vendredi 13 mars 2020

A propos des omelettes (suites)

Suite à mon billet d'avant hier, je reçois le message suivant : 

je viens de lire votre très intéressant billet sur la cuisson des omelettes. Si je
comprends bien ce que nous avez expliqué par ailleurs (à propos de la gélatine  ou des confitures)  une omelette c'est donc un gel. Mais contrairement à la gelée la transformation est irréversible.

Je suis content que vous fassiez un billet la-dessus parce que ça fait longtemps que je me demande ce qui se passe lorsqu'on cuit un bifteck. Ce ne sont pas les m^emes protéines (actine et myosine si je me souviens bien d'un billet précédent) mais j'imagine que là encore les protéines s'attachent les unes aux autres pourdonner un steack cuit).


Et ma réponse, qui n'a pas tardée : 

 
Merci de votre message. Oui, un oeuf qui cuit est un gel, et un gel (assez) irréversible (en tout cas, quand on se limite aux moyens culinaires (en laboratoire, j'ai décuit des oeufs, comme je l'explique dans un article publié en 1997). 
Oui, à l'intérieur des fibres musculaires (actines, myosines) d'une viande, la "cuisson", c'est notamment la coagulation de ces protéines, et le même type de "gélification", d'où un durcissement (du steak bleu au steak bien cuit).
bonne journée

Une molécule est une molécule



Ce matin, plusieurs questions, mais en voici une en particulier, qui mérite un commentaire public :


J'ai une question par rapport aux molécules synthétiques vs naturelles. Je sais que les propriétés physiques ainsi que l'odeur et le goût des molécules synthétiques vs naturelles sont identiques ex linalool synth vs naturel. Qu'en est-il de leurs activités biologiques et de leur propriétés toxicologiques ? Pouvez-vous me diriger vers des articles et références qui étudient cette question ?

Ici, je sais d'expérience qu'il y a la question des mots, qui est source de confusions. Une molécule, c'est donc un tout petit objet, fait d'atomes de divers éléments, liés par des forces interatomiques (une sorte de pléonasme que cet adjectif). Les éléments considérés, ici, sont principalement le carbone, l'hydrogène et l'oxygène. Et pour ces trois éléments, les atomes sont faits d'un "noyau", assemblage de protons et de neutrons, avec autour des électrons, comme la terre autour du soleil.
Les effets biologiques des molécules ? Une molécule a un effet si elle a un "récepteur", à savoir si l'organisme comporte une molécule agissant comme une serrure vis à vis de la molécule bioactive, qui est comme une clé. Et la disposition des atomes est donc très essentielle. Donc tout est simple, au premier ordre. Et une molécule est entièrement déterminée par ses atomes, leur disposition. 
Maintenant, il peut y avoir des effets qui sont au niveau du détail des détails. Par exemple, certains atomes d'hydrogène peuvent avoir dans leur noyau, en plus du proton, un neutron, et c'est ce que l'on désigne par "deutérium". Les propriétés chimiques sont quasi identiques, mais des outils de mesure très sensibles voient des différences... et c'est ainsi qu'une entreprise française d'analyse a fait son succès commercial en devenant capable de détecter du sucre ajouté dans les vins, pour des chaptalisations ou pour des fraudes. Mais, je le répète, c'est un détail au regard de la question posée.

Maintenant, synthétique et naturel ? Une molécule naturelle, c'est une molécule qui se trouve dans la nature, fabriquée par les plantes ou par les animaux, voire par les éléments (la chaleur, la foudre, etc.). En revanche, une molécule synthétisée, c'est une molécule qui a été... synthétisée, à savoir qu'on a rassemblé des atomes d'une certaines façon pour faire la molécule. Et, évidemment, si l'on même les mêmes atomes organisés de la même façon, on obtient la même molécule, qui ira ouvrir les mêmes serrures !

