Affichage des articles triés par date pour la requête dirac. Trier par pertinence Afficher tous les articles
Affichage des articles triés par date pour la requête dirac. Trier par pertinence Afficher tous les articles

dimanche 31 décembre 2017

A propos de stage de gastronomie moléculaire

Par email, par courrier, par téléphone, par sms, je reçois de très nombreux messages d'étudiants intéressés par la gastronomie moléculaire ou par la cuisine moléculaire, voire la cuisine note à note, ce qui me réjouit évidemment, car cela prouve que je réussis à partager ma passion pour la connaissance et ses applications.

Pourtant j'ai souvent peur que  nos amis soient déçus, notamment quand il s'agit d'étudiants qui me demandent s'ils peuvent venir faire un stage dans notre équipe de recherche. Par exemple, ce matin, une étudiante anglaise me disait s'être amusée beaucoup à faire des chocolats chantilly, des berzélius, des gibbs…  La semaine dernière, c'était un correspondant autrichien qui  faisait un dirac et un gibbs.  Je ne parle pas de ceux qui font des perles d' alginate ou qui utilisent des siphons, car il s'agit là de cuisine moléculaire, telle que je l'ai proposée il y a 35 ans, et ma réponse est alors qu'ils feraient mieux de s'intéresser à la cuisine note à note.
Ce qui me trouble, c'est que mes interlocuteurs me parlent souvent de cuisine, quand je parle moi de gastronomie moléculaire,  et je veux profiter d'un message reçu il y a  quelques instants pour donner deux exemples des travaux que nous faisons au laboratoire afin de donner des explications pour le futur.

Nos jeunes amis sont de deux types principaux : il y a les cuisiniers, et les étudiants en science et en technologie, mais invariablement, je réponds  à tous que, dans notre groupe de recherche, notre travail quotidien consiste à mettre en oeuvre des méthodes d'analyse, telle la spectroscopie de résonance magnétique nucléaire, la fluorimétrie, l'électrophorèse capillaire, la chromatographie en phase gazeuse avec spectrométrie de masse, ou bien,  pour la partie théorique, nous cherchons à résoudre des équations différentielles ou des  équations aux dérivées partielles. Je donne maintenant un exemple de chaque cas.


Des manipulations, base de la science expérimentale

Pour chercher les mécanismes des phénomènes (ce qui est l'objectif des sciences de la nature), il faut identifier les phénomènes,les caractériser scientifiquement, en vue de disposer de beaucoup de données quantitatives, que l'on réunira en équations.
Commençons donc par une étude de spectroscopie par résonance magnétique nucléaire  (RMN), faite il y a peu : à  l'occasion d'un travail sur la « cuisson des aliments », avec une étudiante venue de l'Ecole de chimie de Strasbourg, nous avons cherché les performances d'une méthode analytique que j'avais proposée il y a quelques années et qui a pour nom « spectroscopie de résonance magnétique nucléaire in situ quantitative ».
Commençons avec la « résonance magnétique nucléaire », ou RMN. L'idée est de mettre un échantillon de matière (pensons à de l'eau, pour  faire simple) dans un gros aimant, puis d'appliquer  pendant quelques instants un petit champ magnétique  perpendiculaire au champ du gros aimant.




De la sorte, les aimantations des noyaux d'atome d'hydrogène (par exemple) de l'échantillon de matière sont d'abord basculés par le gros  aimant, jusqu'à ce qu'un état d'équilibre soit atteint ; l'application du second champ magnétique fait comme quand on tape sur une cloche, et l'analyse par  RMN s'apparente à l'analyse mathématique du bruit de la cloche. En pratique, on mesure le retour des aimantations des atomes  à l'équilibre… et l'on en déduit  comment les atomes  sont liés dans les molécules.
Par exemple, quand on analyse ainsi de l'éthanol, l'alcool des vins  et eaux—de-vie, on détecte, à partir des "spectres" obtenus, que trois atomes d'hydrogène sont liés à un premier atome de carbone, lequel est lié à un second atome de carbone, lequel est lié à deux atomes d'hydrogène, et à un atome d'oxygène, qui  est lui-même lié à un atome d'hydrogène.

