A l’occasion des Journées du Patrimoine, l’Association Les Amis des Orgues Valentin Rinkenbach de Kientzheim (AAOK) avait organisé plusieurs manifestations. Créée le 13 février 2017, l’association (reconnue d’intérêt général) lançait samedi dernier sa campagne de restauration de l’orgue Valentin Rinkenbach de l’église Notre Dame des Sept Douleurs de Kientzheim.
Dès 10 heures à la salle du conseil de la mairie de Kientzheim, se tenait une conférence de M. Christian LUTZ, technicien – conseil pour les orgues auprès des Monuments Historiques, sur le thème suivant « L’orgue de Kientzheim, chef- d’œuvre de Valentin Rinkenbach ».
En introduction, Marie-Béatrice LAHORGUE, secrétaire de l’association, expose en quelques mots l’objet de l’association : rénover, entretenir et promouvoir les orgues de l’Eglise de Kientzheim. Dès la fin de l’année 2017, la commune déléguée de Kientzheim (propriétaire du bien) commandait à la demande de l’association, une étude aux Monuments Historiques en vue de dresser un inventaire complet de l’instrument et de proposer éventuellement plusieurs scénarios de restauration de l’orgue. En février 2018, M. Christian Lutz présentait les conclusions de son expertise à l’AG des membres de l’association et aux représentants de la municipalité. A cette occasion, et ainsi qu’il l’a rappelé en introduction de sa conférence, « entrant dans les entrailles de l’instrument à l’occasion de cette expertise, j’ai découvert l’exceptionnelle valeur patrimoniale et musicale de l’orgue de Kientzheim ». Une demande de classement au titre des monuments historiques a été déposée en mai 2018 par la mairie à la demande de l’association.
Mme Lahorgue évoque ensuite très rapidement les projets de l’association avant de passer la parole au conférencier. (projets à la fois patrimoniaux et culturels mais aussi pédagogiques à destination des écoles et du grand public afin de faire découvrir cet instrument méconnu qu’est l’orgue).
A cet égard, il est rappelé que l’orgue inventé par un grec Ctésibios au IIIème siècle avant Jésus-Christ n’est pas à son origine un instrument de musique religieux mais païen. On en jouait en plein air pendant les combats de gladiateurs ou lors de la mise à mort par les fauves des 1ers martyrs chrétiens.
Puis Christian Lutz Lutz expose l’histoire de l’orgue de Kienztheim et de la dynastie des Rinkenbach rappelant que si Valentin Rinkenbach (1795-1862) est né à Ammerschwihr, il épousa à Kientzheim, le 7 janvier 1829, Madeleine Bernhard, native de Kindwiller (Bas-Rhin), sœur et gouvernante du curé de Kientzheim ! En l'espace de 41 ans de métier, il construisit 53 instruments neufs dont 6 dans le Bas-Rhin.
Christian Lutz dresse ensuite un état matériel précis de l’orgue et explique l’intérêt patrimonial de l’instrument unique par son style dit de « transition ».
La plupart des ouvrages de Valentin Rinkenbach ne comportaient qu’un seul clavier. A Kientzheim, il posa un orgue à trois claviers, ce qu’il ne fit que deux fois dans d’autres églises, dès 1821 à Olten en Suisse et en 1862 à Heimersdorf dans le Haut-Rhin, où l’orgue fut achevé par ses deux fils. Durant la décennie des années 1840, Valentin Rinkenbach était au sommet de son art et cet orgue fut comme une vitrine de son savoir-faire, à 2 kms de son atelier d’Ammerschwihr. Pas moins de 25 jeux de l’orgue comportent encore majoritairement des tuyaux de Valentin Rinkenbach. On compte environ 1238 tuyaux de Valentin Rinkenbach, soit 79 % des 1566 tuyaux que comptait l’orgue en 1847. Certains tuyaux tels que la flûte du clavier de récit portent par ailleurs encore sa griffe.
« De tous les instruments construits par Valentin Rinkenbach, entre son retour définitif à Ammerschwihr vers 1826 et son décès en 1862, celui qu’il posa en 1847 à Kientzheim est assurément son chef-d’œuvre » (Christian Lutz). Techniquement, il est tout à fait possible de restaurer ce magnifique instrument car les techniques de fabrique sont aujourd’hui encore connues
A l’issue de cette conférence le public est invité à assister à une série de « variations autour de l’orgue » et ce durant tout le week-end.
11 heures : Inauguration de l’exposition permanente qui accompagnera la campagne de restauration de l’orgue. Celle-ci est composée de 10 panneaux. Une jeune kientzheimoise, Sixtine Baillot, étudiante en 1ère année de l’ISEG à Strasbourg en a assuré bénévolement la réalisation graphique.
L’exposition présente l’histoire de Kientzheim, de son église et de l’orgue, la généalogie de Valentin Rinkenbach, le fonctionnement d’un orgue. Cette exposition très belle et pédagogique s’adresse tout à la fois à un public averti, aux enfants des écoles et au grand public.
A l’occasion de cette inauguration, le public présent est invité à monter à la tribune et à entrer dans les entrailles de l’orgue pendant que Charles Blanck et Stéphane Schweitzer (organistes) jouent de l’instrument pour le plus grand bonheur des personnes présentes.
C’est ensuite vers la chapelle Sts Felix et Régule que le public est sont convié à se rendre pour assister à d’autres variations autour de l’orgue avec le jeu sur clavecin de partitions pour orgue par Stéphane Schweitzer.
L’après-midi, se tenait la toute dernière « Heure musicale » de Stéphane Schweitzer qui aura accueilli tout l’été les kientzheimois mais aussi les touristes et le public de passage pour une découverte d’instruments anciens (clavicorde, viole de gambe, clavecin).
Enfin à 20h30, ballade aux lanternes (je vous passe le relai……)
L’association AAOK a quant à elle poursuivi son programme culturel le dimanche 16 septembre à 16 heures en proposant pour la toute dernière heure musicale Félix et Régule de l’été une ultime variation autour de l’orgue avec la présentation au public de la cithare par Jeannine et Mirelle de l’association « Les cithares de Colmar » accompagnées de Gilbert Noack et de sa cithare de concert. Ce dernier a séduit l'auditoire avec des airs de musique qui ont rappelé quelques souvenirs aux plus anciens.
