dimanche 15 octobre 2023

Dans les billets à destination de ceux qui n'ont jamais cuisiné de leur vie, voici maintenant comment faire du poulet rôti.

 


Faire un poulet rôti ? Il s'agit donc d'abord d'avoir un poulet.

Pour le choix de ce derniers, il faudrait un document tout entier, mais soyons simple : achetons un poulet et apportons-le chez nous.

La question, c'est de rôtir et, là, les gourmands s'étripent pour savoir s'il faut le faire à la rôtissoire ou s'il est légitime de nommer "rôti" un poulet qui est cuit dans un four.
En effet, dans un cas, ce sont les rayonnements infrarouges qui cuisent la viande, mais, dans l'autre cas, c'est l'air chaud du four.
Pour commencer, nous rôtirons avec de l'air chaud même, si le terme de rôtissage est alors un peu usurpé.

On fera l'hypothèse que le poulet a été plumé, qu'il ne reste plus de reste de plume dessus, auquel cas il faudrait les flamber (la flamme d'un briquet suffit), et on se limitera à le mettre dans un plat qui va au four. On aura salé le poulet à l'intérieur, et si l'on a du romarin, par exemple, on en fera un lit sur lequel le poulet reposera.
Si l'on a du thym, on pourra en mettre à l'intérieur du poulet. Et l'on peut ajouter  une tête d'ail dans le plat qui ira au four (sans éplucher).

L'ensemble sera enfourné, et l'on cuira  par exemple à 200 degrés,  jusqu'à ce que l'on voit la surface du poulet brunir.

Pour faire un peu mieux, on pourra commencer en mettant le poulet sur le dos jusqu'à ce que l'on voit cette partie brunir  ; puis on retournera le poulet pour que la peau au-dessus des deux suprêmes et des cuisses soient également brunie.

Au total, on pourra compter environ 40 minutes, à raison de 20 minutes de chaque côté.
Et si  le brunissement n'apparaît pas, on peut très bien terminer la cuisson en allumant le grill et en mettant le poulet dessous jusqu'à ce qu'il soit bruni de la couleur que l'on souhaite.

À la sortie de la cuisson, il y a certainement du jus dans le plat. On le dégraisse ou pas selon ce que l'on souhaite.

Avec quoi servir ce poulet rôti ? Je vous propose, pendant la cuisson, de peler des pommes de terre, de les couper en très petit dés, disons un tout petit peu moins d'un centimètre de côté, et de les étaler sur une plaque à four avec de l'oignon et de l'ail émincé. On verse un peu du gras du poulet dessus et l'on met juste sous le grill, que l'on allume alors.
On a donc, dans le four,  le poulet qui repose au chaud, qui se détend, et la plaque avec des pommes de terre juste sous le grill. Il suffira alors de quelques minutes pour que les pommes de terre brunissent  : elles seront alors cuites car elles sont très petites et l'on servira alors le poulet avec les pommes de terre


samedi 14 octobre 2023

Ne cherchons pas les causes de faits qui n'existent pas.

 
Un ami m'envoie une précision culinaire à propos d’aïoli : les aïolis monteraient mieux quand on utilise de l'huile d'olive de l'année précédente. 

Pourquoi cette pratique, m'interroge-t-il ? On sait qu'un torchon rouge agité devant un taureau conduit ce dernier à charge, mais, cette fois, résistons. Résistons, car les précisions culinaires sont loin d'être toutes justes, et des décennies de travail m'ont montré qu'il vaut mieux être prudent. 

