long terme, la chaleur dissocie le tissu collagénique, donc permet une dissociation des faisceaux, ce qui laisse croire que la viande est "attendrie". En réalité, elle l'est pour la pièce entière, mais pas pour chaque fibre indépendamment.
Rapporter un manuscrit scientifique ? Le summum de l'intelligence, c'est la bonté et la droiture
La principale mission est de s'assurer que le manuscrit est digne de figurer dans le corpus des articles scientifiques publiés, à savoir des points solides de la pensée. Cela impose que le manuscrit soit rigoureux, bien fait, bien écrit, et, surtout, que le travail scientifique soit bon.
Un bon travail scientifique ? On aura raison de se reporter à la méthode des sciences de la nature, qui passent par cinq étapes essentielles, réunies ici sur la figure :
Le phénomène est-il bien, clairement, identifié ? Les caractérisations quantitatives sont-elles bien faites ? Les "ajustements" sont-ils rigoureux ? Les interprétations sont-elles prudentes ? Les expériences sont-elles validées ?
Pour chacune de ces questions, il y a mille points à vérifier, et, comme on peut se reporter aux règles des bonnes pratiques en science, je n'en prend qu'un : la description des expériences (partie "Matériels et méthodes") est elle suffisante pour que l'on puisse refaire l'expérience ? Et chaque matériel, chaque opération sont-ils justifiés ? Là encore, on pourra s'aider des "DSR" que nous avons proposés.
Mais passons sur tout cela, pour revenir à une autre perspective : l'état d'esprit avec lequel l'évaluation du manuscrit soumis doit se faire. On n'aura pas de difficulté à admettre que le travail d'évaluation doit se faire avec un état d'esprit positif et rigoureux, mais avec pour objectif l'avancement des sciences.
J'ajoute que je suis partisan d'une évaluation complètement anonyme. C'est une position personnelle, mais fondée sur l'expérience : quand un ami soumet un manuscrit, on est trop indulgent si l'on sait que c'est un ami et que l'on a un a priori favorable (parce que, évidemment, nos amis sont de bons scientifiques) ; inversement, quand on reçoit un manuscrit de quelqu'un que l'on n'aime pas ou dont on sait qu'il fait souvent du travail médiocre, on a un a priori négatif, et l'on risque d'être trop sévère. D'autre part, je crois que l'anonymat inverse, des éditeurs vis-à-vis des auteurs, permet que l'on puisse dire les choses telles qu'elles doivent être dites.
D'autre part, dans ces évaluations, l'objectif n'est pas de "soumettre à des pairs", comme on le dit trop souvent dans une formule trop vague pour être utile, mais de soumettre à des pairs en vue d'une amélioration du travail finalement publié. Oui, j'insiste : les rapporteurs doivent aider les scientifiques à améliorer leurs manuscrits.
À une certaine époque, quand les revues scientifiques étaient submergées et qu'elle n'avaient pas la place de tout publier, les rapporteurs avaient pour consigne d'être sévères et de proposer des raisons de rejet des manuscrits ; et, quand cette consigne n'était pas données, les éditeurs eux-mêmes étaient chargés de répondre aux auteurs que le manuscrit était en dehors du champ d'intérêt de la revue. C'était terrible pour les auteurs, qui, ayant parfois soumis de bons manuscrits, se voyaient obligés d'aller de revue en revue, changeant le format (du travail inutile), pour arriver à être publié... et en recevant parfois des conseils contradictoires, des rapporteurs qui n'étaient ni toujours bons, ni toujours bienveillants. Je me souviens, personnellement, avoir eu le même manuscrit refusé deux fois, d'abord au motif qu'il était verbeux, puis au motif qu'il était trop concis !
Mais, aujourd'hui que nous avons des documents en ligne, la place n'est plus limitée que par la nécessaire concision de la publication scientifique, par la clarté, avec de surcroît la possibilité de fournir les données par ailleurs, en "matériel supplémentaire" ou sur des sites de "données ouvertes".
Reste donc la question de l'évaluation des manuscrits, pour ce qu'ils sont, et non plus en fonction de circonstances extérieures. L'expérience de la revue "Notes Académiques de l'Académie d'agriculture de France" (N3AF) m'a montré que les rapporteurs ont tout intérêt à être mesurés dans leurs propos, et à ne pas outrepasser leurs droits. On ne leur demande pas de juger, mais de rapporter, à savoir commenter ce qui est écrit en vue de l'amélioration. On ne leur demande plus d'être des bourreaux, mais, au contraire, d'aider les auteurs à améliorer leurs manuscrits jusqu'à ce que ces derniers soient de qualité scientifique, publiables.
