Affichage des articles triés par date pour la requête métier. Trier par pertinence Afficher tous les articles
Affichage des articles triés par date pour la requête métier. Trier par pertinence Afficher tous les articles

jeudi 31 août 2023

Le public n'a pas peur de la chimie : il ne la comprend pas.

 En ces temps politiquement corrects, commençons par une précaution : j'ai bien du mal à reprocher aux autres leurs ignorances (observez le pluriel, svp), puis je suis moi-même très ignorant. 

Cela étant, on nous dit que le public a peur de la chimie, et c'est un fait que les marchands de peur utilisent cette peur, ou prétendue peur, à leur avantage. Toutefois, le public a peur de la chimie ? 

 

Deux événements récents conduisent à nous interroger. 

 

Premier épisode, lors du Salon de l'agriculture : à la fin de ma présentation de la cuisine note à note, où j'ai fait goûter divers produits (observez le mot, svp), un petit boucher nivernais vient me voir et me demande si les produits que j'ai présentés sont « chimiques ». 

Je lui explique que le terme est ambigu (en général, pas en réalité), et qu'il y a des composés extraits de produits « naturels » (pour faire simple!), tel le saccharose extrait des betteraves, et des produits synthétisés. 

Synthétisés, demande-t-il ? Cherchant un exemple simple, je lui raconte qu'à l'âge de six ans, j'avais mis deux fils reliés une pile dans un verre d'eau afin de produire deux gaz, et de décomposer l'eau. 

Décomposer l'eau ? Oui décomposer l'eau : un après un certain temps, le verre est vide, l'eau a disparu, et l'on a rempli des bonbonnes de gaz que l'on nomme hydrogène et oxygène. Décomposer de l'eau : notre homme n'en revient pas. 

Profitant de son étonnement, je lui dit qu'il est également extrêmement facile de synthétiser de l'eau. Synthétiser de l'eau ? Oui, synthétiser de long, c'est-à-dire la fabriquer. Non pas par une simple condensation de vapeur, mais bien plutôt par la réorganisation de réactifs pour obtenir un produit, littéralement chimique, qui est l'eau. De l'eau en tous points indiscernables de l'eau d'eau du ciel. 

Et notre homme de s'éclairer, et de répéter, émerveillé : « Vous synthétisez de l'eau ! Vous synthétisez de l'eau ! Oui, vraiment, vous avez un beau métier ! ». 

Autrement dit, cet homme n'avait pas peur de la chimie, mais il ignorait tout de cette activité pourtant ancienne. 

 

Second épisode, plus récent encore. Ayant observé qu'en faculté de droit, nos amis juristes n'avaient pas des idées bien claires sur la différence entre un composé et une molécule (par pitié, rappelez vous ma remarque introductive), sachant que le milieu culinaire a le plus grand mal avec la notion de composé, j'enregistrais un podcast pour donner des explications. Des explications simples, à l'aide de balles diversement colorées. J'avais presque honte de délivrer des notions aussi simples (pour un physico-chimiste), mais un vague sentiment que cela devait être fait. Le résultat a été au delà de tous les espoirs... avec des emails de félicitations, de remerciements. 

Comprenons bien que je ne suis pas en train de me taper sur la poitrine, mais simplement d'observer que le public... ne comprend rien à la chimie, ne la connaît pas, et ne refuse pas de la connaître, est reconnaissant quand on lui explique. La conclusion générale de tout cela, c'est que nous nous trompons si nous acceptons l'idée que le public a peur de la chimie. Il n'a pas peur, mais il ignore tout d'un des transformations que certains savent faire. 

 

Généralisons un peu : puisque le public ignore la chimie, comment voulez-vous qu'il sache ce qu'est un OGM ? L'ADN ? La radioactivité ? De ce fait, il est facile, trop facile, d'utiliser cette ignorance pour manipuler des opinions. D'ailleurs, il est probable que cette manipulation se fasse par des personnes qui ignorent également la chimie, et qui sont seulement plus craintifs que les autres... mais c'est là une interprétation charitable, et l'on peut aussi imaginer que les marchands de peur, donc agissant à des fins commerciales, ou des gens de pouvoir, ayant volonté d'orienter les réactions du public à leur guise, se livrent à des manipulations à leur profit. Il y a donc urgence. 

Urgence à ne plus croire fautivement que le fait de vivre au XXIe siècle puisse éviter la présentation de notions élaborées au cours des siècles. Il y a une nécessité urgente d'un d'expliquer la chimie, la biologie, la physique, les sciences de la nature en général. Militons, expliquons !

lundi 21 août 2023

Techniques avancées


“Haute technologie”, “hautes technologies”...

 Il s'agit en réalité de techniques avancées, et pas de technologie, puisque la technique produite des objet, tandis que la technologie explore cette production, souvent en vue de l'améliorer.

Bref, la technique n'est pas plus de la technologie que le potage n'est de la soupe (la soupe, c'est une tranche de pain, que l'on mouille avec du potage), ou que les gourmets ne sont des gourmands (les gourmets sont les amateurs de vins, et les gourmands des amateurs de chère ; on a le droit d'être à la fois gourmand et gourmet !). 

Le monde technologique ne sort pas grandi de la faute qui consiste à nommer “technologie” ce qui est en réalité une technique, et le monde technique, non plus, d'ailleurs. 

Pourquoi cette faute ? Parce que les technologues ou ingénieurs n'ont pas suffisamment réfléchi à la différence entre technique et technologie ? Impossible de tenir une telle hypothèse, à l'encontre de personnes intelligentes, qui font un métier aussi important. 

Parce que la dénomination “technique” semble moins “élevée” que “technologie” ? Une sorte de politiquement correct qui fait un usage exagéré de la litote et de l'euphémisme ? Pour un métier... technique comme celui de la technologie, il y aurait là quelque paradoxe à confondre des notions qui sont au coeur de l'activité. 

Parce que les techniciens auraient honte de leur métier et se seraient accaparés indûment le titre de technologue ? S'il y a des question d'argent ou de statut, pourquoi pas... mais j'ai du mal à y penser, parce que je crois les métiers techniques extraordinaires. Pensons à un bon ébéniste, à un bon électricien, à un bon bourrelier... à un bon cuisinier ! 

 

Alors, pourquoi ? Parce que la langue française est contaminée par l'anglais ? Difficile à imaginer, car le mot “technique” existe en anglais, ainsi que le mot “technologie”, et c'est ici l'occasion de répéter que le MIT, institution qui forme des ingénieurs parmi les meilleurs, a un nom qui est Massachusetts Institute of Technology, institut de technologie du Massachusetts. Y aurait-il une acception généralisante du mot technologie, qui regrouperait des techniques apparentées. Je viens de relire plusieurs articles de … technologie, et je n'ai pas vu le mot employé régulièrement dans ce sens. 

 

Bref, pourquoi la confusion ? 

 

Je crois la question importante, contrairement à des personnes à qui je m'en suis ouvert récemment, et qui la balayaient rapidement (c'est généralement de la mauvaise foi) en disant que seul compte le travail que l'on fait, et que ces détails terminologiques n'ont pas d'importance. 

A quoi je réponds aussitôt que tout compte : tout travail qui mérite d'être fait mérite d'être bien fait, et plus encore quand de la transmission est en jeu, ou , plus exactement, quand est en jeu de la transmission à des jeunes, c'est-à-dire de l'enseignement. La mission de l'enseignant n'est-elle pas de clarifier ? D'aider à comprendre ? 

De ce point de vue, la confusion des mots est très nuisible, donc critiquable. Et c'est ce qui motive évidemment ce billet. Certains adultes me disent que les combats terminologiques sont toujours perdus, mais c'est là un défaitisme auquel je ne veux pas céder, parce qu'il n'y a pas de démonstration que cela soit vrai. Faraday n'a-t-il pas réussi à introduire l'usage des mots “anode”, “ion”, “électrode”, etc. ? La grande entreprise de rénovation de la chimie, autour  de la révolution française, par  Louis Bernard Guyton de Morveau, avec Antoine Laurent de Lavoisier et quelques autres, n'a-t-elle d'abord pas été une rénovation terminologique, un bouleversement de la nomenclature ? Les grandes questions de la mécanique quantique n'ont elle pas porté sur l'interprétation, c'est-à-dire le sens, des mots que l'on utilisait ? Henri Poincaré, ce génie des mathématiques, n'a-t-il sans cesse insisté sur le fait que sa plus grande difficulté consistait à trouver des mots pour transmettre ses pensées, inconsciemment formées en lui, maniées sans l'usage des mots dans son esprit ? Ne baissons pas les bras. 

Luttons. Luttons au quotidien contre les usages galvaudés de “technique” et de “technologie”, car c'est ainsi que les techniciens feront un beau métier, et que les technologues feront aussi un beau métier, différent du précédent. Soyons vigilants à propos de technologie, et nommons technique ce qui en est. Car c'est ainsi que la Raison est grande.

jeudi 3 août 2023

Quelle différence entre un outil et un ustensile ?

Le monde technique fait-il usage d'outils ? d'ustensiles ? On parle effectivement d'ustensiles de cuisine, n'est-ce pas ? 

 

Pour des questions terminologiques si fines, rien ne vaut l'étymologie, et notamment celle qui est colligée par le Trésor de la langue française informatisé. 

 

Et c'est ainsi que l'on trouve : 

 ustensiles :  Tout ce qui est nécessaire dans une maison (meubles, outils, objets domestiques).  Objet ou accessoire de conception simple, à usage domestique, servant en particulier à la cuisine.
 