Ce serait naïf que d'aller chercher la cause d'un effet qui n'existe pas. L'aïoli ? C'est une sauce qui se compose exclusivement d'ail et d'huile d'olive. Pas de moutarde, sans quoi on produit une rémoulade ; pas de jaune d'oeuf, sans quoi on produit une mayonnaise à l'ail. Pour faire un aïoli, on prenait jadis un mortier, des gousses d'ail, et l'on produisait d'abord une pâte à l'aide d'un pilon actionné répétitivement. Puis, toujours en pilant, on ajoutait de l'huile goutte à goutte et l'on s'arrêtait en quand la sauce avait pris une consistance de pommade. Pourquoi cette transformation ? Parce que les gousses d'ail contiennent de l'eau pour plus de moitié, mais aussi des composés variés tels que les phospholipides des membranes, des protéines... Quand on ajoute de l'huile d'olive en pilant, le pilon divise les gouttes d'huile en microgouttelettes qui sont dispersées dans l'eau, les composés tensioactifs favorisant l'émulsion. 

Finalement on obtient une émulsion très concentrée en huile, comme le serait une mayonnaise, par exemple, et le fait que les gouttes d'huile soient tassées les unes contre les autres prévient leur mouvement, et donc l'écoulement de la sauce. 

La qualité de l'huile, dans cette affaire ? On peut bien sûr imaginer que le vieillissement de l'huile d'olive conduise à l'apparition de composés tensioactifs ou de composés qui stabiliseraient les émulsions par divers phénomènes. Toutefois il y a tous les tensioactifs qu'il faut dans l'ail utilisé, à condition que l'on ait bien désagrégé les gousses, et les cellules qui composent ces dernières. On pourrait avoir le même phénomène que pour la tapenade, avec les mixers modernes : si l'on se contente de séparer les cellules, et non pas de les désagréger, ce qui libère leurs composés, alors on peut avoir des problèmes. Toutefois, si l'on a bien fait une pâte avec l'ail, le risque est faible. Surtout, je propose d'interpréter. Je propose d'interpréter en observant que, comme pour la tapenade d'ailleurs, quand le travail de l'ail est insuffisant, la sauce peut rater. 

Or mes études m'ont montré que les préparations qui ratent suscitent généralement plus de précisions culinaires que les autres. Le praticien se met alors à imaginer toutes les causes possibles : les règles féminines, la température, l'influence de la lune... ou la qualité de l'huile ! Il en va là de la pensée magique (voir <em>Les précisions culinaires</em>, Editions Quae/Belin), et la gastronomie moléculaire vient fort heureusement nous aider à mieux comprendre, au lieu de nous laisser en compagnie des démons. Pour l’aïoli, ne prenons pas nécessairement une huile ancienne, peut-être rancie, et privilégions des huiles dont nous choisirons d'abord le goût.

vendredi 13 octobre 2023

Cuisons des cannelés

 
Les cannelés ? Rien de plus simple, et il serait d'ailleurs erroné de croire que ces produits sont l'apanage du Bordelais, car ils existent en Angleterre sous le nom Durham popover. 

Ils s'apparentent aux soufflés, puisque c'est une préparation qui gonfle, mais, contrairement aux soufflés, ils restent gonflés après la cuisson, de sorte qu'ils s'apparentent également aux gâteaux... dont certains gonflent également. 

 

Ils gonflent ? Oui, ils gonflent, car ils contiennent beaucoup d'eau, et que les conditions de cuisson font évaporer une partie de cette dernière, ce qui engendre un grand volume de vapeur. 

 

Mais commençons par une recette, puisque c'est tout simple. Dans un cul de poule, plaçons du lait (c'est de l'eau qui est du goût, description qui conduit immédiatement à imaginer des dérivés de la préparation, si l'on remplace le lait par du jus de fruits, du thé, du café, etc.) avec de la farine et de l'oeuf. La farine apporte des grains d'amidon, qui empèseront durant la cuisson et feront une architecture molle, qui stabilisera la préparation. L'oeuf apporte également de l'eau, et aussi des protéines qui coaguleront, rigidifiant la préparation. On mélange les trois ingrédients afin d'obtenir une pâte mollette, puis on dépose quelques dizaines de grammes de cette préparation dans un moule, et l'on cuit à une température supérieure à 100 degrés. 