Après un rappel historique de l’instrument, particulièrement apprécié des Grecs de l'Antiquité, plusieurs types de cithares ont été présentées : monocorde, vietnamienne, de concert, Hackbrett, aurore, et cithare avec archet ou violin-zithers. Un thérémine fut aussi présenté. Il s’agit d’un des plus anciens instruments de musique électronique, inventé en 1919 par le Russe Lev Sergueïevitch Termen (connu sous le nom de Léon Theremin). Les trois musiciens ont ensuite interprété différents morceaux de musique puis invité les personnes présentes à venir jouer de la cithare.
Une « saison 2 » des heures musicales à Kientzheim est d’ores et déjà prévue !
Pour tout renseignement sur l’orgue et sa restauration,
Association Les Amis des Orgues Valentin Rinkenbach de Kientzheim
48, Grand-Rue
KIENTZHEIM
68240 Kaysersberg Vignoble
Mail : aaok@laposte.net
Twitter : @OrgueKientzheim
LinkedIn : Association AAOK
Facebook : @AssociationAOK
Ce blog contient: - des réflexions scientifiques - des mécanismes, des phénomènes, à partir de la cuisine - des idées sur les "études" (ce qui est fautivement nommé "enseignement" - des idées "politiques" : pour une vie en collectivité plus rationnelle et plus harmonieuse ; des relents des Lumières ! Pour me joindre par email : herve.this@inrae.fr
mardi 18 septembre 2018
lundi 17 septembre 2018
« Maillard » ? « Caramélisations » ? Ce serait si simple de « brunir »
Je suis un peu
fautif d'avoir fait connaître à la communauté culinaire les
réactions de Maillard : aujourd'hui, des personnes qui ne sont
pas chimistes, quand elles ne me connaissent pas, vont jusqu'à…
m'expliquer ce (qu'elles croient) que c'est ! Et les
explications qu'elles donnent sont fausses.
Les réactions de
Maillard ne se feraient qu'à chaud ? Faux.
Les réactions de
Maillard auraient lieu à partir de 145 °C ? Faux… et je ne
sais même pas d'où sort de 145 °C que les sites internet répètent.
Les réactions de
Maillard s'apparenteraient à la caramélisation ? Faux.
Les réactions de
Maillard seraient entre les acides aminés et les sucres ? Faux.
Et j'en passe, parce
que l'on trouve de tout sur Internet.
Disons maintenant
des choses justes.
Quand on chauffe
certains aliments, ils brunissent. Évidemment ce brunissement
résulte de réactions chimiques. Lesquelles ? Celles qui font
intervenir les composés présents dans les viandes, à savoir
principalement les protéines, des « sucres », les
graisses, l'acide lactique… et de nombreux composés mineurs.
Quelles réactions ces composés subissent-ils?
Observons que les
protéines isolées peuvent brunir, quand elles sont chauffées :
on observe un tel effet quand on chauffe de la gélatine (une
protéine) à sec, par exemple, et le brunissement résulte alors de
plusieurs réactions simultanées, de sorte que l'on aurait raison de
désigner ce brunissement par le mot « pyrolyse ».
D'autre part, les
sucres, également, peuvent brunir. Par quelles réactions ? La
caramélisation étant le brunissement spécifique du sucre de table,
ou saccharose, il n'est pas judicieux de nommer de même la
transformation d'autres sucres chimiquement différents. Là encore,
pyrolyse s'impose, plutôt que caramélisation. D'ailleurs, la
matière formée n'est pas le caramel, qui est un mélange complexe,
mais ce que j'ai proposé de nommer un « péligot ».
Les lipides, aussi,
peuvent réagir, à chaud. Les réactions peuvent être des
oxydations, par exemple.
Voilà pour les
principales réactions des composés isolés, mais il peut bien
évidemment exister des réactions entre des composés différents.
Et c'est ainsi que l'on trouve, parmi bien d'autres, les réactions
découvertes par le chimiste français Louis-Camille Maillard :
ces réactions sont celles qui font intervenir les protéines et des
sucres particuliers (les « sucres réducteurs »), tel le
glucose, qui se trouve dans le sang, donc dans les viandes, et aussi
dans les légumes (avec le fructose et le saccharose,
principalement).
Les réactions de
Maillard n'ont rien à voir avec une caramélisation, puisqu'elles
font intervenir protéines et sucres (réducteurs), alors que des
sucres seuls suffisent pour les caramélisation. Elles sont lieu à
n'importe qu'elle température, et notamment à 37 degrés (hélas) :
elles sont ainsi responsables de l'opacification du cristallin des
personnes souffrant de diabète. Evidemment, elles sont plus actives
quand la température augmente, mais c'est le lot de toutes les
réactions.
D'ailleurs, à ce
propos, il est bon de signaler que les réactions ne sont pas
toujours visibles à des changements de couleur. Par exemple, quand
on cuit des spaghettis (qui contiennent des sucres « complexes »,
à savoir les amyloses et les amylopectines, sous la forme de grains
d'amidon), ces composés sont « hydrolysés », libérant
du glucose. On ne voit rien, sauf si l'on utilise des réactifs
colorés, par exemple.
Finalement, après ce petit tour d'horizon, que retenir ? Qu'un
aliment qui est chauffé et qui brunit… brunit. Oublions les
réactions de Maillard, à moins de bien savoir ce qu'elles sont et
ce qu'elles ne sont pas. On observera d'ailleurs que le changement de
référentiel du CAP hôtellerie restauration avait entériné cette
proposition : on distingue maintenant des cuissons avec
brunissement et des cuissons sans brunissement. C'est tout simple,
non ?
Rondelles transparentes
Une question ? Une réponse... mais ici, ce n'est encore qu'une hypothèse plausible.
La question
Monsieur
Je me permets de vous adresser cette question car je ne vois personne d'autre qui pourrait m'y répondre:
Dans un appareil professionnel à sous-vide, j'ai vu placer des rondelles fines de pomme dans un sac à sous-vide non scellé, accompagnées d'un sirop de sucre.
Puis, pendant la mise en sous-vide sans sceller, durant une 20ne de secondes, les rondelles sont devenues translucides pendant que le sirop bouillait (à froid).
Donc, ma question est: pourquoi les rondelles sont devenues translucides ?
Je vous remercie de bien vouloir m'éclairer et vous adresse mes respectueuses salutations.