Voilà donc pour la résonance magnétique nucléaire, laquelle ne fait usage d'atomes radioactifs, comme le craignent ceux qui entendent le mot « nucléaire » sans le comprendre (ils ont  raison d'être prudents, mais il ne faut  pas être timoré).
Bref, nous utilisons, dans  notre  équipe, de l'analyse par RMN pour analyser des liquides variés, par exemple du bouillon de carotte, lequel  est fait  d'eau et de divers sucres et acides aminés, ou des yaourts, des sauces,  etc. A partir des analyses, nous dosons notamment les  sucres et les acides aminés, mais tout aussi bien les matières grasses, l'acide lactique, etc.
Il y a plusieurs années, j'avais eu l'idée que notre technique pouvait s'appliquer à des morceaux de carotte, par exemple, et pas seulement à des liquides. C'est ce que j'ai nommé « analyse par RMN in situ quantitative ». La proposition est merveilleuse, parce qu'elle évite les « extractions », que les physico-chimistes pratiquent couramment. En effet, habituellement,  pour faire des analyses par résonance magnétique RMN, on produit d'abord une solution des composés que l'on veut doser et l'on dose cette solution. Par exemple pour analyser les sucres présents dans la racine de carotte, on met la carotte sous vide pendant quelques jours, on la broie, puis on la fait bouillir longuement dans des solvants organiques, tel le méthanol (évidemment, on utilise des matériels qui n'ont rien de casseroles!); on filtre et on centrifuge (avec une centrifugeusee qui n'est pas celle d'une cuisine !) la solution obtenue, et l'on récupère finalement une solution que l'on dose. Tout cela se fait sur des quantités aussi petites que possible : en général, on manipule sur des quantités qui ne sont même pas la pointe d'un couteau.
Par RMN (c'est aussi vrai pour  d'autres méthodes d'analyse), on obtient un spectre, c'est-à-dire une sorte de  figure avec des montagnes pointues… à condition, bien sûr, d'avoir fait correctement les choses, d'avoir appris à "conduire" la machine, ce qui impose de comprendre comment elle fonctionne, donc de savoir la constitution de la matière, mais aussi les phénomènes de physique quantique, d'électromagnétisme...


On doit apprendre à reconnaître à quels atomes correspondent les  « montagnes », mais, pour doser, on doit calculer leur aire, c'est-à-dire la quantité de surface comprise entre  les montagnes et  la ligne de base.

Ajoutons que ces calculs d'aires ne sont qu'une toute petite partie du travail. Une  fois une aire obtenue, il faudra la comparer à des aires obtenues pour des solutions connues, avec des quantités connues de sucres dans de l'eau.
Ce que ma description ne dit pas, surtout, c'est que le spectre n'est obtenu qu'au terme d'une infatigable minutie.  Préparer la moindre solution suppose d'avoir lavé de la verrerie, de l'avoir séchée, de l'avoir pesée (trois  fois, sur une balance de précision), d'avoir calculé la moyenne des masses mesurées,  la dispersion des mesures, d'avoir ajouté un liquide, d'avoir pesé à nouveau, en pesant la différence de masse du flacon dont on extrayait le liquide pour le transvaser…
Bref, il  a fallu peser des milliers de fois, avec le plus  grand soin, souvent  sous des hottes aspirantes, en portant des gants et des lunettes de protection, quand on manipule des produits tels que les solvants organiques. En outre, peser, cela semble simple, mais, pour de la recherche scientifique, il faut  d'abord s'assurer que la balance est fiable, qu'elle est bien horizontale, qu'elle donne des résultats cohérents… Il faut lui éviter les courants d'air, tarer lentement, prendre son temps pour que la balance (de précision) se stabilise, tarer encore, peser plusieurs fois de suite avec, chaque fois, ces attentes, ces gestes minutieux qui ne doivent rien renverser des produits dangereux que nous manipulons… Des heures, des journées, des semaines, des mois… Sans compter qu'il faut  consigner le plus précisément possible la totalité des détails expérimentaux, du premier au dernier,  en ajoutant que je suis passé extrêmement rapidement sur de nombreuses opérations. Et c'est seulement un soin extrême qui permet finalement d'obtenir un résultat que l'on pourra interpréter, à l'issue, évidemment, de beaucoup de calculs… ce qui déplaît à ceux qui n'aiment pas le calcul, mais donne du bonheur  à ceux qui aime la composante expérimentale de la science bien faite.