Ainsi le moule, surtout s'il est de métal et conduit bien la chaleur, provoque l'évaporation de l'eau, si bien que la préparation gonfle jusqu'à ce que les protéines coagulent et figent le volume. Finalement on récupère une préparation molle, coagulée, alvéolée, avec un bon goût d’œuf, et de tous les ingrédients que l'on utilisés, tels la vanilline, le sucre, le rhum, etc. 

Si la cuisson s'est bien passée (elle dure jusqu'à une heure), le produit a une légère croûte croustillante, et si la préparation était sucrée, alors, mieux, le cannelé est légèrement caramélisé, donc coloré et de haut goût. Dans cette préparation, l'important est sans doute le rapport de la partie de croûte et de la partie moelleuse du cœur. Je vous invite, si vous n'avez pas déjà fait, à visionner le film où l'on voit le cuisinier français Michel Bras régler au millimètre la taille du noyau de chocolat de ses célèbres coulants. Ils ont été souvent copiés, mais le savoir-faire du grand artiste dépasse largement l'idée de mettre un noyau qui fond dans un biscuit au chocolat : il y a d'abord la question du goût, et, aussi, le soin infini que le grand artiste a mis dans tous les détails, à commencer par celui de la taille exacte des diverses parties de son gâteau. Pour les cannelés, et pour bien des préparations analogues, la question de la taille, la question du rapport croûte-coeur, la question du moelleux, fixé à la fois par la quantité d'eau et par la cuisson, la question du goût... Tout compte !

jeudi 12 octobre 2023

Pourquoi je ne veux plus mesurer de volumes

 
Il y a environ 15 ans, j'ai voulu un jour faire l'expérience de ma vie, une expérience parfaitement réalisée en vue d'obtenir des résultats aussi précis que possible, en l'occurrence pour des analyses par spectrofluorimétrie, méthode merveilleuse parce qu'elle permet de doser de très petites quantités de composés fluorescents. Pour mes expériences, je devais préparer des solutions dans l'éthanol, et j'avais donc tout planifié pour une expérience qui devait durer environ une journée. 

A l'époque, j'étais, comme le sont la majorité des étudiants, influencé par l'emploi de ce paramètre qu'est la concentration des solutions : la concentration est le plus souvent une quantité qui s'exprime en moles par litre. De ce fait, j'avais le sentiment qu'il me fallait des masses de soluté bien connues, ce qui s'obtient avec une balance de précision, et des volumes de solution aussi précisément connus que possible. J'avais donc pris une fiole jaugée, dont j'avais contrôlé le certificat, et j'avais placé de l'éthanol dans la fiole avec un soin tout particulier. La solution étant préparée, il me restait maintenant à l'analyser par fluorimétrie, de sorte que je quittais la pièce de préparation des échantillons pour gagner la pièce où était installée le fluorimètre. 

Là, il y eut un appel téléphonique, de sortes que je laissai ma fiole sur la paillasse. Il n'y avait pas de risque : elle était convenablement fermé. Le coup de téléphone terminé, je me retournai donc pour prendre la fiole et... le niveau de liquide était descendu d'environ 1 centimètre ! La solution s'était elle évaporée ? Je vérifiais l'étanchéité, mais, surtout, je décidais de recommencer la solution, clé de mon expérience. Je repartais donc pour la pièce de préparation de ma solution, et réunissais à nouveau les ingrédients nécessaires. Coup de chance : le téléphone se remit à sonner. Je répondis, et, quand je me retournais, avant que j'ai touché à ma solution initiale en aucune manière, le niveau était revenu à la valeur correcte ! Cette fois, il n'était pas difficile de comprendre ces phénomènes : j'avais fait la préparation de la solution à température ambiante (on était en été), tandis que la fluorimétrie se faisait dans une pièce thermostatée, à 18° C. Ce que j'avais observé, c'était la dilatation du verre et du solvant. Un centimètre de différence dans le col de la fiole ! 