Cela dit, on peut répondre plus subtilement que cela à la question de notre interlocuteur, parce que l'on peut synthétiser avec des niveaux de précision variés, parce que la question des "impuretés" est essentielle : les composés extraits de produits naturels ne sont pas accompagnés des mêmes "impuretés" que les produits de synthèse (parfois plus purs que les produits naturels).
Par exemple, notre correspondant parle de linalol, qui est un composé odorant présent dans de nombreux végétaux. Parler du linalol au singulier, c'est une erreur, parce qu'il y a divers linalols, et que le (S)-(+)-linalol n'a pas la même odeur -donc pas les mêmes effets biologiques que le (R)-(-)-linalol. Mais une molécule d'un de ces deux linalols est une molécule de ce linalol-là, quoi qu'il arrive. Et la question "isotopique" précédente (l'hydrogène vs le deutérium) ne se pose pas, du point de vue de l'odeur.
En revanche, quand on a un de ces deux linalols dans une matière végétale, elle n'est pas seule, et aucune  plante n'a donc l'odeur de ce linalol particulier. Puis, si l'on extrait ce composé, il n'est plus "naturel", mais d'origine naturelle... et son extraction ne permet généralement pas de l'avoir pur ! De sorte qu'il y a des "impuretés"... et que ces impuretés peuvent être essentielle. C'est ainsi que le mélange des deux limonènes R et S n'a pas d'odeur quand il est fraîchement obtenu par distillation... et que cette odeur de Citrus n'apparaît qu'ensuite, sans doute  due aux impuretés, plutôt qu'aux limonènes.
Pour les composés de synthèse, il y a également des impuretés, qui résultent du procédé de préparation, et il n'est d'ailleurs pas dit que ces impuretés soient plus abondantes ou plus dangereuses, bien au contraire : les opérations de synthèse étant mieux contrôlées que les extractions (qui partent de mélanges complexes), il est possible qu'il y ait bien moins d'impuretés.

Enfin, mon interlocuteur me parle d' "activités biologiques et propriétés toxicologiques" : amusant, car les effets toxicologiques sont des activités biologiques, non ? Car je fais l'hypothèse, vu les composés qu'il discute, que ce sont de toutes petites quantités de composés qui sont considérées ici, de sorte que l'on est bien dans le cadre des clés et des serrures, des composés bioactifs et de  récepteurs. Là, les impuretés sont essentielles, car elles peuvent avoir des récepteurs, que les composés soient d'origine naturelle ou synthétisés, et quelqu'un qui fait bien son travail, d'extraction ou de synthèse, se préoccupe de cela.
Mais finalement, une molécule est une molécule, n'est-ce pas ?

jeudi 12 mars 2020

Même pour une simple omelette


Même pour une simple omelette je m'aperçois qu'il y a lieu de  donner des explications.
Oui, depuis quelques semaines, je me suis mis à expliquer les transformations qui surviennent lors de la préparation des certains plats compliqués : cassoulet, soufflé, etc. Mais c'est souvent bien compliqué, et des amis me demandent des explications pour des choses bien plus simples, en quelque sorte : les omelettes.
D'ailleurs, je m'aperçois que je suis tombé dans un travers d'analyse insuffisante : j'ai privilégié des recettes "intéressantes" à des recettes utiles (à mes amis).

Pour une omelette, donc,  il s'agit de battre de l'oeuf, et de chauffer l'oeuf battu. Là,  les informations de base sont les suivantes : le blanc d'oeuf est fait de 90 pour cent d'eau et de 10 pour cent de protéines, tandis que le jaune est fait de 50 pour cent d'eau, de 15 pour cent de protéines et 35 pour cent de lipides (disons de "graisse"). Au total, il y a donc beaucoup d'eau avec des protéines, et un peu de graisse.
La graisse  n'étant pas soluble dans l'eau, elle est nécessairement dispersée sous la forme de gouttelettes. Et elle n'intervient pas notablement lors  de la cuisson.
On peut donc ne considérer que le chauffage de l'eau et des protéines, comme si la graisse n'était pas présente  : elle ne changera que la consistance plus ou moins crémeuse, en fin de cuisson.

De l'eau et les protéines  ?  Il faut imaginer un ensemble de billes pour représenter les molécules d'eau au milieu desquelles flottent des pelote de laine, pour représenter les protéines.


Quand on chauffe tout cela, les molécules s'agitent de plus en plus vite, et les pelotes se déroulent. Mais la différence entre des pelotes de laine et des protéines, c'est que les protéines déroulées s'attachent et  forment une espèce de toile d'araignée dans toutes les directions, emprisonnant les molécules d'eau. C'est cela qu'il faut apprendre à voir, quand on regarde une omelette  : un filet souple qui emprisonne les molécules d'eau.