Avec l'étymologie suivante : 

Étymol. et Hist. 1. a) 1374 utencilles plur. « ensemble des objets servant à l'usage domestique » (Ordonnance au sujet des finances du duc de Bourbon ds HAVARD: tous les utencilles de linge de table, de vaisseaulx de cuisine, d'eschansonnerie); 1389-92 utenciles d'ostel (Registre criminel du Châtelet, éd. Duplès-Agier, t. 2, p. 259), a désigné également les objets servant à l'exercice d'un métier (1407, Chartes confisquées aux bonnes villes du Pays de Liège, publ. par Em. Fairon, p. 307 1508, Comptes de Dépenses de la construction du château de Gaillon, éd. A. Deville, p. 520), empl. dans lequel il a été évincé par outil* (a. fr. ostil); les formes utencile, utensile, parfois fém. (v. FEW t. 14, p. 87) sont att. jusqu'au mil. du XVIIIe s. (Trév. 1740); b) fin du XVIe s. fig. (DESHOULIÈRES, Poesies, t. 1, p. 82 ds LITTRÉ: Grands savantas, nation incivile, Dont Calepin est le seul ustensile); c) 1610 sens grivois (BÉROALDE DE VERVILLE, Moyen de parvenir, éd. H. Moreau, A. Tournon, p. 133); d) 1881 « maîtresse d'un souteneur » (RIGAUD, Dict. arg. mod.); 2. a) 1472 (en parlant de soldats en garnison dans une ville) paier les ustencilles « payer les dépenses de leur entretien quotidien » (Lettre de Louis XI, éd. J. Vaesen et E. Charavay, t. 5, p. 77); b) 1636 (MONET: Utansiles de gens de guerre [...] que l'hote leur fournit tant qu'il les loge); cf. 1680 être obligé à la fourniture de l'ustencile (RICH.). Utensile empr. au lat. utensilia, mot de la lang. parlée (v. ERN.-MEILLET) « objets nécessaires, meubles, ustensiles », plur. neutre de utensilis « dont on peut faire usage » (dér. de uti « user, se servir de, employer »); ustensile p. altér. de utensile d'apr. user*, v. aussi outil. Fréq. abs. littér.: 335. Fréq. rel. littér.: XIXe s.: a) 543, b) 500; XXe s.: a) 417, b) 442.

Pour les outils, on a :
outils : Objet fabriqué, utilisé manuellement, doté d'une forme et de propriétés physiques adaptées à un procès de production déterminé et permettant de transformer l'objet de travail selon un but fixé.
 

Puis vient l'étymologie : 

Étymol. et Hist.1. Début du XIIe s. ustilz «équipement, objets nécessaires qu'on embarque pour un voyage» (S. Brendan, éd. I. Short et Br. Merrilees, 179); 2. 1174 «objet fabriqué qui sert à faire un travail» (GUERNES DE PONT-SAINTE-MAXENCE, S. Thomas, 5408 ds T.-L.); 3. XIIIe s. «membre viril» (Fabliaux, éd. A. de Montaiglon et G. Raynaud, t.1, p.235); 4. av. 1272 fig. «moyen d'action» (JEAN BRETEL, Jeux-partis, éd. A. Långfors, 41, 45); 5. av. 1615 «personne qui sert d'instrument, d'exécutant à une autre» (E. PASQUIER, Recherches de la France, 396, 412); 6. 1808 «personne maladroite, inefficace» (HAUTEL). Du b. lat. *, sing. de *, plur. neutre, altération du lat. class. «objets nécessaires, meubles, ustensiles», dér. de «se servir de, employer». Un croisement de avec «employer» (v. user) rend compte du -s- de *, mais le passage reste inexpliqué (cf. cependant FOUCHÉ, pp.184-185). Les formes b. lat. en os- sont att. dès le VIIIe-IXe s., v. FEW t.14, p.88a. Fréq. abs. littér.: 1188. Fréq. rel. littér.: XIXe s.: a) 712, b) 1746; XXe s.: a) 1653, b) 2514. Bbg. COMTE (H.). Philos. de l'outil. Thèse, Paris-Sorbonne, 1980, pp.38-44.

 

Et l'on comprend ainsi mieux : l'outil, c'est l'objet technique, et il n'y a d'ustensiles de cuisine que dans la mesure où certains objets ne sont pas d'abord des outils, mais utilisés comme des outils. 

 Corollaire : quand on parle d'objets techniques, en cuisine, on parlera plutôt d'outils que d'ustensiles. 

vendredi 21 juillet 2023

Réjouissons-nous : une partie de l'humanité est éclairée !

 
Au Salon de l'agriculture, deux événements, qui donnent des raisons d'espérer :

1. Juré au Concours général agricole, je suis à la même table qu'un charcutier de la Sarthe. Pour lui, le sel nitrité qui est utilisé dans les charcuteries ne pose par l'once d'un problème. Le nitrite est-il un produit chimique ? Peu importe, m'est-il répondu : on en a besoin en charcuterie professionnelle ; pas dans l'industrie, mais chez les artisans. Alors on l'utilise, un point c'est tout. Ses dangers ? Qu'importe : les couteaux aussi sont dangereux, m'est-il répondu. Il suffit de savoir l'utiliser . 

2. L'après-midi, après ma conférence sur la cuisine note à note, un petit homme reste, intéressé, pour des questions. C'est un boucher d'un petit village du Béarn. Il est intéressé par les composés qui ont été montrés (octénol, menthol, pipérine, etc.) : sont-ils "chimiques" ? 

Par ce terme, l'entretien montre qu'il voulait dire "de synthèse". Et la suite de l'entretien conduit à montrer qu'il ne sait pas ce qu'est un composé, de synthèse ou pas, et que cela l'intéresse beaucoup de comprendre. Pour figurer les choses, je prends l'exemple de la synthèse de l'eau, par électrolyse, puis sa recomposition. "Quoi, vous pouvez fabriquer de l'eau ?" Stupéfaction, oui, on peut fabriquer de l'eau, et décomposer l'eau. Tout cela expliqué en termes simples conduit notre homme a conclure  "Vous avez un merveilleux métier". Je lui réponds que lui aussi, a un très beau métier. Que tous les métiers sont beaux quand ils sont pratiqués avec passion par des gens honnêtes. N'est-ce pas ? 

 

Pour conclure, au delà de quelques individus qui troublent le public avec une idéologie douteuse (le gout du pouvoir ? de l'argent ? la peur animale des ignorants ? une névrose), je crois que nous devons nous réjouir  : nos concitoyens sont heureux de comprendre le monde où ils vivent. D'où un devoir d'explication ! 

 

Vive la chimie physique.

vendredi 2 juin 2023

Peut-on cuisiner sans connaître les résultats de la gastronomie moléculaire

 Et la réponse à cette question est "oui" : la preuve, on le fait depuis des siècles. Mais on peut faire mieux avec de la connaissance... laquelle nous fait véritablement humain. 

Ci-dessous, la discussion d'une discussion à ce propos. 

 

Là, on m'indique, sur Twitter, des échanges :

Vous ne faites pas de cuisine ? Ce n'est pas parce que la cuisine c'est de la chimie, que l'on en est conscient en cuisinant. Inutile de connaître la chimie pour cuisiner. 

Oui, mais on cuisine mieux avec. Par "mieux", j'entends "en comprenant pourquoi et sans se limiter à des méthodes et des recettes". 

Franchement, non, on ne cuisine pas mieux... cela permet d'expliquer le pourquoi du comment pour la cuisson de la viande par exemple mais j'ai bcp de potes chefs-cuisiniers qui n'ont jamais eu le moindre cours de chimie organique dans leur vie.

Lisez Hervé This.

Cette personne est en mode : "comme je ne serai jamais médecin, je n'ai pas besoin de comprendre comment fonctionne le corps humain". Son tweet est fascinant de connerie.

 

Ici, je suis invité par après, dans cette discussion, mais mon évocation me laisse dubitatif, en même temps qu'elle m'invite à mieux analyser la question.

 Tout d'abord, le premier des protagonistes répond à une discussion sur l'usage de la trigonométrie et de la chimie organique dans la vie quotidienne. Son interlocuteur répond que personne n'en fait, et c'est à ce stade qu'il évoque la cuisine. 

Là, on sent une différence de nature entre les activités : d'un côté, il y a les mathématiques (trigonométrie) et les sciences de la nature (chimie organique) ; de l'autre, une activité technique (la cuisine), laquelle se double d'art, parfois. Cela étant, dans la vie quotidienne, il est vrai que la trigonométrie est d'application rare : si l'emploi des théorèmes de Pythagore ou de Thalès servent parfois (rarement), je ne crois pas avoir souvent eu besoin d'utiliser autre chose chez le boulanger, le boucher, le médecin, le garagiste... Dans mon métier, elle est essentielle... mais mon métier est particulier, puisque, précisément, il est tout "calcul". De même, la chimie organique n'est jamais dans la vie quotidienne, et cela renvoie vers mes billets relatifs à la science de la nature qu'est la chimie : ce n'est pas parce que nous respirons que nous faisons de la chimie ; non, nous respirons, et des réactions organiques ont lieu, entièrement à notre insu d'ailleurs. La science n'est la la mise en oeuvre de la science. 

Quant à la cuisine, c'est une technique, et d'autres de mes billets disent bien que ce n'est pas une science de la nature. Certes, on peut explorer scientifiquement les phénomènes qui ont lieu quand on cuisine, et c'est là l'objet de la gastronomie moléculaire et physique, mais cette science ne se confond pas avec l'activité technique. Donc non, la cuisine, ce n'est pas de la chimie ! C'est la mise en oeuvre de procédés, de transformations, qui s'accompagnent de transformations physiques ou chimiques, parfois biologiques. 

Et oui, on peut très bien cuisiner sans se préoccuper des mécanismes de tous ces phénomènes. Après tout, les protocoles guident les gestes techniques. Et c'est seulement aux confectionneurs de protocoles que revient la charge de ne pas dire n'importe quoi, et d'utiliser les résultats de la gastronomie moléculaire et physique pour bien guider les techniciens qui exécuteront les opérations. Un exemple : quand on dit "battre un blanc en neige", pas besoin de connaître la chimie organique, la trigonométrie, ou la gastronomie moléculaire et physique ; c'est un fait que battre un blanc d'oeuf le fait foisonner. 

Bien sûr, quand on connaît les résultats de gastronomie moléculaire et physique à propos de ce phénomène, on bat mieux en neige, on fait une mousse plus abondante, ou de consistance différente, on se donne de la liberté. Mais cela n'est pas indispensable, et la preuve en est, en quelque sorte, que l'on a battu en neige sans attendre l'avènement de la gastronomie moléculaire. L'empirisme est une force merveilleuse ; pas satisfaisante pour certains esprits, pas très efficace, mais qui "fonctionne". &

 

Arrivons alors à la phrase qui dit que l'on cuisine mieux avec des connaissances de gastronomie moléculaire et physique : et là, comment ne serais-je pas mille fois d'accord ?

 Les échecs sont évités, l'innovation s'introduit, et, surtout, on devient véritablement humain, au lieu d'être la machine exécutant le procédé... ... pour la partie technique. 

Car pour la partie artistique, tout cela prend une autre dimension. En observant quand même que bien peu de praticiens sont des artistes au sens d'un Debussy ou d'un Mozart ; souvent, les cuisiniers sont des artisans. Oui, bien peu de cuisiniers sont des artistes au sens d'un Picasso ou d'un Rembrandt ; souvent, ils sont comme des peintres en bâtiment. J'ajoute que les deux catégories ne doivent pas être comparées : Picasso peindrait sans doute mal les murs d'un immeuble, et le peintre en bâtiment ne ferait pas Guernica. 