Manifestement la mesure d'un volume était une mauvaise pratique ! Quelle solution trouver à ce problème ? Il y en a plusieurs, à commencer par préparer les solutions à la même température que les mesures, mais puisque la masse volumique dépend de la température, ces solutions sont alors imprécisément connues, qu'elles soient ou non les mêmes entre le moment de la préparation et le moment de la mesure. Faire les préparations dans une pièce dont on mesure la température, et faire ensuite des corrections ? C'est possible, mais il faut alors se reposer sur des données expérimentales (pour les corrections) dont on n'a pas la certitude absolue qu'elles soient très bonnes. 

Allons, il vaut mieux éviter de mesurer des volumes, et utiliser des balances, qui de toute façon, nous donneront des précisions bien supérieures à celle des fioles jaugées. A titre indicatif, j'ai calculé la précision dans les deux cas : tout peser, contre peser le soluté et mesurer le volume du solvant. La précision de la méthode qui pèse tout est dix fois supérieure à la précision de la méthode qui utilise des volumes. Et encore, mon calcul est charitable !

L'oeuf parfait, l'oeuf à 65, l'oeuf moléculaire ?



On parle beaucoup, aujourd'hui, d'oeuf moléculaire et d'oeuf parfait, et on trouve très de plus en plus fréquemment cet oeuf dans les restaurants du monde entier. De quoi s'agit-il ?

C'est une invention que j'ai faite dans les années 90, alors que je cherchais à comprendre pourquoi les œufs cuisent.
À l'époque, les physiciens prétendaient que les blancs d'oeufs cuits étaient des gel chimiques mais les chimistes disaient qu'il s'agissait de gels physiques. Finalement qu'en était-il ? C'est pour comprendre que, considérant la flèche des énergies, qui montre bien la différence entre les gels physiques (pas de liaisons covalentes entre les molécules dont l'assemblage fait un réseau qui piège le liquide) ou chimiques (des liaisons covalentes entre les éléments constitutifs du réseau), j'ai conclu que la coagulation de l'œuf était due essentiellement à des "ponts sulfure", qui lient chimiquement les protéines chauffées quand elles contiennent des groupes "thiol" ;  et j'en ai apporté la preuve expérimentale en décuisant un œuf, en faisant revenir cru un œuf cuit.

Cela était  donc établi,  mais il y avait d'autres questions et par exemple de savoir pourquoi les œufs cuits plus de 10 minutes deviennent caoutchouteux. L'expérience qui établit le phénomène est facile à faire, et on le  fait chaque fois que l'on cuit  mal un œuf dur.
Or, dans la théorie que j'avais élaborée, pour décrire la coagulation des œufs, je ne voyais pas les 10 minutes. Et je ne les voyais pas parce qu'elles n'y étaient pas : ce qui apparaissait, c'était seulement la coagulation des protéines.

A l'analyse, il m'est apparu qu'il n'y a pas une seule protéine (je parle d'une catégorie de molécules, et non pas de molécules) dans le blanc d'oeuf, mais plusieurs (environ 300 pour le blancs) et que chacune a une température de dénaturation particulière.

De sorte que j'arrivais à cette prévision : si l'on cuit un œuf à 61 degrés pendant plusieurs heures il restera liquide. Mais dès que l'on dépassera  62 degrés,  alors des transformations peuvent survenir et une première coagulation doit s'observer ; puis si on chauffe davantage, par exemple à 70 degrés, alors une deuxième coagulation sera visible et un changement apparaîtra, et ainsi de suite.

C'est la raison pour laquelle j'ai alors mis des œufs dans des fours à 61, 62, 63, 64, 65, 66, 67, etc. Et effectivement l'œuf à 65 degrés était tout à fait extraordinaire parce que le blanc était pris, laiteux, très tendre, tandis que le jaune restait liquide avec son goût remarquable de jaune d'œuf cru.

C'est cet oeuf à 65 degrés que j'ai nommé "oeuf parfait".