L'arbitraire, le goût personnel, ne sont pas de mise. La question est de savoir si l'argumentation est solide, si le texte est clair, si les données sont bien produites, si les interprétations sont prudentes, si les résultats sont validés... Bref, si le travail scientifique a été bien fait.
Et j'ajoute que la relation, qui doit changer, doit encourager le dialogue scientifique anonyme, en vue, donc, de la publication de manuscrits améliorés par ce dialogue.
Une nouvelle ère s'ouvre !
jeudi 24 janvier 2019
> Bonnes pratiques : à propos des "points aberrants"
En sciences de la nature, il y a la question très compliquée des points aberrants, ce que l'on nomme en anglais des outlyers. De quoi s'agit-il ? Je propose de partir d'un exemple simple, puis de tirer les leçons de l'analyse de ce cas élémentaire.
Un exemple imaginaire
Imaginons le physicien allemand Georg Ohm qui met en série une pile et une résistance électrique.
Il applique une différence de potentiel (une "tension électrique") et mesure l'intensité du courant. Puis il applique une autre différence de potentiel, à l'aide d'une autre pile, et obtient une autre intensité électrique. Et il fait cela pour plusieurs différences de potentiel, mesurant chaque fois l'intensité électrique.
Ayant ces données, il trace un diagramme, où les deux mesures forment les coordonnées de points... et il observe que ces points semblent s'aligner, qu'il y a une proportionnalité entre l'intensité électrique et la différence de potentiel (quand on double la différence de potentiel, on double l'intensité, par exemple).
Jusque là, tout va bien... sauf que les points ne sont pas parfaitement alignés, en réalité. Mais comme les mesures sont (toujours) imprécises, il se dit que la "loi" de proportionnalité est valable, et il la publie.
Oui, mais imaginons qu'il y ait eu une circonstance quelconque qui, pour une mesure, fait une perturbation qui engendre un point de mesure très éloigné des autres. Que faire ?
Évidemment, la première chose à faire est de répéter l'expérience particulière qui étonne, et, alors, deux cas se présentent :
- soit on retrouve la valeur bizarre
- soit on trouve ensuite des valeurs qui correspondent mieux à la loi de proportionnalité qui semble s'imposer expérimentalement.
Le cas le plus simple est celui où l'on retrouve la valeur bizarre. Si cette valeurs apparaît expérimentalement plusieurs fois, ce n'est pas à nous de dire que l'expérience est mauvaise et que la loi de proportionnalité s'impose; nous devons nous interroger sur la raison de cet écart à la proportionnalité, en imaginant soit que l'expérience particulière que nous avons faite ne permet pas de voir cette proportionnalité, soit que la nature n'a pas mis là de proportionnalité.
Ainsi, au cours de mes recherches, je me souviens avoir mesuré la viscosité d'un sirop de sucre à l'aide d'une bille que nous laissions tomber et dont nous mesurions la vitesse. La variation était régulière... mais quand le sirop était très visqueux, le comportement de la bille de venait bien différent de celui décrit par la loi classique, un peu comme pour le point aberrant indiqué ci-dessus. A l'analyse, il était facile de voir, pour ce cas très simple, que le récipient, étroit, ne permettait pas aux écoulements de se faire librement, ce qui modifiait le résultat.
Les valeurs bizarres sont en réalité très intéressantes, car il y a cet adage qui stipule que lorsqu'on fait une expérience et que l'on obtient le résultat qu'on attendait, on a une confirmation, mais si l'on a un résultat que l'on n'attendait pas, alors on a peut-être une découverte.
Considérons maintenant le cas où, répétant l'expérience, au moins celle particulière qui a fait apparaître le point aberrant, on trouve une valeur qui correspond mieux à la loi de proportionnalité. Là, c'est ennuyeux, car on est en réalité face à deux valeurs tout aussi probables (même s'il y a cette présomption de proportionnalité qui semble donner plus de poids à une valeur bien alignée), de sorte que l'on doit faire une autre répétition.