La réponse
Pourquoi des rondelles de pommes deviennent telle transparente quand on les met sous vide avec un sirop ? Si les rondelles sont opaques, quand on les forme initialement, c'est qu'il y a des raisons pour qu'elles le soient.
Une pomme, au premier ordre, c'est un ensemble de cellules, c'est-à-dire de petit sacs plein d'eau. Bien sûr, il y a l'opacité des membranes cellulaires et des "parois" entre les cellules, mais ces dernières sont minces, et l'on peut t'imaginer que elle ne perturbent pas beaucoup la lumière... d'autant que, après imprégnation, elles demeurent... dans un ensemble transparent. En revanche, une pomme contient 25 % d'air, et l'on sait combien des bulles d'air dans un liquide peuvent changer la propagation de la lumière. Ainsi, dans un blanc d'oeuf transparent, l'ajout de bulles engendre un blanc en neige, qui est blanc et opaque. Et cette blancheur et cette opacité surviennent dès les premières bulles introduites dans le liquide. De sorte que je suppose que, quand on met une rondelle de pomme sous vide, on aspire l'air et à l'extérieur, de sorte que, sans cet air, on obtient une matière où la lumière n'est plus perturbé, ce qui signifie qu'elle est transparente.
Pour l'instant, je n'ai pas assez réfléchi à une manière expérimentale simple de vérifier cette explication tout théorique, et je compte lâchement sur mes amis pour faire des propositions.
La question
Monsieur
Je me permets de vous adresser cette question car je ne vois personne d'autre qui pourrait m'y répondre:
Dans un appareil professionnel à sous-vide, j'ai vu placer des rondelles fines de pomme dans un sac à sous-vide non scellé, accompagnées d'un sirop de sucre.
Puis, pendant la mise en sous-vide sans sceller, durant une 20ne de secondes, les rondelles sont devenues translucides pendant que le sirop bouillait (à froid).
Donc, ma question est: pourquoi les rondelles sont devenues translucides ?
Je vous remercie de bien vouloir m'éclairer et vous adresse mes respectueuses salutations.
La réponse
Pourquoi des rondelles de pommes deviennent telle transparente quand on les met sous vide avec un sirop ? Si les rondelles sont opaques, quand on les forme initialement, c'est qu'il y a des raisons pour qu'elles le soient.
Une pomme, au premier ordre, c'est un ensemble de cellules, c'est-à-dire de petit sacs plein d'eau. Bien sûr, il y a l'opacité des membranes cellulaires et des "parois" entre les cellules, mais ces dernières sont minces, et l'on peut t'imaginer que elle ne perturbent pas beaucoup la lumière... d'autant que, après imprégnation, elles demeurent... dans un ensemble transparent. En revanche, une pomme contient 25 % d'air, et l'on sait combien des bulles d'air dans un liquide peuvent changer la propagation de la lumière. Ainsi, dans un blanc d'oeuf transparent, l'ajout de bulles engendre un blanc en neige, qui est blanc et opaque. Et cette blancheur et cette opacité surviennent dès les premières bulles introduites dans le liquide. De sorte que je suppose que, quand on met une rondelle de pomme sous vide, on aspire l'air et à l'extérieur, de sorte que, sans cet air, on obtient une matière où la lumière n'est plus perturbé, ce qui signifie qu'elle est transparente.
Pour l'instant, je n'ai pas assez réfléchi à une manière expérimentale simple de vérifier cette explication tout théorique, et je compte lâchement sur mes amis pour faire des propositions.
dimanche 16 septembre 2018
Le séchage du pain au chocolat
Une question d'il y a quelques jours :
Je me permets de vous contacter pour une question relative au pain au chocolat : il m'arrive de ne pas manger immédiatement un pain au chocolat que j'ai acheté, de sorte que je le laisse dans le sachet de la boulangerie sans prendre de précaution particulière, et, le lendemain, il a forcement perdu de l'humidité.
Lorsque j'imagine un pain au chocolat qui reste sur une table, je pense en générale que la table va protéger le pain au chocolat sur le dessous et que le reste va être plus dur.
Quand je trempe alors le pain au chocolat dans du lait, je remarque que les bords sont bien plus difficile à rendre humide que le reste. Pourquoi mon pain au chocolat n'est-il pas séché uniformément ?
Ce n'est jamais par le dessus qu'il sèche. Il est bien plus sec aux extrémités, alors que les bords du pain au chocolat ne touchent pas forcément le papier du sachet qui, par capillarité, pourrait absorber l'humidité du pain au chocolat. J'ai déjà remarqué le même phénomène lorsque le sachet de mon pain au chocolat était bien ouvert ou même sans protection ou durant la nuit.
Je n'ai pas essayé de mettre mon pain au chocolat en position verticale la nuit pour voir si cela change quelque :)
Que se passe-t-il au niveau moléculaire ? Les liaisons hydrogène avec les molécules d'eau les pousseraient-elles à fuir l'évaporation et à se concentrer au centre ?
Je remarque aussi que les miettes dans le lait se regroupent au centre du bol de lait lorsque je le pose dans l’évier sans finir de le boire, et cela aussi m'intrigue. Le phénomène est plus visible avec des miette de cookies ! :)
Je vous remercie pour votre attention, en espérant ne pas vous avoir dérangé avec mes questionnements un peu farfelus. Cordialement.
C'est un gros morceau, et il y a en réalité plusieurs questions. Tout d'abord, le "séchage" des produits panifiés n'est pas toujours une simple perte d'eau : le "rassissement" inclut la perte d'eau, mais pas seulement, comme nous allons le voir.
Partons d'eau et de farine, ce qui est commun à tous ces produits ; la cuisson produit un "empesage", à savoir que, notamment, les grains d'amidon de la farine absorbent l'eau, gonflent et se soudent en formant un "gel" nommé empois. Ce gel, c'est la mie, souple et translucide.
Quand les produits sont stockés, la mie perd certainement de l'eau, ce qui correspond à un séchage. Mais il y a pire, à savoir une "rétrogradation de l'amidon".