 

Finalement, je suis donc en parfait désaccord avec la phrase qui arrive ensuite : "Franchement, non, on ne cuisine pas mieux... "

Cette déclaration est ignorante de tous les apports de la gastronomie moléculaire et physique, désolé ; et cela prendrait trop de temps à donner tous les apports. Je renvois donc, notamment, vers les comptes-rendus des séminaires de gastronomie moléculaire. Vient alors "cela permet d'expliquer le pourquoi du comment pour la cuisson de la viande par exemple". Là encore, je n'insiste pas, mais c'est la même chose. 

Et pour terminer "mais j'ai bcp de potes chefs-cuisiniers qui n'ont jamais eu le moindre cours de chimie organique dans leur vie" : oui, jusqu'ici, les cuisiniers ont souvent eu une formation strictement technique... mais depuis quelques décennies, ils ont tous une formation technologique, qui a été transformée par la gastronomie moléculaire et physique, au point que les enseignants de cuisine ont maintenant des cours de cette discipline. Et cela fera des cuisiniers techniquement plus justes, plus précis, plus innovants, moins livrés aux aléas des ingrédients, moins démunis devant les infinies possibilités qu'ils rencontrent, capables de débloquer des situations, capables d'évoluer. Je renvoie, par exemple, vers l'exemple des sauces trop acides que l'on voudrait éviter de refaire.

vendredi 28 avril 2023

Le travail ?

Oui, le mot "travail" est un mot extraordinaire, à la fois merveilleux et terrible. 

Mais je ne veux pas "verser" dans le jeu des connotations idiosyncratiques, et je propose de revenir au "bon" sens, que je trouve le plus souvent dans le Trésor de la langue française informatisé (TLF, en ligne), avec l'étymologie : TRAVAIL1, -AUX, subst. masc. TRAVAIL2, -AILS, subst. masc. TRAVAIL, , subst. masc. Étymol. et Hist. A. 1. 1130-40 traval d'enfant « douleurs de l'accouchement » (Wace, Vie de Ste Marguerite, éd. E. A. Francis, 645); 2. ca 1140 « tourment » (Gaimar, L'Estoire des Engleis, éd. A. Bell, 16); 3. fin xiies. « fatigue, peine supportée » (Moniage Guillaume, éd. W. Cloetta, II, 5205). B. 1. a) Ca 1130 « peine que l'on se donne, efforts » (Lois de Guillaume, éd. J. E. Matzke, 28); 1209 (Guiot de Provins, Bible, éd. J. Orr, 2305); b) mil. xiiies. « peine que l'on se donne dans l'exercice d'un métier artisanal » [associé à painne] (G. Fagniez, Doc. rel. à l'hist. de l'industr. et du comm. en France, t. 1, p. 204 ds Gemmingen Arbeit, p. 104); 2emoit. xiiies. (Dit des Fevres ds Jongleurs et trouvères, éd. A. Jubinal, 129 ds T.-L.: De lor labor, de lor travail Vivent les fevres lëaument); 2. a) 1362-63 désigne le résultat de l'activité accomplie (Dehaisnes, Doc. [...] concernant l'hist. de l'art dans la Flandre, t. 1, p. 445 ds Gemmingen Arbeit, p. 107); b) 1676 « qualité de l'exécution d'un ouvrage » (Félibien, p. 760); 3. 1600 « activité professionnelle quotidienne nécessaire à la subsistance » (doc. ds H. Hauser, La Liberté du comm. et la liberté du travail sous Henri IV, p. 289 ds Gemmingen Arbeit, p. 109). C. Au plur. 1. 1611 désigne des actions difficiles, périlleuses, qui sont un titre de gloire pour leur auteur (J. Bertaut, Œuvres poét., p. 20); 2. 1616 « ensemble des recherches effectuées dans un domaine intellectuel donné » (A. d'Aubigné, Les Tragiques ds Œuvres, éd. E. Réaume et de Caussade, t. 4, p. 150: je veux [...] Me livrer aux travaux de la pesante histoire); 3. 1721 « activités propres à un domaine technique déterminé » (Montesquieu, Lettres persanes, p. 99: travaux des mines);1741 travaux domestiques (A.-C. Caylus, Féeries nouvelles, p. 571); 4. 1727 travaux publics (A.-M. de Ramsay, Les Voyages de Cyrus, p. 92); 5. 1768 travail forcé (Voltaire, L'Homme aux quarante écus, p. 72: Il faut effrayer le crime, oui sans doute; mais le travail forcé et la honte durable l'intimident plus que la potence); 1795 travaux forcés (Code pénal, tit. I, art. 6 d'apr. Brunot t. 9, p. 1042, note 3). D. 1. 1769 « modification interne que subit une matière, une substance » (Lemierre, La Peinture, p. 221: C'est elle [la nature] qui [...] Nuance au vaste sein de la terre en travail Le jaspe, le porphyre); 2. 1783 « action progressive exercée par un élément, un phénomène naturel » (Buffon, Hist. nat., Minéraux, t. 1, p. 152); 3. 1829 mécan. (G. Coriolis, Traité de la mécanique des corps solides..., Avertissement à la 1èreéd., p. IX ds Quem. DDL t. 41: je désigne par le nom de travail la quantité qu'on appelle assez communément puissance mécanique, quantité d'action ou effet dynamique). Déverbal de travailler*. Jusqu'au déb. du xvies. travail est souvent associé à peine (v. Gemmingen Arbeit, pp. 104-105) car le sens dominant est « fatigue, peine » qui peut avoir pour contrepartie une rétribution. Le sens de « activité professionnelle » devient très rare au xvies. pour revenir en force au xviies. sous l'infl. de travailler*. FEW t. 13, 2, p. 298, 290a; Gemmingen Arbeit, pp. 103-109.

mercredi 19 avril 2023

Eloge de la technologie

 Une sorte de paradoxe que de faire l'éloge de la technologie le dimanche, alors que la technologie est le métier de l'ingénieur, dont le nom a la même étymologie qu' "engigner" : le diable, raconte-t-on, engigna la mère de Merlin l'enchanteur, en vue de faire un pendant à Jésus Christ, de faire un fils qui perdrait l'humanité (mais un prêtre présent baptisa l'enfant à la naissance, de sorte qu'il perdit sa "malice", ne gardant que des pouvoirs surnaturels.

 Vive la technologie ? La technologie permet la réalisation de l'utopie qu'est la science quantitative. 

D'accord, mais plus précisément ? La technologie, c'est l'activité  qui cherche à appliquer les sciences quantitatives pour perfectionner les techniques. 

C'est un métier très particulier, et très extraordinaire puisqu'il transforme des connaissances en objets nouveaux du monde. 

Ces temps-ci, une partie frileuse du public refuse les avancées technologiques, les innovations techniques (et, même,  frémit à l'idée que la science poursuive son travail). Pourtant ces mêmes frileux utilisent des ordinateurs, des voitures, prennent le train, l'avion,  se brossent les dents avec des dentifrices dont ils ignorent tout de la constitution (pourtant bien perfectionnée par la technologie), portent des lunettes dont les verres sont des chefs-d'œuvre techniques... 

Oublions donc ceux-là pour le moment et concentrons-nous sur la technologie. Elle doit être un état d'esprit,  comme je vais essayer de le montrer avec un exemple personnel. Un exemple qui a l'inconvénient d'être personnel (pardon, le moi est haïssable), mais qui, de ce fait, a l'avantage d'être attesté (alors que beaucoup de ce que l'on entend est douteux, de seconde main, etc.). 

Cela se passe dans les années 1980 :  ayant compris que les protéines sont d'excellents  tensioactifs, qui permettent donc de faire des émulsions,  je vois une feuille de gélatine sur ma paillasse, au laboratoire. La gélatine ? C'est une matière faite de protéines. Peut-on  donc  faire une émulsion à partir d'eau, de gélatine et d'huile ? L'expérience n'est ni difficile ni longue,  et la réponse est immédiatement donnée : on obtient une émulsion. Toutefois on n'a pas fait là une grande découverte scientifique, et une saine méthode scientifique doit nous pousser à quantifier les phénomènes, en l'occurrence à caractériser quantitativement l'émulsion. Un microscope fut donc utilisé : apparurent des gouttelettes d'huiles dispersées dans l'eau. Sur de telles images, les molécules de gélatine n'apparaissent pas, évidemment, mais on sait  (pour 1000 raisons chimiques) qu'elles sont soit aux interfaces, soit dissoutes dans l'eau. Où sont-elles ? Il faut passer du temps à cette question, répéter l'expérience, regarder,  regarder encore et... ... soudain, on voit deux gouttelettes d'huile voisines fusionner, puis deux autres, deux autres,  et ainsi de suite, mais contrairement à une coalescence telle qu'il s'en produirait si l'on avait fouetté de l'huile dans l'eau pure, la coalescence particulière des émulsions d'huile dans l'eau stabilisées par de la gélatine cesse de coalescer à partir un certain moment. 

 Pourquoi ? Parce que l'émulsion est prise dans un gel physique. Une émulsion prise dans un gel  physique ? Et si l'on en faisait de la cuisine ? Cela, c'est mon invention des « liebigs » (du nom du chimiste allemand Justus von Liebig, évidemment). 

Remplaçons l'eau par un liquide qui a du goût, ajoutons  de la gélatine, ou tout autre composé qui permettra à la fois une émulsification et  une  gélification physique, utilisons de l'huile ou tout  autre corps gras sous forme liquide, et nous pourrons reproduire l'expérience, obtenir une espèce de sauce nommée liebig, un nouveau système, tout comme l'ont été mayonnaise,  crème fouettée,  parmentier, caramel, etc.. 

 

Moralité : les liebigs  sont une préparation nouvelle, maintenant bien comprise, fruit d'un transfert technologique. Il résulte de ce moment particulier  où l'on s'est demandé : "et en cuisine, qu'est-ce que cela donnerait ?" Ce moment particulier n'est pas un moment scientifique, mais un moment technologique. Vive la technologie !

mercredi 8 mars 2023

A propos d'Edouard de Pomiane

 
Un historien m'interroge, voire m'interpelle, à propos d'Edouard Pojersky de Pomiane, dont j'ai dit qu'il avait écrit beaucoup d'erreurs.

Je l'ai renvoyé vers un article où j'ai présenté le personnage, mais il faut que j'insiste : que j'explique que Pomiane fut un grand vulgarisateur, un remarquable écrivain gastronomique, mais pas un grand scientifique, du point de vue de la connaissance scientifique de la cuisine (au sens des sciences de la nature). Ce qui n'est pas une critique, mais une observation factuelle que j'explique ici.