Ici, il faut quand même que j'observe, pour ceux qui l'ignorent, que l'expérience décrite pour la mesure de l'intensité et du potentiel électrique se fait en quelques instants, mais que, souvent, la répétition d'une expérience ne se fait pas en un claquement de doigts : certaines expériences prennent des mois, voire des années, de sorte qu'il est essentiel de bien choisir la stratégie que l'on utilise. Pour des expériences comme la détection du boson de Higgs ou des ondes gravitationnelles, il hors de question de décider légèrement de répéter une expérience, et l'on doit avoir une stratégie très intelligente -dans le cadre des bonnes pratiques-, c'est-à-dire de ne pas céder à ses croyances ou à ses fantasmes. Admettons ainsi que deux mesures semblent correspondre, alors qu'une troisième valeur est bizarre ; il y a lieu de mettre en œuvre des statistiques et d'afficher des résultats avec des probabilités, pas plus
Et l'on retrouve ici cette idée que la science n'est pas en train de démontrer des théories, mais plutôt de les réfuter : les valeurs bizarre que l'on ne retiendra pas doivent être conservées, et elles doivent notamment être signalées lors de la publication d'un résultat.
Un exemple
A titre d'exemple, le cas le pire que nous ayons rencontré dans notre groupe était à propos de la dégradation d'un composé, dans des conditions particulières très rigoureusement définies : nous utilisions des matériels très propres, des produits très purs, des conditions très exactement contrôlées. Lors d'une première expérience (3 semaines de travail), nous avons mesuré la vitesse de dégradation du composé. Puis, quand nous avons répété l'expérience (nous répétons toutes nos expériences au moins trois fois), nous avons obtenu une dégradation beaucoup plus lente.
Évidemment la première chose à faire était de répéter encore l'expérience et nous avons retrouvé la dégradation plus lente. Je répète que ce qui se dit ici en quelques mots correspond à des semaines de travail... pour donner à évaluer le sentiments des chercheurs face à ces points aberrants, que seuls les malhonnêtes occultent (la poussière sous le tapis). Bref, nous n'avons jamais réussi à retrouver la première vitesse de dégradation, qui semble donc être aberrante, mais que faire, devant une telle situation ? On se doute que nous avons tout analysé en détail : repris les cahiers de laboratoire pour voir comment les choses avaient été faites, par exemple... mais rien.
Dans un tel cas, la bonne pratique s'impose : valider les mesures ultérieures par une autre expérience, différente, ce qui correspond à des "validations". Mais, aussi, lors d'une publication du résultat, évoquer ce premier résultat qui peut découler de causes innombrables : n'a-t-on pas vu, au centre de recherches d'études des particules de Genève, une oscillation d'un signal électrique due au passage du TGV près de l'anneau de collision ?
Un exemple imaginaire
Imaginons le physicien allemand Georg Ohm qui met en série une pile et une résistance électrique.
Il applique une différence de potentiel (une "tension électrique") et mesure l'intensité du courant. Puis il applique une autre différence de potentiel, à l'aide d'une autre pile, et obtient une autre intensité électrique. Et il fait cela pour plusieurs différences de potentiel, mesurant chaque fois l'intensité électrique.
Ayant ces données, il trace un diagramme, où les deux mesures forment les coordonnées de points... et il observe que ces points semblent s'aligner, qu'il y a une proportionnalité entre l'intensité électrique et la différence de potentiel (quand on double la différence de potentiel, on double l'intensité, par exemple).
Jusque là, tout va bien... sauf que les points ne sont pas parfaitement alignés, en réalité. Mais comme les mesures sont (toujours) imprécises, il se dit que la "loi" de proportionnalité est valable, et il la publie.
Oui, mais imaginons qu'il y ait eu une circonstance quelconque qui, pour une mesure, fait une perturbation qui engendre un point de mesure très éloigné des autres. Que faire ?
Évidemment, la première chose à faire est de répéter l'expérience particulière qui étonne, et, alors, deux cas se présentent :
- soit on retrouve la valeur bizarre
- soit on trouve ensuite des valeurs qui correspondent mieux à la loi de proportionnalité qui semble s'imposer expérimentalement.