Pour comprendre de quoi il s'agit, il faut savoir que les grains d'amidon de la farine sont composés de molécules de deux sortes : des molécules d'amylose et des molécules d'amylopectine. Les premières sont comme de minuscules fils, et les secondes comme de minuscules arbres. Lors de la cuisson, des molécules d'amylose peuvent migrer hors des grains, et elles vont alors flotter dans l'eau ; mais, au cours du stockage, ces molécules migrent et se réassocient en zones "cristallines", sans eau. Cette réassociation correspond à une mie plus "rigide", plus dure. L'eau est présente, mais pas organisée comme il le faudrait... et c'est ainsi que ce rassissement-là peut être combattu par un réchauffage, qui resolubilise les molécules d'amylose.
Pour les molécules, peu importe donc la position, le contact avec le papier ou avec la table !
A propos du trempage, je manque d'informations pour interpréter, mais il est clair que la perte réelle d'eau est plus nette sur les bords qu'au centre. Et là, ce n'est pas une rétrogradation qui est en cause, mais bien le séchage, semble-t-il.
Enfin, il y a les miettes qui se regroupent dans le bol, et là, il faudrait faire des études plus poussée, mais je peux quand même signaler que si des miettes grasses incurvent la surface de l'eau sous elle, elles en abaissent le niveau, de sorte que des miettes voisines peuvent glisser vers le bas, et se réunir.
Je me permets de vous contacter pour une question relative au pain au chocolat : il m'arrive de ne pas manger immédiatement un pain au chocolat que j'ai acheté, de sorte que je le laisse dans le sachet de la boulangerie sans prendre de précaution particulière, et, le lendemain, il a forcement perdu de l'humidité.
Lorsque j'imagine un pain au chocolat qui reste sur une table, je pense en générale que la table va protéger le pain au chocolat sur le dessous et que le reste va être plus dur.
Quand je trempe alors le pain au chocolat dans du lait, je remarque que les bords sont bien plus difficile à rendre humide que le reste. Pourquoi mon pain au chocolat n'est-il pas séché uniformément ?
Ce n'est jamais par le dessus qu'il sèche. Il est bien plus sec aux extrémités, alors que les bords du pain au chocolat ne touchent pas forcément le papier du sachet qui, par capillarité, pourrait absorber l'humidité du pain au chocolat. J'ai déjà remarqué le même phénomène lorsque le sachet de mon pain au chocolat était bien ouvert ou même sans protection ou durant la nuit.
Je n'ai pas essayé de mettre mon pain au chocolat en position verticale la nuit pour voir si cela change quelque :)
Que se passe-t-il au niveau moléculaire ? Les liaisons hydrogène avec les molécules d'eau les pousseraient-elles à fuir l'évaporation et à se concentrer au centre ?
Je remarque aussi que les miettes dans le lait se regroupent au centre du bol de lait lorsque je le pose dans l’évier sans finir de le boire, et cela aussi m'intrigue. Le phénomène est plus visible avec des miette de cookies ! :)
Je vous remercie pour votre attention, en espérant ne pas vous avoir dérangé avec mes questionnements un peu farfelus. Cordialement.
C'est un gros morceau, et il y a en réalité plusieurs questions. Tout d'abord, le "séchage" des produits panifiés n'est pas toujours une simple perte d'eau : le "rassissement" inclut la perte d'eau, mais pas seulement, comme nous allons le voir.
Partons d'eau et de farine, ce qui est commun à tous ces produits ; la cuisson produit un "empesage", à savoir que, notamment, les grains d'amidon de la farine absorbent l'eau, gonflent et se soudent en formant un "gel" nommé empois. Ce gel, c'est la mie, souple et translucide.
Quand les produits sont stockés, la mie perd certainement de l'eau, ce qui correspond à un séchage. Mais il y a pire, à savoir une "rétrogradation de l'amidon".
Pour comprendre de quoi il s'agit, il faut savoir que les grains d'amidon de la farine sont composés de molécules de deux sortes : des molécules d'amylose et des molécules d'amylopectine. Les premières sont comme de minuscules fils, et les secondes comme de minuscules arbres. Lors de la cuisson, des molécules d'amylose peuvent migrer hors des grains, et elles vont alors flotter dans l'eau ; mais, au cours du stockage, ces molécules migrent et se réassocient en zones "cristallines", sans eau. Cette réassociation correspond à une mie plus "rigide", plus dure. L'eau est présente, mais pas organisée comme il le faudrait... et c'est ainsi que ce rassissement-là peut être combattu par un réchauffage, qui resolubilise les molécules d'amylose.
Pour les molécules, peu importe donc la position, le contact avec le papier ou avec la table !
A propos du trempage, je manque d'informations pour interpréter, mais il est clair que la perte réelle d'eau est plus nette sur les bords qu'au centre. Et là, ce n'est pas une rétrogradation qui est en cause, mais bien le séchage, semble-t-il.
Enfin, il y a les miettes qui se regroupent dans le bol, et là, il faudrait faire des études plus poussée, mais je peux quand même signaler que si des miettes grasses incurvent la surface de l'eau sous elle, elles en abaissent le niveau, de sorte que des miettes voisines peuvent glisser vers le bas, et se réunir.
Vous disposez d'une truffe ?
1. faire une pâte feuilletée à six tour
2.
dans une petite casserole, faire un très petit roux ; ajouter un peu de
fond de volaille (éventuellement cube+eau) et du porto ; cuire pour
épaissir très peu, saler, poivre ; quand refroidi (tiède suffit),
ajouter un jaune d'oeuf et cuire pour lier
3. battre un blanc en neige très ferme ; l'ajouter à la sauce de 2
4. au centre de la pâte, déposer la sauce ; y placer la truffe, et refermer la pâte
5. badigeonner au jaune d'oeuf
6. cuire au four 30 min à 180 °C
7. dès la sortie du four, apporter sur la table, couper en deux humer, et célébrer la truffe en croûte.
samedi 15 septembre 2018
Questions de siphon
Une question technique :
Bonjour, je me permets de vs poser une question. J'utilise un siphon en pâtisserie mais je ne comprends pas pourquoi il me reste toujours de la crème à l'intérieur du siphon lorsque le gaz est, lui, terminé ?
Observons d'abord que, pour les siphons les plus simples, les cartouches contiennent bien peu de gaz, et c'est la raison pour laquelle il est possible, quand une cartouche est finie, d'en mettre une autre, afin de permettre l'utilisation de la suite du produit qui a été introduit dans le siphon.