Évidemment, si l'on agite l'omelette (avec une fourchette, on peut casser  localement le filet, ce que l'on nomme un réseau : on forme alors des morceaux d'omelette. Et si l'on agite bien plus vigoureusement, on peut aller jusqu'à l'oeuf brouillés.
Mais en tout cas, voilà la description générale du phénomène.

mercredi 11 mars 2020

De l'importance du geste


Aujourd'hui, je rapproche la question du chlore de celle de la crème chantilly. Oui le chlore ne se mange pas, contrairement à la crème chantilly, mais ces deux produits suscitent le même type d'observations, comme nous le verrons.

Commençons par la crème chantilly dont la confection n'a jamais été traditionnelle dans ma famille. Ce fut une de ces petites victoires personnelles que d'arriver à faire ma première crème chantilly. Pourtant, rien de plus simple : on prend la crème, on la fouette, et elle monte en chantilly ; disons en crème fouettée, qui devient de la crème chantilly quand on ajoute du sucre. Bien sûr, quand il fait chaud, il vaut mieux avoir refroidi la crème et le récipient, avoir éventuellement ajouté des glaçons. Mais en règle générale, c'est tout simple. D'ailleurs, si je me répète, je ne parviens pas à ajouter grand chose à ce que j'ai déjà dit. Voyons : on prend une jatte (s'il fait chaud, on refroidit cette dernière) ; on y met de la crème, si possible fleurette;  on fouette, et après un temps compris entre 22 secondes et plusieurs minutes, on voit que les bulles ont une taille  qui diminue et, surtout, que la consistance change. C'est tout : quand on fouette de la crème, on a de la crème fouettée, et si l'on sucre, on obtient de la crème chantilly.
Qu'ajouter ? Que si l'on a pas de crème fleurette, mais seulement la crème épaisse, alors on ajoute un peu de lait à la crème épaisse, mais pas trop sans quoi la préparation reste liquide même si l'on fouette longtemps.
Bref, malgré mes contorsions intellectuelles, je ne parviens pas à rendre les choses compliquées :  rien de plus simple que de fouetter  de la crème pour faire de la crème fouettée, qui devient de la crème chantilly si on l'a sucré, ce qui contribue d'ailleurs un peu plus de fermeté.

J'ajoute maintenant un point supplémentaire : je me souviens qu'il y a quelques années, le directeur commercial d'une grosse société alimentaire m'avait téléphoné pour me dire que mon livre Révélations gastronomiques, qui contenait les prescriptions pour obtenir une crème fouettée, n'était pas complètement suffisant, puisque, malgré la lecture attentive du livre, il n'avait pas réussi à faire une crème fouettée. Il était amical et nous décidâmes que j'irai chez lui pour dîner et lui montrer comment faire cette crème chantilly. Ensemble, nous avons donc pris une jatte, déposé de la crème dedans et je lui ai proposé de fouetter devant moi. Au bout d'un moment,  alors qu'il avait obtenu une crème bien fouettée, il continuait à fouetter, de sorte que je lui ai fait observer qu'il fallait s’arrêter, puis qu'il avait le résultat qu'il escomptait. Et c'est alors qu'il m'a demandé  : "Parce que c'est ça,  la crème chantilly ?"  Oui, il croyait qu'il devait obtenir la consistance des crèmes chantilly en bombe, qui sont bien différentes des véritables crèmes chantilly. En réalité,  il ne savait pas voir  qu'il avait obtenu le résultat visé, mais il savait faire la crème chantilly.





J'en viens maintenant à la question du chlore : c'est un gaz vert, toxique, qui fut étudié par les chimistes du 18e siècle, et liquéfié pour là pour la première fois par Michael Faraday. Je parle du chlore parce que je viens de retrouver dans une biographie de Faraday tout une discussion sur l'instruction, et notamment le fait que tous les livres du monde, avec toutes les descriptions qu'il faut, ne sauraient remplacer le fait de voir un jour du chlore véritablement.
C'est donc la même question que pour la crème fouettée  : on sait la chose, mais, tant qu'on ne l'a pas vue, il nous manque quelque chose. Cela nous rapproche d'une discussion préalable à propos des travaux pratiques, dans les études scientifiques, et le fait que ces séances pratiques sont en réalité indispensables, même pour des personnes qui comprennent parfaitement. Tant qu'on a pas appris à garder le capuchon d'une bouteille entre la paume de la main et les derniers doigts, tandis que les  autres doigts  servent à  verser, tant qu'on n'a pas pris l'habitude de ne jamais rien poser sur le premier carreau d'une paillasse, tant qu'on n'a pas appris à ne pas se toucher le visage avec les gants, tant que...  Et bien, on ne sait pas le faire ! D'ailleurs, il en va de même pour la bicyclette, nager, monter à cheval, jouer de la musique : il faut de la pratique, et aucune théorie n'est suffisante.
Bref, je suis dans les traces de Faraday : il ne suffit pas de savoir tous les beaux principes, et il faut expérimenter !

dimanche 8 mars 2020

Sait-on mieux quand on sait que l'on sait ? Je crois que oui.


