Affichage des articles dont le libellé est feuilles. Afficher tous les articles
Affichage des articles dont le libellé est feuilles. Afficher tous les articles

mardi 10 octobre 2023

Quand le vert des feuilles change presque de jour en jour...

 Le printemps est le moment où l'on s'aperçoit que le vert change, le moment où nous prêtons attention à ces changement, parce que le vert apparaît sur des branches jusque là dénudées. 

Puis l'été est le moment où l'on voit que le vert des feuilles change, parce que le chaud alterne avec l'humide. 

Et l'automne est le moment où l'on s'intéresse à la couleur des feuilles, parce que le vert cède la place à d'autres teintes. 

 

En réalité, le vert des feuilles change sans cesse, comme l'analyse suivante permet de le comprendre. Le vert des feuilles, c'est leur contenu en pigments que sont les chlorophylles et les caroténoïdes, notamment. Pour certains feuillages, il peut y avoir aussi des composés phénoliques, mais le raisonnement serait le même que celui que nous allons faire. 

 

Chlorophylles et caroténoïdes, donc. Dans les feuillages, les chlorophylles sont les chlorophylles a, a', b, b', et les caroténoïdes ont pour nom carotène, lutéine, violaxanthine... Chacun de ces composés a un spectre d'absorption particulier, ce qui signifie qu'il absorbe des rayonnements particuliers du spectre de la lumière visible. La lumière du jour arrive donc sur la feuille ; une partie est absorbée et le reste est réfléchi. Plus les pigments sont nombreux, et plus leurs absorptions sont différentes, plus la feuille paraît sombre. 

Imaginons que les feuilles ne contiennent que la chlorophylle a : on aurait une certaine couleur. Puis imaginons que les feuilles contiennent de la chlorophylle a et du carotène bêta : la couleur serait différente. Or les feuilles qui croissent synthétisent les pigments, mais elles ne les synthétisent pas tous à la même vitesse, parce que les voies métaboliques sont différentes pour les divers pigments. La proportion de chlorophylle a, par exemple, change avec le temps, de sorte que la couleur change, puisque tout est affaire de proportion. 

Et voilà pourquoi il n'est pas étonnant que la couleur des feuilles change avec les jours qui passent, du premier jour où elles apparaissent, jusqu'au jour où elles tomberont. J'ai dit « il n'est pas étonnant », mais je me reprends, car une telle expression banalise le phénomène, qui est bien mystérieux et merveilleux pour qui n'est pas chimiste. Au contraire, ces changements de couleur sont très étonnants ! La preuve : il a fallu que les sciences viennent donner l'analyse précédente pour que l'on y voie plus clair. Sans les éclaircissements des sciences, les mystères tels que les verts changeants des feuillages sont de ceux qui ont conduit l'humanité à imaginer des dieux, des elfes, des lutins, des feux follets. 

Naguère, ce type de phénomène appelait des puissances imaginaires, et chacun pouvait ajouter sa voix à la grande cacophonie publique des mythes, des légendes. Aujourd'hui la chimie physique a-t-elle mis fin à cet « enchantement » ? Je ne crois pas, car la théorie scientifique, bien plus fiable que l'imagination, est toujours « insuffisante » par principe (faut-il dire « incomplète » ?), de sorte que, jour après jour, notre compréhension du monde s'embellit. Ce serait une erreur de croire que la chimie physique de la couleur des feuilles ait dit son dernier mot, au contraire. La science n'a pas de fin parce qu'elle perfectionne à l'infini ses théories, ses explications, qu'elle améliore ses mécanismes, en vue de produire un discours toujours plus approprié. Il est là, l'enchantement du monde. Et puis, il faut quand même s'étonner de ces synthèses différentielles des chlorophylles et des caroténoïdes. Il y a de quoi s'émerveiller de la constitution moléculaire des molécules de ces composés qui absorbent la lumière visible. 

Les chlorophylles ? Des molécules qui sont construites autour d'un noyau « tétrapyrrolique », avec des atomes qui forment une sorte de « plaquette », et un atome de magnésium au centre, des électrons étant répartis (on dit « délocalisés ») sur tout le plan du noyau. 