Mais, surtout, il faut savoir que je milite depuis presque 30 ans pour des systèmes différents, avec un compresseur qui met du gaz, au lieu d'avoir des consommables coûteux !
D'autre part, il est bon de bien faire la différence entre les divers cartouches possibles, au cas où l'on reste au système le plus simple, à cartouches. Les plus courantes contiennent du protoxyde d'azote, surnommé le "gaz hilarant", sans odeur mais à la saveur légèrement sucrée. Il est donc relativement inerte.
Une autre possibilité : le dioxyde de carbone, ou "gaz carbonique", qui, quand il est mis dans le siphon, se dissout un peu dans les liquides et donne une saveur acidulée, et une effervescence. Par exemple, faites donc l'expérience de mettre, à sec dans le siphon, quelques grains de raisin, plus deux cartouches de dioxyde de carbone ; attendez, puis chassez rapidement le gaz en appuyant sur la gachette pour vider le siphon, et goûter les grains de raisin : il est devenu effervescent. Avec un liquide, vous auriez un liquide effervescent... et ce n'est rien d'autre qu'un avatar de l'ancienne "eau de Seltz".
Retrouvez tout cela et bien plus sur :
Bonjour, je me permets de vs poser une question. J'utilise un siphon en pâtisserie mais je ne comprends pas pourquoi il me reste toujours de la crème à l'intérieur du siphon lorsque le gaz est, lui, terminé ?
Observons d'abord que, pour les siphons les plus simples, les cartouches contiennent bien peu de gaz, et c'est la raison pour laquelle il est possible, quand une cartouche est finie, d'en mettre une autre, afin de permettre l'utilisation de la suite du produit qui a été introduit dans le siphon.
Mais, surtout, il faut savoir que je milite depuis presque 30 ans pour des systèmes différents, avec un compresseur qui met du gaz, au lieu d'avoir des consommables coûteux !
D'autre part, il est bon de bien faire la différence entre les divers cartouches possibles, au cas où l'on reste au système le plus simple, à cartouches. Les plus courantes contiennent du protoxyde d'azote, surnommé le "gaz hilarant", sans odeur mais à la saveur légèrement sucrée. Il est donc relativement inerte.
Une autre possibilité : le dioxyde de carbone, ou "gaz carbonique", qui, quand il est mis dans le siphon, se dissout un peu dans les liquides et donne une saveur acidulée, et une effervescence. Par exemple, faites donc l'expérience de mettre, à sec dans le siphon, quelques grains de raisin, plus deux cartouches de dioxyde de carbone ; attendez, puis chassez rapidement le gaz en appuyant sur la gachette pour vider le siphon, et goûter les grains de raisin : il est devenu effervescent. Avec un liquide, vous auriez un liquide effervescent... et ce n'est rien d'autre qu'un avatar de l'ancienne "eau de Seltz".
Retrouvez tout cela et bien plus sur :
vendredi 14 septembre 2018
La science des aliments n'est pas la technologie des aliments
Il y a toujours eu une confusion entre science et technologie,
au point que Louis Pasteur le déplorait déjà, avec des phrases
d'une énergie terrible.
Pourtant, c'est tout simple, en principe :
D'une part, les sciences de la nature cherchent à "lever un coin du grand voile", à découvrir les phénomènes inconnus et les mécanismes des phénomènes, à l'aide une méthode aussi certaine que possible, et qui passe par :
(1) l'identification d'un phénomène ;
(2) la caractérisation quantitative de ce phénomène (on en mesure des caractéristiques judicieusement choisies)
(3) le regroupement des résultats de mesure en "lois" synthétiques, c'est-à-dire essentiellement en équations ;
(4) la recherche -par induction, c'est là un point central- de concepts, notions, théories, mécanismes quantitativement compatibles avec les équations dégagées ;
(5) la recherche de conséquences des théories ainsi "induites" ;
(6) les tests expérimentaux de ces conséquences, en vue de réfutations qui permettent de boucler, afin d'améliorer des théories toujours insuffisantes.
D'autre part, la ou les technologies (à discuter), elles, visent l'amélioration des techniques, et elles ont un but pratique, puisque "technique" signifie "faire".
Pour autant, la science n'est pas au-dessus de la technologie, et la technologie n'est pas au-dessus de la science : ce sont deux activités séparées ! Et Pasteur lui-même observait que sa volonté de contribuer au bien-être de l'humanité l'avait détourné de ses travaux scientifiques (par exemple, l'exploration de la chiralité) vers la technologie, mais il l'avait mûrement décidé.
Des collègues évoquent, à côté de ces termes de science et de technologie, celui d'ingéniérie, mais il n'est pas bien clair, et, en tout cas, il tombe clairement du côté de la technologie, puisque le Journal officiel en dit :
"Ensemble des fonctions allant de la conception et des études à la responsabilité de la construction et au contrôle des équipements d'une installation technique ou industrielle (en anglais : engineering)"
(Arrêté du 12 janv. 1973 ds Lang. fr., Paris, J.O., 1980, p. 21).
Bien sûr, certains peuvent utiliser les termes avec diverses acceptions idiosyncratiques... mais ils risquent de n'être compris que par eux-mêmes.
Ajoutons enfin :
- que le mot « science », utilisé dans une expression telle que « science du coordonnier » n'a rien à voir avec les sciences de la nature, puisque, ici, le mot « science » signifie seulement savoir ; or comment refuser à un corps professionnel d'avoir un savoir ? Ce serait idiot… tout comme il serait idiot de confondre ce savoir empirique avec les sciences de la nature
- que les mathématiques ne sont pas des sciences de la nature, mais des "mathématiques", et elles ne se confondent pas avec le calcul, qui est, comme on l'a vu, le quotidien des sciences de la nature
- qu'il ne peut en aucun cas exister des "sciences appliquées", puisque des science ne sont précisément pas appliquées ; une expression comme "sciences appliquées" est un oxymore fautif, tout comme carré rond.
Tout cela étant dit, puisque la confusion règne (c'est un fait) beaucoup en "sciences et technologies des aliments", et que les étudiants notamment sont perdus, je me suis amusé à recopier la table des matières d'une revue de la discipline pour essayer d'y voir plus clair. A noter que le mot "chimie" figure dans son titre, et que ce mot, déjà, prête à confusion, comme je l'ai expliqué dans d'autres billets, puisque l'on a tendance à confondre dans ce mot... de la science, de la technologie, et même de la technique.