Pomiane était microbiologiste à l'Institut Pasteur et il s'est beaucoup intéressé à la cuisine,  avec un esprit rationnel.

Il dit dans ses textes avoir expérimenté, mais on ne trouve pas de publications scientifiques à ce sujet. Il a eu un immense  succès populaire, avec des livres et avec une émission de cuisine, car il était fin, intelligent, enthousiate, plein d'énergie et d'humour.

Dont acte. Mais cela ne suffit pas pour faire de la science : ne pas confondre science, vulgarisation, cuisine, littérature, journalisme !

En réalité, beaucoup de ce qu'il a écrit à propos de la physique et de la chimie des phénomènes culinaires est faux (je n'y peux rien, désolé), notamment parce qu'il n'était pas physicien ni  chimiste, et que la cuisine n'est pas une affaire de microbiologie (sauf pour les questions de conservation ou d'hygiène).

Bien sûr, un microbiologiste a une formation scientifique, mais cela ne suffit pas toujours pour faire des travaux de physico-chimie.

De surcroît, la science, et notamment la gastronomie moléculaire, n'est pas dans le dogme, comme la vulgarisation scientifique, qui, elle, explique des théories, mais dans la réfutation.

Considérons un exemple : celui de la mayonnaise. Pomiane a des phrases extraordinairement ambiguës où il dit qu'il y a de l'eau et de l'huile mélangées intimement l'un dans l'autre en une émulsion. Certes, il y a de l'eau et de l'huile, et certes, la mayonnaise est une émulsion mais la description est mauvaise : il faut dire que des gouttelettes d'huile sont dispersées dans l'eau (une "solution aqueuse", plus exactement).

Disons-le encore plus simplement :  on prend de l'eau, on y met une gouttelette d'huile, puis une autre, puis encore une autre, et l'on obtient de l'eau chargée de gouttelettes d'huile, si tassées qu'elles ne peuvent plus bouger : la sauce tout entière ne coule plus. Et ce système physico-chimique est nommé "émulsions".

Ce que je viens de dire, c'est de la vulgarisation, un peu du dogme, et je m'empresse d'ajouter que la science précisément, cherche plutôt à réfuter cela. La science n'est pas intéressés a asséner  des propositions théoriques , mais, au contraire, elle cherche  en quoi ces descriptions sont fautives.

Par exemple pour la mayonnaise, dans les années 1980, certains disaient encore que les gouttelettes d'huile dans l'eau étaient stabilisées (en réalité, c'est une métastabilité) par des phospholipides, cette fameuse "lécithine" dont beaucoup parlent sans savoir ce que c'est. En réalité, pour les mayonnaises, les protéines présentes dans le jaune sont beaucoup plus importantes que les lécithine et si l'on ne veut pas se perdre dans les détails, on commencera par dire que la mayonnaise est stabilisée par les protéines.
Certes, les deux composés agissent, mais le principal, ce sont les protéines.

Pour en revenir à Pomiane, sa confusion ne lui a pas permis de véritablement fonder la gastronomie moléculaire parce qu'il confondait aussi la technique, la technologie, la science et l'art.
Il  introduisit sur le tard la "gastro-technie", mais si on le lit précisément, on voit que cette dernière est une espèce de chimère dont on ne sait pas exactement ce que c'est ;  en tout cas, ce n'est pas de la science à lire ses définitions, ce n'est pas de la technique non plus et ce n'est pas de l'art. Serait de la technologie ? Je n'en suis pas non plus sûr si l'on lit les mots qu'il écrit;

Bien sûr, si l'on est excessivement charitable ou enthousiaste, on peut dire que l'on va passer sur les mots, mais alors, autant autant confondre tout de suite le tournevis et le marteau, la casserole et la fourchette, le poivre et le sel, la molécule et l'atome !
Non, les mots ont une signification et celui qui n'utilise pas le sens des mots dans un but de clarté est soit confus, soit volontairement poète. On a le droit d'être enthousiaste, on a le droit d'avoir de l'humour, on a le droit de tout ce qu'on veut dans les limites de la légalité bien sûr,  mais on ne fera jamais de la science en confondant les émulsions avec les mousses, les gels avec les suspensions, les protéines avec les phospholipides, et cetera.

Déjà Jean-Anthelme Brillat-Savarin s'était posé en scientifique, alors qu'il était juriste (et se posait en "physiologiste, qu'il n'était pas), et il faut -on le sait- un exceptionnel "gastronome", au sens de la gastronomie littéraire. Scientifique de métier, Pomiane fut également un excellent gastronome littéraire, mais il faut prendre ses écrits en les interprétant, sans oublier son oeil souriant au-dessus de sa moustache.

mercredi 16 novembre 2022

Les "progrès" en cuisine


Une discussion intéressante hier avec des amis cuisiniers, alors que je faisais une formation d'une journée à Strasbourg.

Dans cette journée, j'ai discuté l'évolution de la cuisine, en montrant des images de plats importants des différentes époques depuis la Renaissance. Au début, il y avait essentiellement des bouillis et des rôtis, et, progressivement, on a vu apparaître des préparations bien plus élaborées, notamment quand le cuisinier français Marie-Antoine Carême, au tournant du 19e siècle, a introduit sa cuisine "monumentale" : cette fois : la cuisine prenait de la hauteur.

Puis on a vu des tas de changement en fonction des évolutions de l'approvisionnement, notamment quand ce sont introduites les tomates, ou les pommes de terre, après la découverte du Nouveau Monde, quand on a disposé d'ingrédients plus exotiques en abondance, telles les oranges (souvenons-nous que nos arrières grands-parents recevaient une orange pour Noël et que cela était considéré comme quelque chose d'extraordinaire).

Et ainsi de suite. Bref, ce l'on voit, notamment dans les dernières décennies, c'est que la cuisine a beaucoup évolué et que le saumon à l'oseille des frères Troisgros  (cuisiniers à Roanne) ne nous paraîtrait pas mériter aujourd'hui plus qu'un bib gourmand, et encore.

Bref la cuisine a toujours évolué et elle continuera de le faire.

Cela pour le résultat,  mais pour les moyens également : dans le temps, il y avait des pots en terre qui cassaient, et ce fut un progrès quand il y eut des casseroles en métal, et mieux encore quand on remplaça les casseroles en fonte ou en cuivre étamé par de l'acier inoxydable : cette fois-ci, plus de casse, plus de rouille...

Nous nous sommes habitués à ce progrès, mais combien il nous a facilité la vie !  Puis,  notamment dans les années 1960,  le Salon des arts ménagers introduisit les premiers appareils électriques : batteurs, broyeurs, et cetera. Et nous nous y  sommes tant habitués que, aujourd'hui, nous ne pourrions presque plus nous en passer.

Le micro-ondes fut une révolution et je propose de ne pas oublier pas qu'il coûtait initialement l'équivalent de d'environ 2000 €, alors que, aujourd'hui, on le trouve à 50 € seulement.

Chaque fois, il y a eu des résistances, et nombre de timorés ou  d'idéologues ont crié haro sur le baudet, dénonçant de prétendus dangers, de prétendus effets terribles qui évidemment n'existaient pas.
Mais on sait que les marchands de peur  profitent de la moindre occasion pour exercer leur activité néfaste, malhonnête, pernicieuse.

Mais bref, il y a toujours des changements, des évolutions, et j'espère qu'il y en aura encore beaucoup, car je n'oublie pas mon objectif : je veux que les cuisiniers aient un métier agréable, alors que, pour l'instant, ils sont debout, dans le bruit, dans la chaleur excessive et dans le stress ; sans compter que leurs mains énormes sont une démonstration de ce que le métier reste anormalement physique.

Il y a lieu de rénover tout cela sans tarder, et cela passera par de la technique bien pensée.
Pas des gadgets, non, mais de vrais objets techniques utiles. Cela a fait l'objet d'une discussion, hier, avec un ami cuisinier, mais non seulement cet homme avait un portable et un ordinateur, mais il n'a (évidemment) pas pu combattre les objectifs que j'ai évoqués ci-dessus, et qui sont le but, d'après lequel on peut déterminer les moyens.

C'est à propos de ces dernier qu'il  y a lieu de bien réfléchir... mais, surtout, il faut avancer. 



PS. Je n'oublie par que le mot "progrès" fait l'objet de devoirs de philosophie, au lycée par exemple, presque quotidiennement.

jeudi 12 mai 2022

Suite à la remise des diplomes d'AgroParisTech

 Lors de la dernière remise des diplomes d'AgroParisTech, un événement festif s'est politisé de façon déséquilibrée, ce qui a conduit la direction de l'Ecole à émettre le message suivant :


Communiqué de presse 12 mai 2022

 
Position dAgroParisTech
 

Établissement d'enseignement supérieur et de recherche, AgroParisTech a une mission de formation, de recherche, d’innovation, de transmission et de diffusion des connaissances.
 

Nous formons des ingénieurs du vivant, amenés à évoluer dans la complexité et dont le métier sera d'imaginer, de concevoir et de déployer des solutions. Nous nous inscrivons donc résolument dans une démarche constructive et considérons que les solutions se trouvent dans le progrès de la science et des technologies tout autant que dans les usages qui en sont et seront faits.
 

Notre volonté est de contribuer à répondre aux défis posés par le changement global, les menaces sur la biodiversité ainsi que ceux d'une alimentation suffisante, saine et durable pour l’ensemble de la population.
 

Comme il n'y a pas aujourd’hui et qu’il n’y aura pas demain de réponse unique à tous ces défis, nous exposons nos étudiants à une multiplicité de points de vue et à la nécessaire diversité des solutions à trouver et à déployer, dans les champs de l'agriculture, de l'alimentation, de la forêt, des territoires et de l'environnement.
 

Nous ne sommes donc pas surpris par la diversité des points de vue exprimés au cours d'une cérémonie qui a duré 3 heures, car ils traduisent l’ampleur des controverses engendrées par les thématiques qu’enseigne AgroParisTech. Parmi nos diplômés, certains travaillent dans la recherche, dans des coopératives agricoles, d'autres sinstallent comme exploitants agricoles, rejoignent des entreprises agro-alimentaires de toutes tailles, d'autres encore créent des start-up, déploient des politiques publiques au service des transitions, sinvestissent professionnellement dans les domaines de la santé et de la nutrition humaine, gèrent et protègent les milieux naturels et forestiers ou travaillent à la valorisation de la biomasse.
 

Cette cérémonie, préparée par nos diplômés, a montré que notre établissement remplissait sa mission : aider nos étudiants à choisir le sens qu'ils souhaitent donner à leurs études et à leur parcours professionnel. L'intervention de ces 8 diplômés, comme celles plus nombreuses de leurs camarades qui ont choisi d’autres voies, confirme que l’enseignement d’AgroParisTech s’inscrit au cœur des enjeux et débats qui traversent notre société. C’est aujourdhui plus vrai que jamais.
 