Les caroténoïdes ? Des molécules également remarquables, mais différemment : elles ont un long squelette fait d'atomes de carbone, avec des liaisons simples et des liaisons doubles qui alternent, ce qui permet, à nouveau, la délocalisation des électrons, laquelle permet l'absorption de la lumière visible. 

Dans les deux cas, il y a un mécanisme analogue, et très remarquable. Ordinairement, quand il n'y a pas de délocalisation des électrons, les molécules n'absorbent que des rayonnements très énergétiques, ultraviolets par exemple. En revanche, quand les électrons de doubles liaisons sont ainsi délocalisés, ils sont moins « tenus » par le squelette moléculaire, et interagissent plus facilement avec les rayonnements, de sorte qu'ils peuvent absorber ces derniers, avant de revenir à l'état initial, souvent par réémission de rayonnement invisible, infrarouge par exemple. 

Je m'arrête là : j'avais juste esquissé la suite du récit afin de montrer qu'il y a lieu de s'étonner chaque seconde... de la couleur changeante du vert des feuilles.

vendredi 22 septembre 2023

La cuisson des épinards.

 Passons rapidement sur les questions d'enfants, les « je n'aime pas les épinards », et consacrons-nous plutôt à cette recette d'épinards effleurée par Jean Antelme Brillat-Savarin, à propos d'un certain « chanoine Chevrier ». 

 

Brillat-Savarin, qui était juriste et gastronome, et non scientifique, a recueilli des anecdotes, et il les a propagées quand elles étaient suffisamment gourmandes, sans se préoccuper de la véracité des faits. 

Dans celle qui est relative au chanoine Chevrier, il est dit que ce dernier ne mangeait les épinards que lorsqu'ils avaient été cuits plusieurs jours de suite dans du beurre, et Brillat-Savarin laisse entendre que les épinards se sont gonflés de beurre. 

 

C'est séduisant, mais est-ce juste ? 

 

Les épinards sont des tissus végétaux, faits de cellules solidarisées par une paroi végétale, une sorte de ciment. Les cellules sont comme de petits sacs principalement constitués d'eau. 

Quand on cuit les épinards, le tissu végétal est amolli, parce que les molécules de pectines (le ciment) sont dégradées. On voit un peu d'eau sortir des feuilles, et, évidemment, il n'a pas de variation totale de masse, car rien ne se perd, rien ne se crée. Si l'on cuit les épinards dans du beurre, on voit ce dernier perdre environ un cinquième de sa masse, car le beurre est composé environ de 80 % de matière grasse et de 20 % d'eau (la proportion maximale d'eau est précisément définie par la loi, afin que l'on évite de vendre du beurre alourdi avec de l'eau). 

Cuire les épinards dans du beurre, c'est à la fois fondre le beurre, amollir les feuilles, évaporer de l'eau apportée par le beurre et par les feuilles. 

Finalement, la matière grasse liquide se placera entre les feuilles par capillarité, et le fait que les feuilles soient très minces conduit à une bonne possibilité de migration de la matière grasse : on obtient une sorte de mille feuilles épinard/beurre/épinard/beurre... Toutefois, après une certaine quantité de beurre, on en vient à produire une dispersion des épinards dans du beurre, ce qui n'est guère appétissant : du beurre aux épinards. Certes, la cuisson renouvelée du beurre conduit à améliorer le beurre noisette qui se forme progressivement. Et l'on sait combien le beurre noisette est bon ! Autrement dit, les épinards deviendraient l'excuse pour manger un merveilleux beurre noisette ! 

Ce qui doit m'inciter à vous dire que mon ami Pierre Gagnaire, quand il prépare du beurre noisette, ajoute périodiquement de l'eau (plus justement du jus de citron, d'orange...) afin de ralentir, de commander le brunissement de la matière grasse, qui ne doit jamais charbonner. 

Les procédés de confection du beurre noisette sont très mal connus du point de vue chimique, et il y aurait intérêt public à une exploration scientifique poussée, mais, en attendant, s'il est clair que les épinards recuits dans le beurre prennent un goût différent, il n'est pas moins vrai que cuire sept fois les épinards n'a aucun intérêt, et relève plus du fantasme gourmand que d'un bon principe technique. Cela est une probabilité, et non une certitude, de sorte que j'invite mes amis à cuire les épinards une fois, deux fois, trois fois... et à les comparer. Que se passera-t-il si l'on montre que Brillat-Savarin a simplement fait rêver ? 