Les oeufs produits  aux autres températures n'ont pas démérité, et ils sont intéressants dans différents contextes culinaires, mais ce ne sont pas des "œufs parfaits".

D'ailleurs, le mot parfait est très contestable puisque personnellement je préfère plutôt l'œuf à 66 ou 67 degrés et que, de surcroît, nos goûts peuvent changer selon les minutes de sorte que l'oeuf qui serait pour nous parfait un jour pourrait ne pas l'être le lendemain.

Mais qu'importe, le nom d'oeuf parfait a été donné à l'œuf à 65 degrés, et pas aux autres. Et je m'amuse d'ailleurs de le voir aujourd'hui surnommé œuf moléculaire.

Pourquoi pas, puisque cet œuf est effectivement advenu grâce à des matériels culinaires perfectionnés, venu du laboratoire, tels les thermo-circulateurs, et que la cuisine moléculaire correspond très justement à cette technique culinaire qui se fait avec des matériels venus des laboratoires.

En tout cas, ce n'est pas difficile à faire : on prend un œuf, on le met dans un four et l'on chauffe à 65 degrés pendant un temps qui dépend de la taille de l'oeuf, mais que l'on choisira d'une heure ou plus.
Bon appétit

mercredi 11 octobre 2023

Cette fois, c'est pour les étudiants qui ont du mal à calculer


 

L'expérience de très nombreux stages au laboratoire m'a montré que beaucoup de nos jeunes amis ont du mal à calculer. Pas tous bien sur, mais beaucoup, de sorte qu'il faut les aider. Il n'est pas nécessaire de les traîner dans la boue, et il vaut mieux être efficace, et leur donner des conseils faciles à mettre en œuvre. 

Ici je m'aperçois que notre groupe de gastronomie moléculaire a déjà publié (sur les Cours en ligne d'AgroParisTech) un document intitulé « Comment calculer », mais il rentre dans les détails, et je propose d'abord quelques règles simples, faciles à appliquer. 

Ces règles sont les suivantes : avec des schémas, décrire les étapes de l'expérimentation que l'on veut décrire par le calcul puis, ces schémas étant faits, on produira une structure de calcul, ce qui est particulièrement facile avec un logiciel de comme Maple (comment des enseignants de science peuvent-ils laisser les étudiants utiliser des logiciels aussi minables qu'Excel, ou ses versions libres ?) à ce stade, on introduit des symboles pour désigner les quantités qui doivent figurer dans le calcul souvent, ces symboles seront indicés, mais sans complication exagérée, et de façon systématique enfin, on calculera en langue naturelle, ce qui veut dire que l'on ne calculera pas, mais on décrira les opérations en langue naturelle, et c'est seulement en fin de travail que l'on traduira les phrases en équations enfin, on ne mélangera jamais quantités littérales et quantités numériques ! C'est seulement en fin de calcul que l'on fera une application numérique et une seule. 

Dans le document détaillé, on trouvera bien d'autres précisions, mais ce sont des précisions, et je propose ici une première approche. 

 

Considérons un exemple pour fixer les idées : la préparation d'une solution fille à partir de deux solutions mères, faites d'un soluté particulier dans chaque cas, et d'un solvant. Commençons donc par la mise en œuvre de la première règle : faire un schéma. 

Ce schémas étant fait, nous voyons qu'il est maintenant facile de structurer le calcul : il y aura d'abord les calculs relatifs aux solutions mères, puis le prélèvement à partir de ces solutions, et le mélange de ces quantités pour faire la solution fille. 

Avec le logiciel Maple, il s'agit d'utiliser des « sections » pour structurer le calcul. Toutefois, on voit vite que dans les sections, il faut diviser, on doit utiliser des sous-sections, puisqu'il y a deux solutions filles. 

Et c'est ainsi que se structure le calcul, très simplement. 