Pourtant, un examen attentif de l'histoire de la chimie montre que la chimie est une science de la nature, et que les travaux techniques (industries) ou technologiques ne sont pas de la chimie proprement dite, mais de la technologie ou de la technique, des applications de la chimie qui ne devraient pas être nommées "chimie".
On est proche de la confusion qui règne en médecine, si bien dénoncée par Claude Bernard, qui observe justement que la médecine est une technique, que la recherche clinique est une technologie, et que la science de la médecine est la physiologie !
Mais lançons nous... même si, on va le voir, l'exercice finit par être lancinant.
Bioactive compounds of beetroot and utilization in food processing industry: A critical review : ici, au moins, on commence facilement, car il est question d'utiliser des composés des betteraves dans l'industrie. C'est clairement de la technologie. Certes, il aura fallu identifier les composés "bioactifs" avant de les étudier, mais l'intention est claire. Intention ! Le mot est essentiel, parce que l'on peut fort bien imaginer que des ingénieurs ou des technologues, voire des techniciens, s'intéressant à leur travail, fassent une découverte, mais il faudra l'intention, pour aller plus loin, et c'est à ce titre que l'on a parfois dit que Rumford avait découvert la convection.
Je reviens une seconde sur mon "Certes, il aura fallu identifier les composés bioactifs" : on voit qu'un travail technologique peut conduire à explorer le monde, à "lever un [petit, ici] coin du grand voile", ce qui correspond à une activité scientifique.
Et s'impose une observation : de même que l'on ne fait pas de chimie quand on respire, on ne fait pas de science quand on effectue certaines des tâches qui relève de sa méthode ; de même, une partie du public confond science et rigueur, mais il ne suffit pas d'être rigoureux pour faire une recherche scientifique. L'intention est essentielle, et les technologues qui auront ici identifié des composés bioactifs dans les betteraves, s'ils ont contribué à l'augmentation des connaissances, n'auront pas notablement contribué à la science. D'ailleurs, des composés "bioactifs" : on pressent qu'il s'agit seulement d'observer si des composés ont une action sur le corps humain... ce qui est une application.
J'ajoute aussi que je crois les étapes 4, 5 et 6 essentielles dans la recherche scientifique. Trop souvent, le travail n'est que technique, quand il s'arrête à la caractérisation quantitative des phénomènes.
Exploring the impacts of postharvest processing on the aroma formation of coffee beans – A review : ce deuxième travail semble annoncer clairement la couleur : il s'agit d'explorer un champ technique, à savoir ce qui se passe quand on a recueilli les fruits du caféier. Toutefois le titre n'est plus suffisant, ici, parce que l'on pourrait imaginer que les « chercheurs » ont tenté d'élucider des mécanismes à des fins de savoir, ou bien à des fins d'amélioration des procédés. On retrouve ici la question de l'intention, de l'ambition particulière de ce « chercheur » qui, selon les cas, est un chercheur scientifique ou un chercheur technologique.
En tout cas, ici, il faut y aller plus avant pour se déterminer... en se doutant que si l'on parle d'arôme, c'est bien que l'on pense à un effet sur l'humain... et donc à de la technologie, en vue de modifier le café pour qu'il soit mieux apprécié : si ce n'est pas de la technologie, cela !
Phenolic compounds and antioxidant activities of tea-type infusions processed from sea buckthorn (Hippophaë rhamnoides) leaves : ici, le mot "proccessed" fait penser à de la technologie, mais nous arrivons à un cas plus subtil, même si l'argousier est utilisé de façon technique. Ce qui est en cause, plus précisément, c'est cette exploration des activités antioxydantes des composés phénoliques de la plante. Vise-t-elle une simple caractérisation, pour une utilisation (technologique), ou la recherche de mécanismes ? Il faut lire en détail l'article... et l'on opte alors pour la seconde option.
Mais là encore, une observation, à propos de ce "processed" : le fait que des composés phénoliques soient différents avant ou après transformation de feuilles d'argousier est un phénomène dont l'exploration pourrait révéler des mécanismes inédits du monde... à condition d'être dans l'état d'esprit de les chercher. C'est sans doute dans cette idée que l'un de mes amis qui est un très bon scientifique évoque, parmi les stratégies scientifiques, le "abstraire et généraliser".
Chloroplast-rich material from the physical fractionation of pea vine (Pisum sativum) postharvest field residue (Haulm) : là, c'est facile, puisque c'est une valorisation de résidus de transformation. Technologie.
Bien sûr, avec beaucoup de mauvaise foi, on pourrait dire que l'on s'intéresse aux mécanismes particuliers qui permettent à des résidus du pois de contenir beaucoup de matériaux chloroplastiques, mais... la lecture de l'article montre que tel n'est pas le cas, puisque, au contraire, il s'agissait d'analyser technologiquement les nutriments des fractions isolées, par une technique un peu améliorée.
Characteristics of flavonol glycosides in bean (Phaseolus vulgaris L.) seed coats : ici, il s'agit donc de caractériser une classe particulière de composés dans les haricots, et l'on peut imaginer que l'objectif est de lever un coin du grand voile. D'ailleurs, la "science des aliments" n'est en réalité une science de la nature, et non une activité technologique, que dans la mesure où elle a cet objectif. On observera que nous avions eu le besoin d'introduire la gastronomie moléculaire comme une discipline scientifique, parce que avions vu que les "sciences et technologies des aliments", dans les années 1980, se résumaient presque à de la science des ingrédients, et à des études des procédés ; or il nous apparaissait clairement que nous pourrions identifier des phénomènes et mécanismes nouveaux si nous explorions des phénomènes peu considérés, avec l'objectif clair d'identifier des mécanismes et phénomènes nouveaux.
Bref, ici, il pourrait s'agir de science des aliments, et bien de science... sauf que la consultation de l'article révèle un "Results suggest seed coats of Windbreaker and Eclipse may have potential as functional food ingredients, though benefits may not be simply due to flavonols"... qui montre que le travail était technologique.
Wine production using free and immobilized kefir culture on natural supports : hopla, facile, non ? Mais c'est aussi l'occasion de voir que, jusque ici, nous n'avons pas eu un seul cas de science !