D'une part, la connaissance des mécanismes par lesquels la lune brille n'amoindrit pas la poésie du clair de lune. D'autre part, on sera fixé sur les conditions de la cuisson correcte des épinards, ce qui permettra d'en préparer de meilleurs pour nos amis. Enfin, je peux témoigner que, croyant pour l'instant que l’anecdote de Brillat-Savarin est pure invention, mon état d'esprit ne m'empêche ni d'admirer l'oeuvre de Brillat-Savarin ni de rêver à des épinards délicieusement cuits.

dimanche 10 août 2014

Le moment où le vert des feuilles change presque de jour en jour...



Le printemps est le moment où l'on s'aperçoit que le vert change, le moment où nous prêtons attention à ces changement, parce que le vert apparaît sur des branches jusque là dénudées. L'été est le moment où l'on voit que le vert des feuilles change, parce que le chaud alterne avec l'humide. L'automne est le moment où l'on s'intéresse à la couleur des feuilles, parce que le vert cède la place à d'autres teintes. En réalité, le vert des feuilles change sans cesse, comme l'analyse suivante permet de le comprendre.
Le vert des feuilles, c'est leur contenu en pigments que sont les chlorophylles et les caroténoïdes, notamment. Pour certains feuillages, il peut y avoir aussi des composés phénoliques, mais le raisonnement serait le même que celui que nous allons faire. Chlorophylles et caroténoïdes, donc. Dans les feuillages, les chlorophylles sont les chlorophylles a, a', b, b', et les caroténoïdes ont pour nom carotène, lutéine, violaxanthine... Chacun de ces composés a un spectre d'absorption particulier, ce qui signifie qu'il absorbe des rayonnements particuliers du spectre de la lumière visible. La lumière du jour arrive donc sur la feuille ; une partie est absorbée et le reste est réfléchi. Plus les pigments sont nombreux, et plus leurs absorptions sont différentes, plus la feuille paraît sombre.
Imaginons que les feuilles ne contiennent que la chlorophylle a : on aurait une certaine couleur. Puis imaginons que les feuilles contiennent de la chlorophylle a et du carotène bêta : la couleur serait différente.
Or les feuilles qui croissent synthétisent les pigments, mais elles ne les synthétisent pas tous à la même vitesse, parce que les voies métaboliques sont différentes pour les divers pigments. La proportion de chlorophylle a, par exemple, change avec le temps, de sorte que la couleur change, puisque tout est affaire de proportion.
Et voilà pourquoi il n'est pas étonnant que la couleur des feuilles change avec les jours qui passent, du premier jour où elles apparaissent, jusqu'au jour où telles tomberont.

J'ai dit « il n'est pas étonnant », mais je me reprends, car une telle expression banalise le phénomène, qui est bien mystérieux et merveilleux pour qui n'est pas chimiste. Au contraire, ces changements de couleur sont très étonnants ! La preuve : il a fallu que les sciences viennent donner l'analyse précédente pour que l'on y voie plus clair. Sans les éclaircissements des sciences, les mystères tels que les verts changeants des feuillages sont de ceux qui ont conduit l'humanité à imaginer des dieux, des elfes, des lutins, des feux follets. Naguère, ce type de phénomène appelait des puissances imaginaires, et chacun pouvait ajouter sa voix à la grande cacophonie publique des mythes, des légendes.
Aujourd'hui la chimie physique a-t-elle mis fin à cet « enchantement » ? Je ne crois pas, car la théorie scientifique, bien plus fiable que l'imagination, est toujours « insuffisante » par principe (faut-il dire « incomplète » ?), de sorte que, jour après jour, notre compréhension du monde s'embellit. Ce serait une erreur de croire que la chimie physique de la couleur des feuilles a dit son dernier mot, au contraire. La science n'a pas de fin parce qu'elle perfectionne à l'infini ses théories, ses explications, qu'elle améliore ses mécanismes, en vue de produire un discours toujours plus approprié. Il est là, l'enchantement du monde.
Et puis, il faut quand même s'étonner de ces synthèses différentielles des chlorophylles et des caroténoïdes. Il y a de quoi s'émerveiller de la constitution moléculaire des molécules de ces composés qui absorbent la lumière visible.
Les chlorophylles ? Des molécules qui sont construites autour d'un noyau « tétrapyrrolique », avec des atomes qui forment une sorte de « plaquette », et un atome de magnésium au centre, des électrons étant répartis (on dit « délocalisés ») sur tout le plan du noyau. Les caroténoïdes ? Des molécules également remarquables, mais différemment : elles ont un long squelette fait d'atomes de carbone, avec des liaisons simples et des liaisons doubles qui alternent, ce qui permet, à nouveau, la délocalisation des électrons, laquelle permet l'absorption de la lumière visible.
Dans les deux cas, il y a un mécanisme analogue, et très remarquable. Ordinairement, quand il n'y a pas de délocalisation des électrons, les molécules n'absorbent que des rayonnements très énergétiques, ultraviolets par exemple. En revanche, quand les électrons de doubles liaisons sont ainsi délocalisés, ils sont moins « tenus » par le squelette moléculaire, et interagissent plus facilement avec les rayonnements, de sorte qu'ils peuvent absorber ces derniers, avant de revenir à l'état initial, souvent par réémission de rayonnement invisible, infrarouge par exemple.
Je m'arrête là : j'avais juste esquissé la suite du récit afin de montrer qu'il y a lieu de s'étonner chaque seconde... de la couleur changeante du vert des feuilles.