Aujourd'hui, je veux discuter la question de ce que je nomme le "portfolio" : il s'agit d'une liste où l'on inscrit tout ce que l'on sait ("connaissances") et tout ce que l'on sait faire ("compétences").

Par exemple, si, un jour, lors des études supérieures, on apprend ce qu'est le pH, alors on marque dans le portfolio, dans la partie "connaissances"  : notion de pH. Puis, si l'on apprend à calculer le  pH d'une solution d'acide acétique dilué, on marque, cette fois dans la partie "compétences" : calcul d'une solution d'acide acétique dilué. On peut aussi faire mieux, et observer que si l'on sait calculer le pH d'une solution d'acide acétique dilué, on doit sans doute savoir aussi bien calculer le pH d'une solution d'un autre acide faible, de sorte que, après la vérification que l'on sait bien faire cela, on marque dans la partie "compétences" : calcul du pH d'une solution d'un acide faible.

Prenons un nouvel exemple qui nous conduit plus loin : supposons que l'on ait appris à utiliser un spectromètre UV visible, à préparer une solution qu'on a mis dans une cuve, et pour laquelle on a réussi à enregistrer un spectre, après avoir appuyé sur les boutons spécifiques qui conduisent à la production de ce spectre. Alors on écrit  (dans les "compétences") : utilisation d'un spectromètre UV visible. Mais on voit que l'on peut être plus précis, et que cela vaut la peine de distinguer une utilisation de routine, débutante,  et une utilisation confirmée, puis, plus tard, une utilisation expert.
Cela nous conduit à ajouter une colonne supplémentaire, à droite de la liste initiale, de sorte qu'elle devient un tableau : la deuxième colonne contiendra l'état des connaissances et des compétences que l'on a. Par exemple si l'on commence à connaître le la définition du potentiel chimique, par exemple en rapportant l'enthalpie libre au nombre de moles, on est débutant, on a une connaissance faible, mais le jour où l'on passe à des petites variations, alors on devient plus confirmé.

Soit donc finalement un tableau ; ou plus exactement deux tableaux, puisque nous avons distingué connaissances et compétences.
Immédiatement, il est de notre devoir, si nous ne sommes pas paresseux,  d'ajouter  une colonne supplémentaire et une ligne supplémentaire à chacun des deux tableaux, selon le bon principe que toute case vide est à remplir : ayant une case vide, nous avons le bonheur d'être invité à  exercer notre intelligence pour nous demander comment la remplir.
Et puis,  selon le même principe : puisque nous avions deux tableaux, pourquoi n'en aurions-nous pas trois ? Par exemple avec des savoir vivre, des savoir être... ou toute autre chose à votre goût.

Évidemment, les connaissances et les compétences que nous avons sont définies dans les programmes et les référentiels des cursus que nous avons suivis. On pourrait donc, paresseusement, se reposer sur ces programmes et référentiels, en pensant que si nous avons des  diplômes, c'est donc que nous maîtrisons les connaissances et les compétences correspondant à ces diplômes...
Mais on sait bien que cela n'est pas vrai, et je fais une différence entre les prétentions que nous avons vis à vis du monde extérieur (les employeurs, par exemple), et celles que nous pouvons avoir vis à vis de nous-même, où nous n'avons pas intérêt à nous mentir. D'autant que les discussions avec mes amis plus jeunes prouvent que les notions, connaissances, compétences... sont parfois bien volatiles : on n'oublie pas qu'il faut avoir oublié plusieurs fois pour se souvenir. De sorte que, je le répète, il est bien paresseux de se reposer sur les programmes et référentiels.
Et surtout, je maintiens que l'on sait  mieux quand on sait ce que l'on sait,  et que l'on sait mieux faire quand on sait ce que l'on sait faire.