La composante théorique

Passons maintenant à la partie théorique de notre activité, encore avec un exemple. Un des travaux de notre équipe, il y a quelque temps, a consisté en une « modélisation » de la libération de composés par des gels complexes. Pour ce travail, il s'agissait de résoudre  numériquement des équations qui décrivent comment  un composé présent initialement dans un gel peut en sortir, pour aller se dissoudre dans une solution où le gel est placé, ce qui « représente » le cas d'un aliment dans la bouche.
En pratique, il faut utiliser un ordinateur pour construire une  représentation d'un gel (un ensemble de points de l'espace pour lesquels on définit des propriétés qui sont celles des gels), et placer ce « modèle de gel » dans un « modèle de solution », à savoir un ensemble de point de l'espace dont les propriétés sont celles d'un liquide. En utilisant des équations, telles celles qui décrivent le mouvement des molécules (dans le gel, dans le liquide), on calcule le mouvement de ces molécules, par « pas » de temps : par exemple, au  début de la mise en contact du modèle de gel et du  modèle de liquide, puis tous les millièmes de seconde.
Là, il s'agit donc d'utiliser un ordinateur, et de faire des programmes pour résoudre des équations. Là encore, l'activité plaît  à ceux  qui l'aiment, et déplaît à ceux qui  ne l'aiment pas, et, là encore, on programme pendant des jours, des semaines, des mois…
J'oublie, enfin, de signaler que les « expériences », réelles ou informatiques, doivent faire l'objet de « validations » : nous les répétons afin de les vérifier, nous les remâchons, nous les ruminons, nous y pensons sans cesse, car nous savons que le diable est caché derrière tout calcul, toute manipulation. Et tout prend beaucoup de temps.

Ce n'est pas de la cuisine, mais de la gastronomie moléculaire !

Bien sûr, ces exemples ne sont que des exemples, mais ils montrent bien à quel point notre activité de recherche n'est pas de la cuisine ! Quand nous fabriquons des bouillons de carotte, nous les faisons cuire pendant des semaines, des mois, des années… Et nous faisons évidemment des choses immangeables, parce que l'objectif n'est pas de préparer des aliments, mais de comprendre comment les aliments s'obtiennent, de comprendre les mécanismes des phénomènes qui ont lieu lors des transformations des ingrédients en aliments.

Finalement, il y aura la communication des résultats obtenus, et elle ne surviendra donc qu'après des années de travail, mais c'est ainsi que l'on produit  de la connaissance fiable, de bonne qualité. Il faut beaucoup de temps, d'énergie, beaucoup de patience,  mais il est vrai que l'on a immense plaisir, en fin de travail, d'avoir repoussé un peu les limites de la connaissance. Un peu seulement … mais ce peu est pour nous essentiel, parce que c'est la mission que  nous nous sommes donnée.

On le voit, finalement : pas de chocolat chantilly, pas de sauce, pas de viande grillée… mais de la recherche scientifique, soigneuse, rigoureuse, et, surtout, l'immense bonheur de contribuer à la production connaissance par la recherche scientifique.

Vive les sciences quantitatives, vive les sciences de la nature !






























Vient de paraître aux Editions de la Nuée Bleue : Le terroir à toutes les sauces (un traité de la jovialité sous forme de roman, agrémenté de recettes de cuisine et de réflexions sur ce bonheur que nous construit la cuisine)

samedi 16 décembre 2017

Ce matin, un groupe d'élèves me contact pour avoir des informations sur la cuisine note à note.

Je me réjouis, tout d'abord, car ces élèves sont de ceux qui ont compris que la cuisine moléculaire est dépassée, et que c'est la cuisine note à note qui sera présente demain.
Mais il faut que je leur réponde, et voici leur message : 

Nous souhaiterions réaliser une viande "note à note". Nous avions trouvé une recette qui s'en approchait légèrement : le Dirac qui se trouve sur youtube, mais nous n'avons pas de renseignements sur la quantité et les ingrédients utilisés. 


La première des questions est : qu'est-ce que la "viande" ? Il peut y avoir une définition du dictionnaire, une définition réglementaire... Par exemple, pour le TLFi, la première définition est " Aliment dont se nourrit l'homme; nourriture quelconque", mais c'est une définition dépassée, et l'on conservera donc plutôt :
"Chair comestible d'un animal".

Or la cuisine note à note est une cuisine de synthèse, qui n'utilise pas les ingrédients classiques que sont les viandes, poissons, légumes, fruits... mais des composés.
Une "viande note à note", c'est donc impossible ! Aucune construction note à note ne sera jamais une viande, et aucune viande ne peut faire de cuisine note à note !