Cela fait on reprend le schéma et l'on introduit des symboles, pour désigner des quantités avec lesquelles ont veut calculer : masses de solutés, masses de solvant... Là, puisqu'il s'agit de masses, la lettre M s'impose, ou m. 

Mais puisqu'il y a plusieurs étapes, numérotons-les : 1, 2, 3... A chaque étape, il y a plusieurs solutions possibles que nous pouvons numéroter, et pour chaque solution, on pourrait continuer les numérotations. Il faut absolument éviter de faire des indices d'indices, et encore plus des indices d'indices d'indices. Il faut penser en termes d'algèbre linéaire, car il sera facile alors de calculer à l'aide de cette algèbre... que des logiciels comme Maple manipulent très bien. 

Soyons donc systématiques et simples. 

Quand ces quantités auront été élaborées, décrivons les opérations en langue naturelle, en français si l'on est français, et en anglais si l'on est anglais. 

Là, tout est simple, puisque l'on parle, et qu'on ne calcule pas. Le risque de se tromper est faible. C'est seulement quand tout aura été écrit que l'on transcrira en équations... qui seront justes. 

Ensuite, le calcul sera presque fait, et une fois que l'on aura obtenu l'équation finale, on passera à une dernière étape, dans une section séparée, qui sera l'application numérique. 

 

On voit donc là quelque chose de très simple et je connais bien peu de collègues qui utilisent une autre méthode. 

 

Il est donc indispensable de la donner aux étudiants. Explicitement. 

 

 

Post-scriptum : comment faire un schéma  ? Dans ce qui précède, j'ai conseillé de faire des schémas, pour aboutir à des calculs qui soient justes, mais la question s'est posée : comment faire un schéma ? Ici, je propose une méthode qui consiste à faire le gros d'abord, et le détail ensuite. Prenons un exemple, à savoir la description de la préparation d'une solution. Il suffit de décrire les opérations en langue naturelle : « on prend un bécher, on ajoute un solvant, on ajoute un soluté ». On pourrait décrire les étapes successives de cette opération, mais on résume tout cela en seule une image, avec un rectangle pour le bécher, un trait à mi hauteur pour limiter le solvant, et de petites croix dans le rectangle ainsi délimité pour représenter le soluté. Comment dessiner, finalement ? Il suffit de parler assez lentement et de se focaliser sur chaque mot qui a été dit pour faire la représentation. La méthode fonctionne très bien pour des descriptions macroscopiques, mais tout va bien, aussi, pour des descriptions microscopiques, telle la confection d'une mousse. Dans une mousse, on disperse des bulles de gaz dans un liquide. Pour le schéma, on représentera les bulles par de petits cercles, puisque ces dernières peuvent être réduites à un rayon. Pas de couleurs inutiles, bien sûr, sauf si le logiciel de dessin le propose : ne perdons pas de temps à cela, et focalisons nous sur les choses essentielles, le véritable contenu.

mardi 10 octobre 2023

Quand le vert des feuilles change presque de jour en jour...

 Le printemps est le moment où l'on s'aperçoit que le vert change, le moment où nous prêtons attention à ces changement, parce que le vert apparaît sur des branches jusque là dénudées. 

Puis l'été est le moment où l'on voit que le vert des feuilles change, parce que le chaud alterne avec l'humide. 

Et l'automne est le moment où l'on s'intéresse à la couleur des feuilles, parce que le vert cède la place à d'autres teintes. 

 

En réalité, le vert des feuilles change sans cesse, comme l'analyse suivante permet de le comprendre. Le vert des feuilles, c'est leur contenu en pigments que sont les chlorophylles et les caroténoïdes, notamment. Pour certains feuillages, il peut y avoir aussi des composés phénoliques, mais le raisonnement serait le même que celui que nous allons faire. 