+ 33 6 82 44 48 63 / cecile.mathey@agroparistech.fr
A propos d’AgroParisTech
AgroParisTech est l’institut national des sciences et industries du vivant et de l’environnement, sous tutelle du Ministère de l’Agriculture et de l’Alimentation. Acteur de l’enseignement supérieur et de la recherche, ce grand établissement de référence au plan international s’adresse aux grands enjeux du 21e siècle : nourrir les hommes
en gérant durablement les territoires, préserver les ressources naturelles, favoriser les innovations et intégrer la bioéconomie.
L’établissement forme en s’appuyant sur la recherche et sur ses liens aux milieux professionnels des cadres, ingénieurs, docteurs et managers, dans le domaine du vivant et de l’environnement, en déployant un cursus ingénieur, une offre de master et une formation doctorale en partenariat avec de grandes universités françaises et
étrangères, ainsi qu’une gamme de formation professionnelle continue sous la marque "AgroParisTech Executive".Implantée sur 8 sites en France métropolitaine et Outre-mer, AgroParisTech développe une stratégie
d'alliances au niveau territorial par le biais de partenariats étroits avec les universités locales et leurs initiatives d'excellence. L’établissement se structure en 22 unités de recherche, une ferme expérimentale, une halle technologique, quatre tiers-lieux ouverts dits « InnLab » et compte plus de 2250 étudiants, dont 12% de doctorants, et 283 enseignants, chercheurs et enseignants-chercheurs. AgroParisTech est une grande école composante de l’Université Paris-Saclay et membre fondateur de ParisTech et Agreenium. www.agroparistech.fr

dimanche 8 mai 2022

The translation in English of a text that I published first in French, about the rigor in the use of words of chemistry


Rigourous terminology for concepts of chemistry: a base for rational choices.

Hervé This 1



1 INRAE, UMR 0782 SayFood, France.
 Correspondance :
Intae-AgroParisTech International Centre for Molecular and Physical Gastronomy
herve.this@inrae.fr

Translated from  This H. 2021. La rigueur terminologique pour les  concepts de la chimie : une base pour des choix de société rationnels, Notes Académiques de l'Académie d'agriculture de France / Academic Notes from the French Academy of Agriculture, 2021, 1, 1-15.




Abstract
Food-related decisions that engage communities are often based on chemical concepts. Therefore, the utmost terminological rigour is required. This article considers frequent examples of confusion, and concludes with a call for the introduction of chemistry lessons as early as primary school.


Keywords
chemistry, human food, public debate, controversies, terminological rigor, molecule, compound, fatty acid, triglyceride, minerals, natural product, chemical denomination





Introduction

Public debates about food often involve chemical objects: nitrates, nitrites (Pouliquen, 2020), fatty acids (INSERM, 2020), glyphosate (Foodwatch, 2020), acrylamide (Cérou, 2020), iron (Santé Magazine, 2020), curcumin (Lacamp, 2020), DNA (Bru, 2020), mineral salts (Mary, 2020), pesticides (Foodwatch, 2020), micro-plastics (Anses, 2020a), nano-particles (Anses, 2020b)... Unfortunately, some of those who intervene in these debates are ignorant of the exact nature of these compounds and products, or have negative perceptions of them, as the consultation of the references given above shows over and over again! In particular, the belief in a "good nature" - which forgets for example natural poisons such as hemlock or datura - is not new (Mill, 1874), but it continues to rage, while unfounded fears are heard (Kressmann, 2018).
The bad knowledge of the objects of chemistry is deleterious, in the public debates where these objects intervene, because it can lead to irrational positions and choices of the public and the elected officials, then to laws which risk to govern the collective life in an unacceptable way for whoever seeks more rationality and a better use of the public money (Vaulpré et Jaffré, 2020). Already Nicolas de Condorcet wrote, at a time when science was considered as a "natural philosophy": "Any society which is not enlightened by philosophers is deceived by charlatans". (Condorcet, 1791).
It is true that chemistry courses have been introduced in secondary school courses, but they are limited, and recent surveys show the weakness of France, from this point of view (Cabioch, 2020), compared to other countries in the world. Beyond questions of national industrial competitiveness, training in chemistry is essential for citizens to be able to make up their minds in the highly technical world in which they live today. As young people become adults, and eventually elected officials, Parliament has deemed it essential to strengthen the scientific and technological knowledge of elected officials through the Parliamentary Office for the Evaluation of Scientific and Technological Choices, created in the early 1980s (OPECST, 2020): scientific information and training (especially in chemistry) help to avoid erroneous ideas, either resulting from personal preconceptions or propagated by pressure groups... And the issue of insufficient knowledge of science, especially chemistry, is serious enough that it is frequently considered by states and international organizations, including UNESCO, which has been concerned with the popularization of natural sciences in the public service media (Naji, 2006).
In this article, we analyze a series of frequent confusions, with a view to discussing further the reasons why rigorous terminology is needed, especially for the objects of chemistry. We address readers who are trained in the natural sciences, but not all of them chemists, and we also examine presentations to citizens who are not always well educated in science, seeking to show why those who are in a position to abuse language might usefully avoid it in public debate.
We wish to establish that rigor is never excessive when discussing questions that involve chemical objects, at the risk of confusions that would make the bed of ideologues or dishonest people, or that would lead to the unreasoned fears that we have mentioned.


An anthology, before taking a step back
 

1. A first common error, in relation to chemistry, is the abuse of language that consists in speaking of "molecules" to refer to "chemical species", in particular  "compounds" (Myers, 2012). Chemistry hesitated for a long time, before considering -at last- that a molecule is an assembly of atoms, whereas a compound is a category of molecules that are all identical, a particular kind of "chemical species" for which there are atoms of more than one chemical element. To say that water is a molecule, for example, must be avoided, because it is false, in the modern sense of the word "molecule". For the public, water is a liquid, and for chemistry, water is a material, a  "substance" which can be in the vapor phase, or liquid, or solid, for example, depending on temperature and pressure conditions (Lide, 2005); generally, for the samples considered on Earth, this material is made of very many identical molecules: tens of thousands of billions of identical molecules per gram of water (IUPAC, 2004).
A detail that is useless for citizens trained in the natural sciences, but essential for all those who do not have sufficient training and who participate in public debates: each of the water molecules is made of one oxygen atom and two hydrogen atoms, which is conventionally noted H2O (Lower, 2020). Water is a "compound" (since its molecules are made of atoms of two different chemical elements: oxygen and hydrogen).
Finally, above we have made the assumption of an absolute purity of the samples, but we will see later (example 5) that it is interesting to distinguish this pure water (rare on the Earth), made only of water molecules, from the water we drink, which inevitably contains a number of "impurities", i.e. molecules which are not water molecules, or various ions (sodium, magnesium, chloride, nitrate, etc.).
What is said about water obviously applies to other compounds.
In any case, the abuse (or impropriety, depending on the case) of language which consists in speaking of "molecule" to evoke a chemical species has serious consequences: the author of this text can testify to having met a science journalist from a public service television channel who thought (and explained to his audience!) that there were 450 odorant molecules in wines, and this person was thinking of 450 particular objects, of 450 molecules of chemists, and not of 450 odorant compounds (chemical species). Because yes, wine contains a few hundreds of different odorant compounds (depending on the wine), but each of these compounds is present, in a bottle of wine, at a rate of hundreds of thousands of billions of molecules (Pons et al., 2017).
The practice of popularization conferences, as well as the questioning of passers-by in the street, show that this case was very far from being isolated: when the notion of molecules is declared to be known, the idea to which it corresponds is very often erroneous, without even going so far as to hope that the citizens know that the molecules of a liquid are all in movement.
Let us add that the confusions between "compounds" and "molecules"(or  "chemical species"), when they are not abuses of language, can result as much from insufficient knowledge of chemistry, notably of its vocabulary, as from the difficulty of thinking about categories, already discussed by Aristotle, then many others (Van Aubel, 1963), before being, for example, one of the pitfalls of teaching, notably that of "modern mathematics" (Thom, 1970).
This is one reason why the introduction of the modern notion of molecules was such a remarkable achievement of chemistry, due in particular to Amedeo Avogadro (1776-1856), that it remained the object of violent scientific controversy until the first half of the twentieth century: French chemists, notably around Marcellin Berthelot, refused the modern (yet correct) idea of molecule, and their political influence, notably in terms of education and university training, caused French chemistry to lag half a century behind (Jacques, 1987).
In short, there are many reasons to be vigilant about this word "molecule", especially when one is addressing interlocutors or a public who are not aware of the possibilities of confusion.