Les diracs, dans cette affaire ? C'est parce que je copiais la composition moléculaire des viandes, avec environ 75 pour cent d'eau et 25 pour cent de protéines que j'ai cherché un nom qui ne soit pas "viande" : on se rappelle que le commerce des denrées alimentaires doit être loyal ; ce qui est de la viande est de la viande, et ce qui n'en est pas n'en est pas.
Bref pour mes reproductions de viande (reproduction de viande du seul point de vue de la composition), j'ai introduit le nom de "dirac". D'ailleurs, je discute tout cela dans un article dont je vous conseille la lecture : https://www.academie-agriculture.fr/publications/notes-academiques/n3af-2016-6-note-de-recherche-what-can-artificial-meat-be-note-note

Faire un dirac ? Rien de plus simple : dans un récipient, mettre une cuillerée à soupe de protéines, trois cuillerées d'eau, une rasade d'huile, des colorants, des composés sapides et odorants, éventuellement des vitamines, des oligo-éléments... Et cuire comme un steak, à la poêle.

On obtient comme un steak, mais ce n'est pas de la viande : c'est un dirac... et quand c'est bien fait, c'est TRES BON !










Vient de paraître aux Editions de la Nuée Bleue : Le terroir à toutes les sauces (un traité de la jovialité sous forme de roman, agrémenté de recettes de cuisine et de réflexions sur ce bonheur que nous construit la cuisine)

mercredi 1 juin 2016

Tu viens avec une question, mais quelle est ta réponse (utilise la méthode du soliloque)

Au laboratoire, ma porte est ouverte en permanence,  car je veux que mes amis puissent venir me parler de science à tout instant. Pour autant, sur la porte, il y a cette inscription « Tu viens avec une question, mais quelle est ta réponse ? »,  et, en dessous, il y a  marqué : « Utilise la méthode du soliloque ». A quoi cela rime-t-il ?

La question posée, si l'on peut dire


Nous sommes bien d'accord : mon objectif est de grandir et d'aider mes amis à grandir également. Grandir, cela signifie être autonome, tenir sur ses deux  jambes. Cela ne signifie pas que nous ne pouvons pas discuter avec nos amis, mais n'aurions-nous pas raison de chercher à être indépendant, à penser par nous-mêmes?
Dans nos travaux scientifiques, l'objectif est d'arriver à produire de la science de bonne qualité, collectivement bien sûr, mais aussi individuellement. Albert Einstein n'avait pas besoin de grand monde pour l'aider à produire de la science, pas plus que Michael Faraday, ou Paul Dirac, ou Galilée. Même sans nous comparer à de tels grands anciens, nous pouvons avoir l'ambition de bien faire, ce qui impose que nous y pensions (toujours, y penser toujours). De ce fait, je crois que c'est une mauvais position, pour les étudiants, que de venir poser leurs questions et recevoir les réponses à ces questions. N'est-il pas préférable qu'ils cherchent eux-mêmes les réponses, et apprennent à trouver ces dernières ?  Évidemment, pour ne pas faire de catastrophe, ils pourront soumettre les réponses qu'ils auront trouvées, afin que l'on corrige des fautes éventuelles, qu'on les remette sur la bonne voie s'ils se sont fourvoyés. Après tout, les professeurs ont pour eux l'avantage des années, ce qui signifie en pratique d'avoir  déjà fait un très grand nombre d'erreurs  et, les ayant analysées, d'être capable de ne pas les refaire.
C'est donc cela que je propose aux étudiants : chercher les réponses aux questions qu'ils se posent, trouver ces réponses, et les soumettre, à moi ou aux autres membres du Groupe de gastronomie moléculaire.

On ne rejette pas des amis !

En réalité, cette dynamique (j'avais écrit "règle", mais le mot "dynamique" représente mieux l'état d'esprit de notre groupe de recherche)  n'est pas venue immédiatement, mais je l'ai instaurée quand j'ai vu que certains se reposaient entièrement sur les autres, et que, de de fait, ils perdaient  l'intérêt de leur stage, qui, selon la loi, consiste à transformer des connaissances en compétences.
J'avais donc d'abord écrit sur la porte : « Tu as une question, mais quelle est ta  réponse ? ». A cette proposition, certains de nos jeunes amis m'ont dit assez justement que s'ils venaient m'interroger, c'est précisément qu'ils n'avait pas la réponse. L'avaient-ils cherché assez ? Je ne sais pas, mais il est vrai que, au minimum, je devais leur demander s'il avait cherché assez. C'est donc  ce que j'ai d'abord fait, mais certains sont alors revenus après un long moment en ayant « séché » : malgré du temps passé,  ils n'arrivaient  pas à trouver la réponse, parce qu'ils leur manquait une méthode pour chercher et pour trouver.
C'est alors que j'ai mis au point cette « méthode du soliloque » qui est au  minimum une pratique correcte de chercher, laquelle conduit presque immanquablement à trouver.