mercredi 24 juillet 2013

La connaissance par la gourmandise. Aujourd'hui, je voudrais faire l'éloge de la feuille !


-->

La feuille ? regardons en l'air et voyons les feuilles des arbres. Quelle est leur fonction ? Permettre les échanges entre les arbres et l'air. Les feuilles, très aplaties, sont un merveilleux système pour augmenter les possibilités d'échanges : plus elles sont minces, et plus, à volume constant de feuilles, la surface est grande et les échanges augmentés. Maintenant, si nous baissons le nez, nous voyons les feuilles de papier, par exemple. Là encore, il s'agit de réduire la quantité de matière, pour avoir de grandes surfaces utilisables, pour écrire. Là encore, il s'agit d'échanges avec l'environnement : celui qui écrit.
Cela dit, les feuilles ont bien d'autres caractéristiqus qu'une grande surface, à savoir, par exemple, une très faible résistance perpendiculairement à leur plan et une très grande résistance selon celui-ci. C'est ainsi que l'on peut se couper avec une feuille. On peut aussi, si l'on fait un rouleau avec l'axe verticale, poser une planche dessus et monter sans que le rouleau s'écrase.
Autrement dit les feuilles sont les choses merveilleuses qui ont deux résistances différetes selon la façon dont les aborde.

En bouche, mangeons une feuille de salade et pensons-y : comme la feuille est malaxée entre la langue, le palais et les dents, elle tourne, de sorte qu'elle offre à notre perception soit une résistance très grande, soit une résistance très petite. Autrement dit, les feuilles de salades sont un paysage de consistances sans cesse changeant.
Nous voulons innover en cuisine ? Produisons alors des feuilles. Comment ? Très simplement : commençons par couler du blanc d'oeuf dans une assiette et cuisons : on détache une feuille coagulée. Cela se généralise : imaginons que l'on ait de l'eau et un agent gélifiant, et que l'on coule l'ensemble sur une surface plate ; on récupérera une feuille.
Par exemple, avec de la gélatine, de l'agar-agar, etc., et l'on obtient des feuilles de consistances très différentes. Le goût de ces feuilles ? Il sera celui que l'on aura décidé : par exemple, si l'on a dissout de la gélatine dans du vinaigre chaud, puis qu'on a émulsionné de l'huile dans le vinaigre additionné de gélatine, on obtiendra une émulsion qui, coulée sur une plaque, prendra en feuille, en feuille de vinaigrette.
Et l'on pourra ainsi produire des salades artificielles, avec les feuilles de consistances différentes, et des goût sur-mesure. Ces systèmes ont été nommés salades à la Nollet, du nom de l'abbé Nollet qui fut un pionnier français de électricité. Pour ses prototypes de condensateurs, Nollet utilisait ... des feuilles.
Vive l'abbé Nollet !