2. More specifically, abuses of language that I believe to be harmful, in food science, technology, and engineering, are to speak of "fatty acids in a triglyceride" or "amino acids in a protein": it is more accurate (and internationally decided) to use the terminologies "fatty acid residues" and "amino acid residues", respectively, for the parts rightly designated as such, in triglycerides or in proteins (IUPAC, 2019).
Why? Because free fatty acids, for example (we are sometimes obliged to add the adjective "free" to make ourselves clear), are quite different compounds from triglycerides. And, often, it is useful to add that there are almost no (free) fatty acids in oils or in other food fats: it was, this time, a contribution of the French chemist Michel-Eugène Chevreul (Angers, 1786 - Paris, 1889) to establish that food fats are mostly composed of "triglycerides", and not fatty acids, recognizing by measurements of great precision (at that time) that the esterification reaction by which we can eventually synthesize a triglyceride does not correspond to a juxtaposition, but a real reaction, which changes the nature of the reactants (Chevreul, 1823). In the case of proteins, it was not until Theodor Svedberg's advances in the 1920s that the difference between a polymer (which proteins are) and a colloidal assembly (of amino acids, in this case) was finally understood (Florkin and Stotz, 1972).
The experience of university teaching shows how widespread is the confusion between fatty acids and triglycerides, or amino acids and proteins; it remains often until the master's degree, and, similarly, the analysis of public discussions shows how confused ideas are often on this subject.
In order to explain things to a public that constantly hears about "the fatty acids of table oils", even in food hygiene documents (PNNS, 2020; Olivier et al., 2014), we can usefully begin by pointing out that oil (like most food fats) is mainly made up of a large number of molecules similar to octopuses with three flexible arms: these molecules are "triglycerides". Note that we could also say "triacylglycerols", but this would unnecessarily increase the complexity (Figures 1 and 2).
Oils, for example, contain other compounds than triglycerides, but they are very much in the minority. For example, in the middle of the triglyceride molecules, oils also contain fatty acid molecules (free, therefore), squalene molecules, terpene acid molecules, sterol molecules, etc., but the total of all these, constituting the oil, is only one percent by mass.
Let's concentrate on these triglycerides which are in the majority. Oil and other fats contain a large number of different triglycerides (several billion for milk fat), the names of which are set by the international rules of the International Union of Pure and Applied Chemistry (IUPAC, 2019): the general rules of chemical naming lead to the recognition, in the center of triglyceride molecules, of a unit of three linked carbon atoms, each one linked to an oxygen atom, which is also the case in the molecules of the compound named glycerol (Figure 3). However, there is no glycerol (the compound) in the molecules of triglycerides; there is only a group of atoms reminiscent of glycerol, by the way, to within three hydrogen atoms (which is no small thing, in chemistry), and so one must speak, for this part identified by thought of "glycerol residue" (IUPAC, 2019).
Starting from this center, which is the  "glycerol residue", after the oxygen atoms that have been mentioned for this residue, the triglyceride molecules carry long chains of atoms that differ little from those of molecules of compounds that would be fatty acids: fatty acid molecules are, in fact, chains of carbon atoms bonded exclusively to hydrogen atoms, with, at one end, a "carboxylic acid" group, the terminal carbon atom being bonded to an oxygen atom by a double bond, and to a hydroxyl group, made of an oxygen atom itself bonded to a hydrogen atom (Figure 4). In triglycerides, this structure is not present as such, but only discernible to a few atoms. One can only recognize, in triglyceride molecules, a glycerol residue and three "fatty acid residues".
Why would some people (chemists or not) hesitate to say the right things? Why would they refuse to be terminologically rigorous? Because triglycerides could be assembled from fatty acids, and degraded to fatty acids? In reality, triglycerides can be constituted and modified in many different ways, and not necessarily by assembling one glycerol molecule and three fatty acid molecules. It depends on the reaction conditions: reagents present, pH, presence of free radicals, catalysts, etc.
Above all, to speak improperly of fatty acids (instead of "fatty acid residues") in fats is to expose oneself to the risk that the public (and even students of food science, technology and engineering) will think that oil is made of fatty acids! The risk even concerns people trained in science: the author of this text testifies that he knows an excellent physicist, a distinguished research director in his discipline, who believed this... because the confusing ambient language made him think so.
A nutritionist colleague who spoke of "triglyceride fatty acids" was questioned in the preparation of this article, and his reasons included (1) habit and (2) the fact that the public might fear "residues"... The first reason is not sufficient, as the history of chemistry has shown, which has progressed with the clarification of terminology, but the second is debatable: is there not a risk of paternalism in believing that the public is incapable of thinking well (This and Panel, 2010), knowing moreover how many charlatans, dishonest people, and ideologues sneak into the slightest intellectual breach to propagate their pernicious ideas?
And then, if the word -accepted inter-nationally- of "residue" seems difficult to use, why not use "fragment", or "group", for example... knowing that, in French, a residue is a part that remains after a main part has been removed, for example by evaporation: the connotation is not necessarily negative.

3. A third example, concerning "mineral salts", is intended to show the extent to which abuses of language can insidiously induce false ideas, even in scientific circles. We will begin by observing that, very often, the expression "mineral salts" should be replaced by "mineral ions", or "the mineral content of... ".
Let's start by observing that we often hear and read that water contains "mineral salts", or worse, that "calcium" and other mineral ions would be mineral salts (Passport to Health, 2020; Greenfield and Southgate, 2007)... This is incorrect for several reasons. First, calcium is an "element" and is only present in foods as divalent calcium ions. Secondly, a mineral ion, such as the calcium ion, is not a mineral salt, but only a mineral ion, which could be a constituent of a mineral salt if it were in a crystalline structure, with ions of opposite charge (at least in balance). Finally, "mineral salts" are (under ambient conditions) crystallized solids, such as sodium chloride (of which our table salt is mostly composed).
If we place crystals of a salt (for example, sodium chloride) in water, the constituent ions (chloride and sodium) can disperse, surrounding themselves with water molecules, and a solution of this salt can be formed (within the limits of solubility). In this particular case of the dissolution of a single salt, the water does contain a mineral salt, in solution, as long as it has been put in.
However, this is no longer true for ordinary drinking water, which contains various mineral ions: sodium, potassium, magnesium, chlorides, nitrates, sulphates, phosphates... These waters do indeed contain mineral ions, and they therefore have a mineral content, but do they contain mineral salts?
It is with regard to the last question that the difficulty arises, as can be seen from the simple case of an aqueous solution in which two mineral salts, such as sodium chloride and potassium nitrate, for example, have been initially dissolved. This solution would be the same if potassium chloride and sodium nitrate had been dissolved instead, so that, without knowing how the solution was constituted, it is impossible to say which mineral salts it may contain.
More generally, when faced with a solution that has a mineral content, it is impossible to say what "mineral salts" it contains. What is true for an aqueous solution is true for food ingredients and foods, including plant or animal tissues, or culinary preparations made from them: all have a mineral content, all contain mineral ions, but it would be very difficult to identify the mineral salts they contain. Conclusion: food does not contain mineral salts!
 
4. The fourth example concerns a more subtle - but chemically essential - characteristic of food compounds: their "chirality". To discuss this, let us first recall a tragic episode in pharmacy.
In the 1950s and 1960s, thalidomide was prescribed to pregnant women to relieve morning sickness, but it was overlooked that the compound appears in two mirror-image forms, like a left hand and a right hand. Just as a left hand is not a right hand, a left molecular form has different chemical and biological properties than a right molecular form (Figure 5). Metaphorically, one does not fit the left hand into the right glove or vice versa, and what applies to hands and gloves applies to active ingredients and biological receptors (Jacques, 1981). In the case of thalidomide, its "right" chiral form relieves nausea, while its "left" form causes malformations in the fetus: 10,000 to 20,000 children were born in this way, terribly affected, because of the confusion!
With foods, whether nutrients or bioactive compounds, the same question arises, and so chirality (the left-hand/right-hand difference) has become the daily tool of flavourists and perfumers: for example, (+)-(S)-carvone and (-)-(R)-carvone do not smell the same, like spearmint or dill. Or, (E)-anethole (trans form) is very low in toxicity, while the cis form, synthetic or natural trace, is much more toxic. Both enantiomers of linalool are natural, but while the (+)-(S)-linalol in coriander is very low in toxicity, the (-)-(R)-linalol in basil and lavender is higher. To simply talk about "anethole", for example, is simplistic... not to mention the disasters it can cause!

5. From compounds, let us now turn to "products" used in food. For the former, we have mentioned the common difficulty of thinking in terms of categories, but we have not gone into the details of the philosophical difficulties, namely that "the horse" is a very heterogeneous category: ponies, percherons, bay horses, grey horses, piebalds... This question is encountered with food ingredients.
Here again, public debates are hasty: "the" flour, for example... Which flour? What kind? With what composition? Bakers and confectioners are well aware of the variability of this product, even when only wheat flour is considered, to the point that it complicates recipes considerably (Inbp, 1990): the amount of water that must be added to a dough depends on the year, the origin, the grinding, the temperature of use... This same type of observation is valid for most of the food ingredients: "gelatine", "lecithin", etc.
Here for "products" as about the chirality of compounds, the question is terminological, and the consequences are sometimes serious. We recall the terrible episode of 2019, when a pharmaceutical company changed the formulation of its drug against hypothyroidism: the change in formulation, which was not accompanied by a change in name, had terrible consequences for many patients who used "the" product (Ansm, 2017). For food, this issue must be analyzed in the light of the 1905 law on the food trade, which must be "fair" (horse is not beef): this fairness requires fair designations (French Academy of Agriculture, 2011) and, in particular, fair chemical designations. Hence the importance of IUPAC, mentioned earlier.
This observation finds its full importance in relation to food additives: there is certainly a need for better designation (Anses, 2016). For example, the additive designated by the European code E140 corresponds to what is sometimes called chlorophyllin, or sometimes chlorophyll (Efsa, 2015), but, ultimately, what is it?
Let us first observe that "the" chlorophyll is an outdated terminology, introduced in 1818 by the French pharmacists Joseph Bienaimé Caventou (1795-1877) and Pierre Joseph Pelletier (1788-1842) to designate what cooks called "spinach green" (This, 2019); today, we know "chlorophylls", with different light absorptions: a, a', b, b', c, d, e, etc. On the other hand, the preparations made from chlorophylls and metals, such as zinc or copper, are no longer chlorophylls (in the center of which there is naturally a divalent magnesium ion), but chlorophyllines, zinciques or cuivriques, for example.
Similarly, we find the question about "lecithin" (IUPAC, 1979), a term that still suffers from the hesitations of chemistry, when it was young and more imperfect than today. Here, the story begins in 1845, when the French chemist and pharmacist Theodore Gobley isolated "lecithin" from egg yolk (lekithos means "egg yolk" in Greek); in 1874, he established the complete chemical formula of "lecithin phosphatidylcholine" (Gobley, 1874). Between 1850 and 1874, he had demonstrated the presence of "lecithin" in a variety of biological materials, including venous blood, human lungs, bile, human brain tissue, fish eggs, and chicken and sheep brains.
How to admit that, today, "lecithin" designates preparations (mixtures of compounds, therefore), with different properties according to the producers? The differences in functionality of the various preparations expose users to problems. Of course, one could say that no material is constant: "gelatin" can have a lot or little gelling power, depending on the batch; the same goes for "pectin", of which there are various varieties... even for "egg white powder", which is sold under this name, whether it is cooked and dehydrated egg white or fresh dehydrated egg white, with considerable differences in functionality for the two products (one does not coagulate, and the other can coagulate). Wouldn't it be in our interest, in the interest of fair trade, to better designate the food ingredients that are traded?

6. The same question is found with the products called - unfortunately - "flavors" (Dgccrf, 2006), and for which I propose to analyze that the terminological vagueness has undermined social cohesion. Indeed, we all know that, on the one hand, these products are widely used by the food industry, and, on the other hand, they are widely criticized - for a long time - by a part of the population (60 Millions de consommateurs, 2016). Could it not be interpreted that the public fears deception? In fact, the food industry and regulatory authorities have warped the word "aroma", which in French means the smell of an aromatic plant, an aromatic (TLFi, 2020). It would have been wiser not to use this term to designate flavoring compositions or extracts!
Because that is what it is all about: these compositions or extracts (which are never "natural", stricto sensu, since they are produced by craftsmen or industrialists) are either "compositions", obtained by mixing odorant compounds, by a technical and artistic work which is similar to that of the perfumer ; or "extracts", obtained by methods that resemble the production of table sugar from beet, or the production of eaux-de-vie from wines, with, in this case, processes that range from cold pressing to distillation, possibly with solvents (Sniaa, 2020). Since the public is right to think that compositions or extracts are not "flavors", in the sense of the common language, but rather flavoring agents, wouldn't the food industry, if it wants to show its loyalty, and the regulatory authorities, if they aim for more social cohesion, have an interest in taking the measure of the error initially made and changing the terminology?
Let us add two points:  (1) the English language distinguishes flavour from flavourings; (2) some of these flavourings are so remarkable, from an olfactory point of view, that there is hardly any reason not to make them available to the public, so that they can use them in their daily cooking... provided that they have a correct perception of them.