Qu'est-ce que cette méthode ?

Elle est fondée sur l'observation selon laquelle nos tête sont pleines de pensées tourbillonnantes, qui nous empêchent de nous focaliser sur les questions que nous devons analyser. D'autre part, l'exercice de la pensée met en oeuvre au moins de la déduction et de l'induction, et si l'induction est quelque  chose de bien difficile, la déduction devrait être à la portée de tous… à condition de bien s'y prendre. La méthode  du soliloque se fonde sur  une  hypothèse due à l'abbé Condillac et reprise par Antoine Laurent de Lavoisier, qui consiste à supposer que les pensées sont véhiculées par des mots. De la sorte, en considérant bien les mots, nous pourrions corriger nos erreurs intellectuelles, et progresser dans l'analyse des questions.
L'analyse du soliloque  propose en substance d'analyser par écrit les  raisonnements que nous faisons à propos de questions que nous nous posons. C'est une  méthode très efficace,  qui est développée  dans des documents mis en ligne et que j'ai fini par proposer aux étudiants qui venaient  m'interroger.

On se souvient que je propose de penser qu'il y a des obligations de moyens ou des obligations de résultats. L'obligation de résultats n'est pas demandée aux médecins, par exemple, parce qu'ils ne peuvent pas garantir qu'ils sauveront les patients de la mort.  En revanche, les médecins ont une  obligation de moyen, ce qui signifie qu'ils doivent connaître les bonnes pratiques de leur profession et les mettre en oeuvre. Les étudiants  étant... des étudiants, je ne leur demande pas des résultats, mais seulement d'apprendre. Et, apprendre, c'est (pour ceux qui n'ont rien de mieux à proposer) mettre en oeuvre la méthode du soliloque,  afin de devenir progressivement capable de trouver les réponses aux questions que l'on se pose.

Ce qui est merveilleux, avec cette proposition de mettre en oeuvre la méthode du soliloque, c'est que progressivement,  les étudiants parviennent vraiment à trouver des réponses aux questions qu'ils se posent. Au pire, ils ont appris la méthode du soliloque,  c'est-à-dire une analyse fondée sur un usage sain des mots.. ce qui est quand même un bon début, à défaut d'être le résultat visé.

dimanche 28 février 2016

Les diracs

Les diracs sont des préparations qui ont la composition des viandes, au premier ordre : comme elles, ils sont composés de 25 pour cent de protéines et de 75  pour cent d'eau. A cette pâte initiale, on peut  évidemment ajouter de la matière grasse (2 à 10 pour cent), des colorants, des composés qui donnent de la saveur et de l'odeur. Puis on cuit cette pâte soit directement à la poêle, soit après foisonnement, soit après filage... Et l'on obtient des systèmes ayant la fermeté des viandes... ou une consistance différente : il ne tient qu'à nous de faire quelque chose d'intéressant.

Pourquoi ces systèmes ont-ils été nommés des diracs ? Parce que le physicien britannique Paul Adrien Maurice Dirac est à l'origine de ce que physiciens et mathématiciens connaissent sous le nom de « pics de Dirac » : des distributions, vues comme des limites de fonction.

Pensons à une courbe gaussienne (f(x) = K exp(-x^2))  d'aire égale à 1.
Nous décidons de rétrécir la fonction en prenant toujours l'équation de la gaussienne, mais en faisant K2 exp(-k x^2), de sorte que l'aire reste égale à 1. A la limite, quand la largeur tend vers 0, l'aire restant toujours égale à 1, la hauteur devient infinie... et l'on obtient ce que l'on nomme un "pic de Dirac".

C'est un point isolé et merveilleux, tout comme l'est la proposition faite ici, dans l'ensemble des possibles reproductions de viande. On peut faire une copie de viande du  point de vue de la consistance, de la saveur, de la couleur, etc... mais cette proposition est très particulière. Et aucune copie de viande n'est de la viande. Il fallait donc donner un nom. Et comme cette copie était initialement isolée, comme un pic, j'ai choisi dirac (toutes les innovations que je fais, ou du moins la plupart, ont un nom de chimiste ou de physicien. Voir le Cours de gastronomie moléculaire N°1 (ed quae belin).

jeudi 7 janvier 2016

Par email, par courrier, par téléphone, par sms, je reçois de très nombreux messages d'étudiants intéressés par la gastronomie moléculaire ou par la cuisine moléculaire, voire la cuisine note à note, ce qui me réjouit évidemment, car cela prouve que je réussis à partager ma passion pour la connaissance et ses applications.