Je propose d'avoir, dès l'école primaire, un tel portfolio que, fièrement, nous augmentons ligne après ligne. Bien sûr, cette liste grossira considérablement et il faudra la structurer... ce qui est un avantage, puisque nous pourrons sans cesse réviser nos savoirs et nos compétences. Et nous serons amenés à changer les statut de savoir et de compétences (deuxième colonne), passant de débutant, à  confirmé, puis expert.
Et là , je vois apparaître le fait que ce portfolio, cette liste de connaissances et de compétences,  va de pair avec une évaluation que nous faisons nous-même de nos connaissance de nos compétences :  au lieu de laisser filer, nous reprenons la main sur ce que nous apprenons, nous maîtrisons, nous contrôlons, nous commandons ; nous évitons de la mauvaise foi, car si cette liste destiné à nous-même.

Évidemment, une telle liste peut-être utile pour chercher du travail : si nous arrivons devant un employeur avec la liste de tout ce que nous savons  et de tout ce que nous maîtrisons, alors non seulement ce dernier peut juger de l'adéquation de notre proposition avec ses besoins, mais, de surcroît, il voit qu'il a en face de lui quelqu'un de structuré, qui cherche à faire bien.

Et il n'est jamais trop tard pour se lancer : j'ai entendu quelques amis déjà bien avancés dans leurs études, par exemple en fin  de licence,  me dire qu'il était trop tard. Non, il n'est jamais trop tard, et l'on voit bien que l'on puisse commencer ce portfolio à tout moment, même rétrospectivement, parce que cela conduit à des révisions qui affermissent nos savoirs et non compétences. Tout bon, donc !

dimanche 1 mars 2020

La vérité ?


La vérité ? Démontrer scientifiquement ? Des théories justes ? Des sciences exactes ?
Il faudrait que nous constituions progressivement un catalogue des idées populaires ou simplement communes qui  sont parfaitement fausses.

Par exemple, les sciences de la nature ne démontrent rien, mais se limitent à décrire de mieux en mieux les phénomènes, leurs mécanismes. Ce sont seulement les mathématiques, qui démontrent.
Les théories ? Elles sont toujours insuffisantes, imparfaites, et c'est la raison pour laquelle les sciences de la nature n'auront jamais de fin : il faut améliorer, et améliorer encore, en sachant qu'un modèle réduit de la réalité n'est pas la réalité, et que ce serait une erreur terrible que de confondre, que de croire qu'une description tout à fait locale puisse être globale.
Des sciences exactes ? Moi, je connais les sciences de la nature, qui, parce que nos outils de mesure sont nécessairement imprécis, rien qu'en raison du "bruit du monde" (je rappelle que, au minimum, l'énergie est kT).

Et la vérité, dans tout cela ? 

C'est amusant de voir comment la science est devenu bien plus prudente que par le passé, du point de vue épistémologique : personne aujourd'hui ne pourrait plus prétendre -sauf à avoir beaucoup de naïveté-  que nous cherchons la "vérité".  Nous cherchons seulement des descriptions de plus en plus précises des phénomènes, des objets du monde, et ces descriptions condamnées à être toujours imprécises (la question, c'est "combien ?") ne sont pas inutiles puisqu'elles permettent l'introduction notions et concepts, qui sont des outils qui nous aident à penser mieux.

Pas de place pour la "vérité", dans tout cela, sauf à considérer que notre discours est factuel, pas mensonger.

jeudi 27 février 2020

Some questions from Greece

When was Molecular gastronomy first applied in the kitchen? 
 
The question needs rephrasing, because there are two options :
1. when was molecular gastronomy done for the first time?
2. when was is "applied", i.e. when were the results of MG used in the kitchen?

And the answer is simple :
1. MG was done for the first time when it was named, i.e., in 1988, by me  and Nicholas Kurti.
This does not mean that we did not make anything before, on the contrary, but before the name was officially given, it was a "prehistory". And here, the prehistory began a long time ago, because the pharmacist Geoffroy, in the early 18th century, was already studying the chemistry of meat stock, for example.
By the way, forget Brillat-Savarin, because he was not a scientist, but a lawyer. And all what he writes is fiction, like in a novel. Even the osmazome has nothing to do with the real osmazome, a concept and a name given by the French chemist Jacques Thenard (an ethanol extract of meat).
Brillat-Savarin never studied cooking: he wrote a book. And he did not know anything about chemistry.

2. About application: indeed because the application of sciences is not science, but technology, I gave the name "molecular cooking" to this modern way of cooking, which is to use hardware from laboratories (chemistry) to cook. I promoted that since 1980, but I gave the name itself only in 1999, because there was much confusion between cooking and sciences (of nature), in particular between cooking and molecular gastronomy.