7. In the previous paragraph, we sketched out a discussion of the term "natural", but we did not insist enough to point out that the regulations also contradict the dictionary when they accept this adjective for products, flavourings (Sniaa, 2020) or others. Insofar as naturalness excludes the intervention of a human being (TLFi, 2020b), this use of the term "natural" is unwarranted, even dishonest: the "products" have indeed been produced, by human beings, so that they are strictly speaking "artificial".
If one were too lax, one would go as far as to speak of "natural food", and this is quite impossible since our food is cooked. Even "raw vegetables" are subject to culinary preparation, with trimming, washing, cutting, addition of a sauce, etc. (Bocuse, 1976). (Bocuse, 1976). So no: there is nothing natural in our food, and the regulations should absolutely refuse the demagogic temptation to accept this term of naturalness about food products, because there is the source of conflicts about it.

8. Let's end this anthology with nitrates and nitrites, of which it will be observed that very few of those who speak of them have ever seen them (this is true for most of the compounds or products mentioned in this text). However, it is not difficult to go and scrape some walls to recover saltpetre (Guyon, 2006): it is a nitrate, which was once added to saltings (Anonymous, 1826) and which prevented botulism (Pascal, 2020)!
While nitrates and nitrites are denounced by some (National Assembly, 2020; Ligue contre le cancer, 2019), the food industry, which is threatened in its practices, has learned to cook hams in vegetable broths, where naturally present nitrates (truly naturally, this time) are transformed into nitrites by fermentation (Ifip, 2020). Thus, hams (for example) obtained in this way contain nitrates and nitrites like pieces to which nitrite salt, commonly used by pork butchers, has been added.
In other words, the ban on nitrates and nitrites in charcuterie leads to propose the banning of ham cooked with vegetables, which would be quite an achievement, especially since the micro-organisms that transform nitrates into nitrites are naturally present in the environment!


Excessive rigor?


Let's stop here, because we could fill volumes, and concentrate on the question initially asked: is it excessive, unnecessary rigor to be concerned with exact terminology when we talk about chemical species in public debates or in teaching? Is it a waste of time to ask for a precise terminology? Is it really necessary to avoid abuses of language and imprecision? And is it right to annoy your interlocutors by repeating in a nagging, even intrusive way that proteins are not "made of amino acids", but of "amino acid residues", for example? Should we accept to appear fastidious by recommending to our interlocutors to speak about D-glucose rather than glucose (we will not forget thalidomide)? Should we accept talking about "iron", when we know that the bioavailability of ionic iron (and not just any iron ion) is very different from that of heme iron in the blood (in the heme group of certain proteins), to the point that doctors who prescribe "iron" to combat deficiencies have to add the prescription of ascorbic acid, to increase this absorption (Cismef, 2020).
Let us first answer the question posed with an authoritative argument, by quoting Antoine-Laurent de Lavoisier: "It is while I was occupied with this work that I felt more clearly than I had done until then, the evidence of the principles that were laid down by the Abbé de Condillac in his logic, and in some of his other works. He establishes that we can only think with the help of words; that languages are true analytical methods; that the simplest, most exact algebra, best adapted to its object of all the ways of expressing itself, is at the same time a language and an analytical method; finally that the art of reasoning is reduced to a well-made language.  [...] The impossibility of isolating nomenclature from science, and science from nomenclature, is due to the fact that all physical science is necessarily founded on three things: the series of facts that constitute science, the ideas that recall them, and the words that express them [...] As it is words that preserve ideas, and transmit them, it follows that one cannot perfect languages without perfecting science, nor science without language" (Lavoisier, 1789).
As we can see, the idea of the brilliant creator of modern chemistry was clear... and who among us would dare to contradict him, on a point of thought? Who among us has done so much for science that he could feel superior to Lavoisier? Come on, a little modesty.
Then let's ask our interlocutors the question: why should we be embarrassed to use the right terms? After all, a botanist does not confuse a carrot with a turnip, and a forester does not confuse a fir with a spruce, and those who are neither botanist nor forester conform to the uses defined by these professionals, since it is up to them to initially make the difference. No disadvantage, finally, except to have to work to eradicate our own inaccuracies... but many advantages to precision in chemistry: whether it is a question of substance or form, the objective is to avoid empty speeches, to invite to go and see more closely, and to avoid that ideologists seize confusions to arrive at their masked and, sometimes, nauseating ends.
Yes, the rigor of terminology for chemical terms, as well as the coherence of units of measurement (Lavoisier also participated in their harmonization and in the creation of the Metric System), are the foundation on which sound collective decisions can be taken. It is therefore a condition of democracy.
In addition, the examination of words avoids unnecessary fears. For example, a few years ago, a consumer magazine headlined that some products contained "traces of potentially carcinogenic pesticide residues". The word "potentially" should already put us on the track of healthy doubt, because potentially carcinogenic does not mean carcinogenic. And exposure to the product is essential, because without exposure to a hazard, there is no risk (Pascal, 2020). The word "pesticide"? There are synthesized pesticides, on the one hand, but there are also compounds with which plants naturally protect themselves (Ames et al., 1990). We will not discuss here the relative merits and dangers of the two categories, especially since it would be better to consider the various "pesticides", natural or artificial, one by one, but let us insist: an apple, a carrot, a potato, protect themselves against aggressors by natural compounds... which are sometimes synthesized to use them as pesticides.
Residues of these pesticides? Let us suppose that a pesticide is carcinogenic, and that it is degraded: nothing proves that its "residues" (we would more correctly speak of degradation products) are also carcinogenic, and, even better, why couldn't residues of synthetic pesticides be beneficial? Basically, we are back to the question of triglycerides... but the word "residue" is used in a different sense... very vague!
Finally, the consumer magazine did not mention pesticides or pesticide residues... but traces of pesticide residues! Knowing that our chemical analysis equipment detects compounds at amounts as low as 10-15 mol/L (Kawai et al., 2020), we should first ask the question "how much? ", and to relate the amounts to toxicological values (tolerable daily intake, for example).
Finally, let us make a useful observation: often the mistakes that students of food science and technology make are the result of a misuse of terms, an imprecise use of words that they use without sufficient understanding. The corollary of this is that wishes for good terminology use must be accompanied by efforts at instruction: chemistry must be introduced as early as elementary school. After all, is it so difficult to think that water, for example, is made of many small moving objects (water molecules)? And then, to speak about what one does not know, to use words of which one is unaware of the meaning, to show one's ignorance by silly sentences... Still, we have our dignity, don't we?



References 

60 Millions de consommateurs. 2016. Des aliments en trompe-l’œil, https://www.60millions-mag.com /2016/06/08/des-aliments-en-trompe-l-oeil-10478, dernier accès 2021-01-15.

Académie d'agriculture de France. 2011. Que sont les produits alimentaires sains, loyaux et marchands, Séance publique du 27 avril 2011, https://www.academie-agriculture.fr/actualites/academie/seance/academie/que-sont-les-produits-alimentaires-sains-loyaux-et-marchands, dernier accès 2020-12-15.

Ames BN, Profet M, Schisky Gold L. 1990. Dietary pesticides (99.99% all natural), Proceeding of the National Academy of Sciences of USA,  87, 7777-7781.

Anonyme. 1826. La charcuterie ou L'art de saler, fumer, apprêter et cuire toutes les parties différentes du cochon et du sanglier. Editions Audor, Paris.

Anses. 2016. Le point sur les additifs alimentaires, https://www.anses.fr/fr/content/le-point-sur-les-additifs-alimentaires, dernier accès 2020-12-15.

Anses. 2020a. Les microplastiques, un risque pour l’environnement et la santé, https://www.anses.fr/fr/content/les-microplastiques-un-risque-pour-l%E2% 80%99environnement-et-la-sant%C3%A9, dernier accès 2020-12-15.

Anses. 2020b. Nanomatériaux dans l’alimentation : les recommandations de l’Anses pour améliorer leur identification et mieux évaluer les risques sanitaires pour les consommateurs, 9 juin 2020, https://www.anses.fr/fr/content/nanomat%C3%A9ri aux-dans-l%E2%80%99alimentation-les-recom mandations-de-l%E2%80%99anses-pour-a%C3% A9liorer-leur, dernier accès 2020-12-15.

Ansm. 2017. Levothyrox et médicaments à base de lévothyroxine, https://www.ansm.sante.fr/ Dossiers/Levothyrox-et-medicaments-a-base-de-levothyroxi ne/A-quoi-servent-les-medicaments-contenant-de-la-levothyroxine/(offset)/0, dernier accès 2020-12-15.

Assemblée nationale. 2020. Les sels nitrités dans l'industrie agro-alimentaire, http://www2.assemblee-nationale.fr/15/commissions-permanentes/commission-des-affaires-economiques/missions-d-information/les-sels-nitrites-dans-l-industrie-agro alimentaire, dernier accès 2020-12-15.

Bocuse P. 1976. La cuisine du marché, Flammarion, Paris.

Bru M. 2020. Organismes génétiquement modifiés : dans la tourmente des contradictions de la sécurité alimentaire, https://www.revueconflits.com/organismes-geneti quement-modifies-dans-la-tourmente-des-contra dictions-de-la-securite-alimentaire/, dernier accès 2020-12-15.

Cabioch J. 2020. TIMSS : Que retenir pour l'enseignement des sciences au collège ?, Le café pédagogique, http://www.cafepedagogique.net /lexpresso/Pages/2020/12/08122020Article637430181218329432.aspx, dernier accès 2020-01-8.

Cérou M. 2020. Acrylamide : de nouveaux aliments sous surveillance, Process alimentaire, https://www.processalimentaire.com/qualite/acrylamide-de-nouveaux-aliments-sous-surveillance, dernier accès 2020-12-15.

Chevreul ME. 1823. Recherches chimiques sur les corps gras d'origine animale, Berger Levrault, Paris.

Cismef. 2020. Acide ascorbique, http://www.chu-rouen.fr/page/acide-ascorbique, dernier accès 2020-12-15.