Variations in chlorophyll and carotenoid contents and expression of genes involved in pigment metabolism response to oleocellosis in citrus fruits: ouf, voilà enfin de la science ! Ici, de la science qui caractérise non pas les aliments, mais bien plutôt les ingrédients alimentaires, car c'est là une subtilité que je gardais en réserve, et qui agravait l'état des années 1980 : non seulement la science des aliments n'était le plus souvent que de la science des ingrédients, mais pire, ce n'était pas de la science des aliments, puisque c'était de la science des ingrédients ! Or je maintiens que les ingrédients ne sont pas des aliments, puisque manque l'étape de "cuisine". Un exemple : un sanglier vivant n'est pas un aliment ; pour faire un aliment à partir de ce sanglier, il aura fallu tuer l'animal, le dépecer, le préparer, le "cuisiner"... Ce qui n'est pas une mince affaire, et ce qui change du tout au tout la chair de l'animal.
Use of a smartphone for visual detection of melamine in milk based on Au@Carbon quantum dots nanocomposites : et là, c'est facile, puisque c'est de la caractérisation technique. N'épiloguons pas
Physicochemical properties and phenolic content of honey from different floral origins and from rural versus urban landscapes : à la lecture du seul titre, les deux possibilités scientifique et technologique se présentent, à savoir que l'on pourrait explorer les compositions et des caractéristiques des miels de différentes origines, en vue de comprendre comment ils sont formés, par exemple, ou bien l'on pourrait chercher à attribuer des propriétés à partir de l'environnement de production, mais je propose surtout de conserver cet exemple observer que certains travaux publiés s'arrêtent à la caractérisation : si l'on est charitable, on peut admettre qu'il s'agisse de science, avec une ou deux étapes préliminaires... mais la caractérisation n'a de sens que si l'on identifie des mécanismes !
Effect of interesterified blend-based fast-frozen special fat on the physical properties and microstructure of frozen dough : bon, de la technologie. Là encore, on pourrait faire de la science si l'on était vraiment scientifique... mais
Effect of phosphates on gelling characteristics and water mobility of myofibrillar protein from grass carp (Ctenopharyngodon idellus) : on se trouve dans l'avant dernier cas, et l'on pose la question de l'objectif, avant de trancher. L'article, lui, nous dit qu'il s'agit de technologie : dommage pour la science, tant mieux pour la technologie.
Hydrolysis and oxidation of lipids in mussel Mytilus edulis during cold storage : je pressens un travail technologique. Car même si l'on caractérise l'évolution des lipides lors du stockage au froid, l'étude s'arrête là.
Particulate organohalogens in edible brown seaweeds : de la science des ingrédients ou de la toxicologie ? Cette fois, il faut aller voir l'article, dont le résumé est le suivant :
Brown algae, rich in antioxidants and other bioactive compounds, are important dietary seaweeds in many cultures. Like other marine macroalgae, brown seaweeds are known to accumulate the halogens iodine and bromine. Comparatively little is known about the chemistry of chlorine in seaweeds. We used synchrotron-based X-ray absorption spectroscopy to measure total non-volatile organochlorine and -bromine in five edible brown seaweeds: Laminaria digitata, Fucus vesiculosus, Pelvetia canaliculata, Saccharina latissima, and Undaria pinnatifida. Organochlorine concentrations range from 120 to 630 mg·kg-1 dry weight and organobromine from 150 to 360 mg·kg-1, comprising mainly aromatic organohalogens in both cases. Aliphatic organochlorine exceeds aliphatic organobromine but is positively correlated with it among the seaweeds. Higher organochlorine levels appear in samples with more lipid moieties, suggesting lipid chlorination as a possible formation pathway. Particulate organohalogens are not correlated with antioxidant activity or polyphenolic content in seaweed extracts. Such compounds likely contribute to organohalogen body burden in humans and other organisms.
On voit que le résumé commence par vendre la salade, en termes d'application technique. Cela dit, le métabolisme du chlore ou du brome est une question passionnante. On n'oublie pas que l'iode fut découvert à partir des algues par Bernard Courtois.
Comparative studies on the yield and characteristics of myofibrillar proteins from catfish heads and frames extracted by two methods for making surimi-like protein gel products : bon, l'intention technologique est claire.
Point-of-use detection of ascorbic acid using a spectrometric smartphone-based system : idem.
Development and validation of a method for simultaneous determination of trace levels of five macrocyclic lactones in cheese by HPLC-fluorescence after solid–liquid extraction with low temperature partitioning : de l'analyse, donc de la technologie.
Rapid quantification of the adulteration of fresh coconut water by dilution and sugars using Raman spectroscopy and chemometrics : de la caractérisation, en vue de dépister des fraudes, c'est donc de la technologie.
Effect of pH and holding time on the characteristics of protein isolates from Chenopodium seeds and study of their amino acid profile and scoring : en réalité, il faut lire l'article pour voir que l'on est dans une caractérisation technologique.
Antioxidant activity of a winterized, acetonic rye bran extract containing alkylresorcinols in oil-in-water emulsions : là encore, on trouve le cas évoqué. Mais là, je commence à me lasser, et sans doute vous aussi.
Chemical profiles and antioxidant properties of roasted rice hull extracts in bulk oil and oil-in-water emulsion : il s'agit donc de caractérisation, et c'est l'occasion de signaler à nos jeunes amis qu'une caractérisation n'est qu'une caractérisation. Le contenu conceptuel est faible si l'on ne va pas jusqu'aux mécanismes. Mais, au fait, trouver le mécanisme d'un phénomène, c'est bien... mais est-ce une grande découverte ?
Distribution and effects of natural selenium in soybean proteins and its protective role in soybean β-conglycinin (7S globulins) under AAPH-induced oxidative stress: on sent la technologie à plein nez... Mais je propose que nous arrêtions ici, parce que c'est vraiment trop long, en observant seulement que les travaux scientifiques sont vraiment rares ! N'est-ce pas désolant ? N'est-ce pas un scandale que la revue en question évoque les sciences aliments.
Mais je dis assez souvent que se lamenter est inutile, et je vois surtout, là, la possibilité de développer véritablement des sciences des aliments, et pas seulement des ingrédients alimentaires ! Cela, ce me semble être précisément la gastronomie moléculaire !!!!!!!!!!!!!!!!!!!!!!!!!!!