 

Chlorophylles et caroténoïdes, donc. Dans les feuillages, les chlorophylles sont les chlorophylles a, a', b, b', et les caroténoïdes ont pour nom carotène, lutéine, violaxanthine... Chacun de ces composés a un spectre d'absorption particulier, ce qui signifie qu'il absorbe des rayonnements particuliers du spectre de la lumière visible. La lumière du jour arrive donc sur la feuille ; une partie est absorbée et le reste est réfléchi. Plus les pigments sont nombreux, et plus leurs absorptions sont différentes, plus la feuille paraît sombre. 

Imaginons que les feuilles ne contiennent que la chlorophylle a : on aurait une certaine couleur. Puis imaginons que les feuilles contiennent de la chlorophylle a et du carotène bêta : la couleur serait différente. Or les feuilles qui croissent synthétisent les pigments, mais elles ne les synthétisent pas tous à la même vitesse, parce que les voies métaboliques sont différentes pour les divers pigments. La proportion de chlorophylle a, par exemple, change avec le temps, de sorte que la couleur change, puisque tout est affaire de proportion. 

Et voilà pourquoi il n'est pas étonnant que la couleur des feuilles change avec les jours qui passent, du premier jour où elles apparaissent, jusqu'au jour où elles tomberont. J'ai dit « il n'est pas étonnant », mais je me reprends, car une telle expression banalise le phénomène, qui est bien mystérieux et merveilleux pour qui n'est pas chimiste. Au contraire, ces changements de couleur sont très étonnants ! La preuve : il a fallu que les sciences viennent donner l'analyse précédente pour que l'on y voie plus clair. Sans les éclaircissements des sciences, les mystères tels que les verts changeants des feuillages sont de ceux qui ont conduit l'humanité à imaginer des dieux, des elfes, des lutins, des feux follets. 

Naguère, ce type de phénomène appelait des puissances imaginaires, et chacun pouvait ajouter sa voix à la grande cacophonie publique des mythes, des légendes. Aujourd'hui la chimie physique a-t-elle mis fin à cet « enchantement » ? Je ne crois pas, car la théorie scientifique, bien plus fiable que l'imagination, est toujours « insuffisante » par principe (faut-il dire « incomplète » ?), de sorte que, jour après jour, notre compréhension du monde s'embellit. Ce serait une erreur de croire que la chimie physique de la couleur des feuilles ait dit son dernier mot, au contraire. La science n'a pas de fin parce qu'elle perfectionne à l'infini ses théories, ses explications, qu'elle améliore ses mécanismes, en vue de produire un discours toujours plus approprié. Il est là, l'enchantement du monde. Et puis, il faut quand même s'étonner de ces synthèses différentielles des chlorophylles et des caroténoïdes. Il y a de quoi s'émerveiller de la constitution moléculaire des molécules de ces composés qui absorbent la lumière visible. 

Les chlorophylles ? Des molécules qui sont construites autour d'un noyau « tétrapyrrolique », avec des atomes qui forment une sorte de « plaquette », et un atome de magnésium au centre, des électrons étant répartis (on dit « délocalisés ») sur tout le plan du noyau. 

Les caroténoïdes ? Des molécules également remarquables, mais différemment : elles ont un long squelette fait d'atomes de carbone, avec des liaisons simples et des liaisons doubles qui alternent, ce qui permet, à nouveau, la délocalisation des électrons, laquelle permet l'absorption de la lumière visible. 

Dans les deux cas, il y a un mécanisme analogue, et très remarquable. Ordinairement, quand il n'y a pas de délocalisation des électrons, les molécules n'absorbent que des rayonnements très énergétiques, ultraviolets par exemple. En revanche, quand les électrons de doubles liaisons sont ainsi délocalisés, ils sont moins « tenus » par le squelette moléculaire, et interagissent plus facilement avec les rayonnements, de sorte qu'ils peuvent absorber ces derniers, avant de revenir à l'état initial, souvent par réémission de rayonnement invisible, infrarouge par exemple. 

Je m'arrête là : j'avais juste esquissé la suite du récit afin de montrer qu'il y a lieu de s'étonner chaque seconde... de la couleur changeante du vert des feuilles.