Condorcet N. 1791. Cinq mémoires sur l’instruction publique. http://classiques.uqac.ca /classiques /condorcet/cinq_memoires_instruction/cinq_memoires.html, dernier accès 2021-01-13.
Dgccrf. 1976. Les arômes alimentaires, https://www.economie.gouv.fr/dgccrf/les-aromes-alimentaires, dernier accès 2020-12-15.

Foodwatch. 2020. Pesticides, https://www. Food watch.org/fr/sinformer/nos-campagnes/alimentation-et-sante/pesticides/, dernier accès 2020-12-15.

Efsa. 2015. Scientific opinion on the re-evaluation of chlorophylls (E 140(i)) as food additives, https://www.efsa.europa.eu/fr/efsajournal/pub/4089, dernier accès 2020-12-15.

Florkin M, Stotz EH. 1972. A history of biochemistry. In Comprehensive biochemistry, 30, 292.

Gobley T. 1874. Sur la lécithine et la cérébrine, Journal de Pharmacie et de Chimie, 20,‎ 98-103, 161-166.

Greenfield H, Southgate DAT. 2007. Données sur la composition des aliments, Organisation des Nations Unies, FAO. http://www.fao.org/3/a-y4705f.pdf, dernier accès 2020-01-12.

Guyon E. 2006. L'Ecole normale de l'an III : Leçons de physique, de chimie, d'histoire naturelle. Presses de l'Ecole normale supérieure, Paris.

Ifip. 2020. Impact de sel nitrité ou de bouillon de nitrate fermenté, Gestion des qualités technologiques et sanitaire des produits, fiche 41, https://ifip.asso.fr/sites/default/files/pdf-documenta tions/fiche_2017_041.pdf, dernier accès 2020-12-15.

Inbp. 1990. Mon métier, boulanger, Editions J. Lanore, Paris.

INSERM. 2020, La consommation d’aliments moins bien classés au moyen du Nutri-Score associée à une mortalité accrue, https://presse.inserm.fr/la-consommation-daliments-moins-bien-classes-au-moyen-du-nutris core-associee-a-une-mortalite-accrue/40805/, dernier accès 2020-12-15.

IUPAC. 1978. The nomenclature of lipids (Recommendations 1976) IUPAC-IUB, Commission on Biochemical Nomenclature, Biochemical Journal, 171(1), 21-35.

IUPAC. 2004. Formulae, https://old.iupac. org/reports/provisional/abstract04/RB-prs310804/Chap4-3.04.pdf, dernier accès 2020-12-15.

IUPAC. 2019. Glycerides, Compendium of chemical terminology, 2nd ed. (The Gold Book), https://goldbook.iupac.org/terms/view/G02647, der-nier accès 2020-12-15.

Jacques J. 1981. Confessions d'un chimiste ordinaire, Le Seuil, Paris.

Jacques J. 1987. Berthelot : autopsie d'un mythe, Belin, Paris.

Kawai Y, Miyake Y, Hondo T, Lehmann JL, Terada K, Toyoda M. 2020. New Method for Improving LC/Time-of-Flight Mass Spectrometry Detection Limits Using Simultaneous Ion Counting and Waveform Averaging, Analytical Chemistry, 92, 9, 6579–6586.

Kressmann G. 2018. Risques réels et craintes infondées. Paysans & société, 368(2), 44-48.

Lacamp I. 2020. Les compléments alimentaires contenant du curcuma ou de la vinpocétine pourraient être dangereux, Sciences et avenir, https://www.sciencesetavenir.fr/sante/les-comple ments-alimentaires-contenant-du-curcuma-ou-de-la-vinpocetine-pourraient-etre-dangereux _141717 dernier accès 2020-12-15.

Lavoisier AL. 1789. Traité élémentaire de chimie, Cuchet, Paris.

Lide DR. 2005. CRC Handbook of Chemistry and Physics, Internet Version 2005, CRC Press, Boca Raton, Florida, http://www.hbcpnetbase.com, dernier accès 2020-12-15.

Ligue contre le cancer. 2019. Stop aux nitrites ajoutés, https://www.ligue-cancer.net/article/ 54352_ stop-aux-nitrites-ajoutes, dernier accès 2020-12-15.

Lower S. 2020. All about water, Chemistry Libretexts, https://chem.libretexts.org/ Book shelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Supplemental_Modules_(Physical_and_Theoretical_Chemistry)/Physical_Properties_ of_Matter/All_About_Water, dernier accès 2020-12-15.

Mary H. 2020. Traçabilité, additifs... 60 Millions de consommateurs s'attaque aux produits alimentaires ultra-transformés, https://www.usine nouvelle.com /article/tracabilite-additifs-60-millions-de-consomma teurs-s-attaque-aux-produits-alimentaires-ultra-transformes. N976911, dernier accès 2020-12-15.

Mills JS. 1874. La nature, Editions La Découverte (réédition 2003), Paris.

Myers RJ. 2012. What are elements and compounds, Journal of chemical education, 89(7), 822-833.

Naji JE. 2006. Citoyens et media: guide pratique pour un dialogue entre citoyens et media, www.UNESCO.org, CI/COM/VG/2006/RP/3, dernier accès 2020-12-15.

Ollivier D, Pinatel C, Ollivier V, Artaud J. 2014, Composition en acides gras et en triglycérides d’huiles d’olive vierges de 34 variétés et 8 Appellations d’Origine françaises et de 2 variétés étrangères implantées en France : constitution d’une banque de données, Olivae, 119, 36-48.

OPECEST. 2020. Office parlementaire d'évaluation des choix scientifiques et technologiques, http://www.senat.fr/opecst/, dernier accès 2020-12-15.

Pascal G, 2020. Rapport du groupe de travail « Impacts sur les cancers colorectaux de l’apport d’additifs nitrés (nitrates, nitrites, sel nitrité) dans les charcuteries », Académie d'agriculture de France, https://www.academie-agriculture.fr/ publi cations/publications-academie/avis/rapport-impacts-sur-les-cancers-colorectaux-de-lapport, dernier accès 2020-12-15.

Passeport santé. 2020. Les sels minéraux : tous sur ces micro nutriments indispensables, esNutriments/Fiche.aspx?doc=sels-mineraux_nu, dernier accès 2020-12-15.

PNNS. 2020. Manger bouger : les huiles riches en acides gras polyinsaturés, https://www. mangerbouger.fr/pro/sante/alimentation-19/nouvelles-recommandations-adultes/rubri que-test/e-les-huiles-riches-en-acides-gras-poly insatures.html, dernier accès 2020-12-15.

Pons A, Allamy L, Schüttler A, Rauhut D, Thibon C, Darriet P. 2017. What is the expected impact of climate change on wine aroma compounds and their precursors in grape?, OENOOne, Institut des Sciences de la Vigne et du Vin, 51 (2-3), 141-146.

Pouliquen F. 2020. Charcuterie : La ligue contre le cancer, Yuka et Foodwatch demandent l’interdiction des nitrites, 20 Minutes, 4 février 2020, https://www.20minutes.fr/sante/2710507-20200204-charcuterie-ligue-contre-cancer-yuka-foodwatch-demandent-interdiction-nitrites, dernier accès 2020-12-15.

Santé Magazine. 2020. L’alimentation est bien un facteur de risque pour le cancer de la prostate, Santé Magazine, 29 juillet 2020, https://www.santemagazine.fr/actualites/actualites-alimentation/lalimentation-est-bien-un-facteur-de-risque-pour-le-cancer-de-la-prostate-650766, dernier accès 2020-12-15.

Sniaa. 2020. Définition. http://www.sniaa. Org/ arome#definition, dernier accès 2020-12-15.

This P, Panel P. 2010. La décision médicale partagée en gynécologie, Gynécologie Obstétrique & Fertilité, 38, 126-134.

Thom R. 1970. Les mathématiques « modernes », une erreur pédagogique et philosophique ?, L’Age de la science. http://gaogoa.free.fr/HTML /Textes/Les%20Mathematiques%20Modernes%20 par%20R.THOM.pdf, dernier accès 2021-01-13.

TLFi. 2020a. Arôme, http://stella.atilf.fr/ Dendien/scripts/tlfiv5/advanced.exe?8;s=1754745 780, dernier accès 2020-12-15.

TLFi. 2020b. naturel, http://stella.atilf.fr/Dendien /scripts/tlfiv5/visusel.exe?14;s=1387088820; r=1;nat=;sol=9, dernier accès 2020-12-15.

This H. 2019. Parlons des chlorophylles, et pas de la chlorophylle !, Encyclopédie, « Questions sur », Académie d’agriculture de France, https://www.academie-agriculture.fr/sites/default/files/publications/encyclopedie/final_s8-07_parlons _des_chlorophyles.pdf, dernier accès 2020-12-15.

Van Aubel M. 1963. Accident, catégories et prédicables dans l'œuvre d'Aristote, Revue Philosophique de Louvain.Troisième série, 61(71), 361-401.

Vaulpré J, Jaffé J. 2020. Réformer dans un climat irrationnel, le nouveau défi des politiques, https://www.lesechos.fr/idees-debats/cercle/reformer-dans-un-climat-irrationnel-le-nouveau-defi-des-politiques-1161763, dernier accès 2020-12-15.



Edité par
Nicole Moreau, Membre de la Société chimique de France et ancien Président de l'IUPAC. Président du Comité scientifique du Programme International pour les Sciences fondamentales (PISF) de l'UNESCO.

Rapporteurs
Nicole Moreau, Membre de la Société chimique de France et ancien Président de l'IUPAC. Président du Comité scientifique du Programme International pour les Sciences fondamentales (PISF) de l'UNESCO.

Jean-Pierre Foulon, ancien professeur de chimie en Spéciales au Lycée Henri IV à Paris. Membre du Comité de rédaction de l'Actualité Chimique (SCF).


Rubrique
Cet article a été publié dans la rubrique « Opinions » des Notes Académiques de l'Académie d'agriculture de France.

Reçu
17 novembre 2019

Accepté
3 janvier 2021

Publié
13 janvier 2021


Citation
This H. 2021. La rigueur terminologique pour les concepts de la chimie : une base pour des choix de société rationnels, Notes Académiques de l'Académie d'agriculture de France / Academic Notes from the French Academy of Agriculture, 2021, 1, 1-15.



Hervé This est physico-chimiste dans l'UMR 0782 SayFood INRAE - AgroParisTech, professeur consultant à AgroParisTech, membre de l'Académie d'agriculture de France, membre correspondant de l'Académie royale des sciences, arts et lettres de Belgique et de l'Académie de Stanislas, membre de l'Académie d'Alsace, sciences, lettres et arts.