Le cas le plus simple est celui où l'on retrouve la valeur bizarre. Si cette valeurs apparaît expérimentalement plusieurs fois, ce n'est pas à nous de dire que l'expérience est mauvaise et que la loi de proportionnalité s'impose; nous devons nous interroger sur la raison de cet écart à la proportionnalité, en imaginant soit que l'expérience particulière que nous avons faite ne permet pas de voir cette proportionnalité, soit que la nature n'a pas mis là de proportionnalité.
Ainsi, au cours de mes recherches, je me souviens avoir mesuré la viscosité d'un sirop de sucre à l'aide d'une bille que nous laissions tomber et dont nous mesurions la vitesse. La variation était régulière... mais quand le sirop était très visqueux, le comportement de la bille de venait bien différent de celui décrit par la loi classique, un peu comme pour le point aberrant indiqué ci-dessus. A l'analyse, il était facile de voir, pour ce cas très simple, que le récipient, étroit, ne permettait pas aux écoulements de se faire librement, ce qui modifiait le résultat.
Les valeurs bizarres sont en réalité très intéressantes, car il y a cet adage qui stipule que lorsqu'on fait une expérience et que l'on obtient le résultat qu'on attendait, on a une confirmation, mais si l'on a un résultat que l'on n'attendait pas, alors on a peut-être une découverte.
Considérons maintenant le cas où, répétant l'expérience, au moins celle particulière qui a fait apparaître le point aberrant, on trouve une valeur qui correspond mieux à la loi de proportionnalité. Là, c'est ennuyeux, car on est en réalité face à deux valeurs tout aussi probables (même s'il y a cette présomption de proportionnalité qui semble donner plus de poids à une valeur bien alignée), de sorte que l'on doit faire une autre répétition.
Ici, il faut quand même que j'observe, pour ceux qui l'ignorent, que l'expérience décrite pour la mesure de l'intensité et du potentiel électrique se fait en quelques instants, mais que, souvent, la répétition d'une expérience ne se fait pas en un claquement de doigts : certaines expériences prennent des mois, voire des années, de sorte qu'il est essentiel de bien choisir la stratégie que l'on utilise. Pour des expériences comme la détection du boson de Higgs ou des ondes gravitationnelles, il hors de question de décider légèrement de répéter une expérience, et l'on doit avoir une stratégie très intelligente -dans le cadre des bonnes pratiques-, c'est-à-dire de ne pas céder à ses croyances ou à ses fantasmes. Admettons ainsi que deux mesures semblent correspondre, alors qu'une troisième valeur est bizarre ; il y a lieu de mettre en œuvre des statistiques et d'afficher des résultats avec des probabilités, pas plus
Et l'on retrouve ici cette idée que la science n'est pas en train de démontrer des théories, mais plutôt de les réfuter : les valeurs bizarre que l'on ne retiendra pas doivent être conservées, et elles doivent notamment être signalées lors de la publication d'un résultat.
Un exemple
A titre d'exemple, le cas le pire que nous ayons rencontré dans notre groupe était à propos de la dégradation d'un composé, dans des conditions particulières très rigoureusement définies : nous utilisions des matériels très propres, des produits très purs, des conditions très exactement contrôlées. Lors d'une première expérience (3 semaines de travail), nous avons mesuré la vitesse de dégradation du composé. Puis, quand nous avons répété l'expérience (nous répétons toutes nos expériences au moins trois fois), nous avons obtenu une dégradation beaucoup plus lente.
Évidemment la première chose à faire était de répéter encore l'expérience et nous avons retrouvé la dégradation plus lente. Je répète que ce qui se dit ici en quelques mots correspond à des semaines de travail... pour donner à évaluer le sentiments des chercheurs face à ces points aberrants, que seuls les malhonnêtes occultent (la poussière sous le tapis). Bref, nous n'avons jamais réussi à retrouver la première vitesse de dégradation, qui semble donc être aberrante, mais que faire, devant une telle situation ? On se doute que nous avons tout analysé en détail : repris les cahiers de laboratoire pour voir comment les choses avaient été faites, par exemple... mais rien.
Dans un tel cas, la bonne pratique s'impose : valider les mesures ultérieures par une autre expérience, différente, ce qui correspond à des "validations". Mais, aussi, lors d'une publication du résultat, évoquer ce premier résultat qui peut découler de causes innombrables : n'a-t-on pas vu, au centre de recherches d'études des particules de Genève, une oscillation d'un signal électrique due au passage du TGV près de l'anneau de collision ?
Inscription à :
Articles (Atom)