Pourtant j'ai souvent peur que  nos amis soient déçus, notamment quand il s'agit d'étudiants qui me demandent s'ils peuvent venir faire un stage dans notre équipe de recherche. Par exemple, ce matin, une étudiante anglaise me disait s'être amusée beaucoup à faire des chocolats chantilly, des berzélius, des gibbs…  La semaine dernière, c'était un correspondant autrichien qui  faisait un dirac et un gibbs.  Je ne parle pas de ceux qui font des perles d' alginate ou qui utilisent des siphons, car il s'agit là de cuisine moléculaire, telle que je l'ai proposée il y a 35 ans, et ma réponse est alors qu'ils feraient mieux de s'intéresser à la cuisine note à note.
Ce qui me trouble, c'est que mes interlocuteurs me parlent souvent de cuisine, quand je parle moi de gastronomie moléculaire,  et je veux profiter d'un message reçu il y a  quelques instants pour donner deux exemples des travaux que nous faisons au laboratoire afin de donner des explications pour le futur.

Nos jeunes amis sont de deux types principaux : il y a les cuisiniers, et les étudiants en science et en technologie, mais invariablement, je réponds  à tous que, dans notre groupe de recherche, notre travail quotidien consiste à mettre en oeuvre des méthodes d'analyse, telle la spectroscopie de résonance magnétique nucléaire, la fluorimétrie, l'électrophorèse capillaire, la chromatographie en phase gazeuse avec spectrométrie de masse, ou bien,  pour la partie théorique, nous cherchons à résoudre des équations différentielles ou des  équations aux dérivées partielles. Je donne maintenant un exemple de chaque cas.


Voir la suite sur http://www.agroparistech.fr/Ce-que-nous-faisons-au-laboratoire-de-la-gastronomie-moleculaire-pas-de-la.html

jeudi 23 avril 2015

Deux podcasts pour présenter des plats note à note

La présentation de deux préparations note à note (le "dirac" et le "gibbs") est en podcast :
Sur le site AgroParisTech :

[http://www.agroparistech.fr/podcast/Un-plat-de-cuisine-note-a-note-le-gibbs.html->http://www.agroparistech.fr/podcast/Un-plat-de-cuisine-note-a-note-le-gibbs.html]
[http://www.agroparistech.fr/podcast/Un-plat-de-cuisine-note-a-note-le-gibbs.html->http://www.agroparistech.fr/podcast/Un-plat-de-cuisine-note-a-note-le-gibbs.html]

Et aussi sur Dailymotion :
http://www.dailymotion.com/video/x2mybw5_un-plat-de-cuisine-note-a-note-le-dirac_tech
http://www.dailymotion.com/video/x2nkkju_un-plat-de-cuisine-note-a-note-le-gibbs_school

mardi 9 avril 2013

Des fourmis ? Quel mépris !

Alors que je discute de la question grave de la "stratégie scientifique" (comment faire de la recherche scientifique pour se mettre en position de faire des découvertes ?), un ami me rétorque que là n'est pas la question, et qu'il vaut mieux orchestrer une activité aléatoire d'une armée de scientifiques, qui, tels des fourmis, exploreraient le monde au hasard, et sortiraient -par hasard, donc- des découvertes.

Quel mépris pour les scientifiques ! Et pour la science !

De toute façon, cette idée fausse est réfutée par les faits : les mêmes Davy, Faraday, Lavoisier, Einstein, Dirac, Bohr, De Gennes, Lehn... ne sont pas hommes d'une découverte par hasard, mais de beaucoup ! Einstein ? Il a à son crédit l'effet photoélectrique, la diffusion, la viscosité, la relativité restreinte, la relativité générale... De Gennes ? La supraconduction, les cristaux liquides, les polymères, le mouillage...

Allons, Messieurs des Décideurs, un peu de respect pour des choses qui vous dépassent ! Un peu de considérations pour les "belles personnes", s'il vous plait. Si vous êtes administrateur, contentez-vous d'administrer, d'aider une activité merveilleuse à se faire dans de bonnes conditions.

Et c'est ainsi que la physico-chimie sera de plus en plus belle !