Annexe: le reste des titres, pour que vous puissiez vous exercer
# Peels of tucumã (Astrocaryum vulgare) and peach palm (Bactris gasipaes) are by-products classified as very high carotenoid sources
# Diffuse light affects the contents of vitamin C, phenolic compounds and free amino acids in lettuce plants
# Solid-state fermentation of black rice bran with Aspergillus awamori and Aspergillus oryzae: Effects on phenolic acid composition and antioxidant activity of bran extracts
# Modifying Robusta coffee aroma by green bean chemical pre-treatment
# Microwave and ultrasound pre-treatments to enhance anthocyanins extraction from different wine lees
# Effect of sex on the nutritional value of house cricket, Acheta domestica L.
# Effect of anthocyanins on lipid oxidation and microbial spoilage in value-added emulsions with bilberry seed oil, anthocyanins and cold set whey protein hydrogels
# Comparison of real-time PCR methods for quantification of European hake (Merluccius merluccius) in processed food samples
# A unified approach for high-throughput quantitative analysis of the residues of multi-class veterinary drugs and pesticides in bovine milk using LC-MS/MS and GC–MS/MS
# Novel insight into the role of withering process in characteristic flavor formation of teas using transcriptome analysis and metabolite profiling
# High-sensitivity determination of cadmium and lead in rice using laser-induced breakdown spectroscopy
# Characterization and storage stability of chlorophylls microencapsulated in different combination of gum Arabic and maltodextrin
# Determination of serotonin in nuts and nut containing products by liquid chromatography tandem mass spectrometry
# Development of a DNA metabarcoding method for the identification of fifteen mammalian and six poultry species in food
# Comparisons of nutritional constituents in soybeans during solid state fermentation times and screening for their glucosidase enzymes and antioxidant properties
# Characterization of three different types of extracellular vesicles and their impact on bacterial growth
# Taste-guided isolation of sweet-tasting compounds from grape seeds, structural elucidation and identification in wines
# A value-added approach to improve the nutritional quality of soybean meal byproduct: Enhancing its antioxidant activity through fermentation by Bacillus amyloliquefaciens SWJS22
# UV and storage stability of retinol contained in oil-in-water nanoemulsions
# Screening of antimicrobials in animal-derived foods with desorption corona beam ionization (DCBI) mass spectrometry
# Effect of hulling methods and roasting treatment on phenolic compounds and physicochemical properties of cultivars ‘Ohadi’ and ‘Uzun’ pistachios (Pistacia vera L.)
# Traditional rose liqueur – A pink delight rich in phenolics
# In vivo anti-hyperuricemic and xanthine oxidase inhibitory properties of tuna protein hydrolysates and its isolated fractions
# Sensory descriptive and comprehensive GC–MS as suitable tools to characterize the effects of alternative winemaking procedures on wine aroma. Part I: BRS Carmem and BRS Violeta
# Kinetics of lipid oxidation in omega fatty acids rich blends of sunflower and sesame oils using Rancimat
# Encapsulation of grape seed phenolic-rich extract within W/O/W emulsions stabilized with complexed biopolymers: Evaluation of their stability and release
# Evaluation of near-infrared (NIR) and Fourier transform mid-infrared (ATR-FT/MIR) spectroscopy techniques combined with chemometrics for the determination of crude protein and intestinal protein digestibility of wheat
# Impact of consumer behavior on furan and furan-derivative exposure during coffee consumption. A comparison between brewing methods and drinking preferences
# Effects of heat-moisture treatment after citric acid esterification on structural properties and digestibility of wheat starch, A- and B-type starch granules
# Glycine betaine reduces chilling injury in peach fruit by enhancing phenolic and sugar metabolisms
# Effects of skim milk pre-acidification and retentate pH-restoration on spray-drying performance, physico-chemical and functional properties of milk protein concentrates
# Simultaneous determination and risk assessment of fipronil and its metabolites in sugarcane, using GC-ECD and confirmation by GC-MS/MS
# Extraction of lycopene using a lecithin-based olive oil microemulsion
# Discrimination of geographical origins of Chinese acacia honey using complex 13C/12C, oligosaccharides and polyphenols
# β-Agarase immobilized on tannic acid-modified Fe3O4 nanoparticles for efficient preparation of bioactive neoagaro-oligosaccharide
# Influence of fried food and oil type on the distribution of polar compounds in discarded oil during restaurant deep frying
# Structural elucidation of fucoidan from Cladosiphon okamuranus (Okinawa mozuku)
# Determination of lipophilic marine toxins in fresh and processed shellfish using modified QuEChERS and ultra-high-performance liquid chromatography–tandem mass spectrometry
# Discrimination of Brazilian lager beer by 1H NMR spectroscopy combined with chemometrics
# Synergistic effect of mixture of two proline-rich-protein salivary families (aPRP and bPRP) on the interaction with wine flavanols
# Impact of a post-fermentative maceration with overripe seeds on the color stability of red wines
# Inhibitory effects of dietary soy isoflavone and gut microbiota on contact hypersensitivity in mice
# Metabolite characterization of powdered fruits and leaves from Adansonia digitata L. (baobab): A multi-methodological approach
# Isolation of antioxidative compounds from Micromelum minutum guided by preparative thin layer chromatography-2,2-diphenyl-1-picrylhydrazyl (PTLC-DPPH) bioautography method
# Effect of guar gum on the physicochemical properties and in vitro digestibility of lotus seed starch
# Preparation of an intelligent pH film based on biodegradable polymers and roselle anthocyanins for monitoring pork freshness
# Extraction, structural characterization and stability of polyhydroxylated naphthoquinones from shell and spine of New Zealand sea urchin (Evechinus chloroticus)
# A review of microencapsulation methods for food antioxidants: Principles, advantages, drawbacks and applications
# Transcriptome and proteome analyses of the molecular mechanisms associated with coix seed nutritional quality in the process of breeding
# The synthesis and characterization of a xanthan gum-acrylamide-trimethylolpropane triglycidyl ether hydrogel
Vous avez vu beaucoup de science, vous ?
Pourtant, c'est tout simple, en principe :
D'une part, les sciences de la nature cherchent à "lever un coin du grand voile", à découvrir les phénomènes inconnus et les mécanismes des phénomènes, à l'aide une méthode aussi certaine que possible, et qui passe par :
(1) l'identification d'un phénomène ;
(2) la caractérisation quantitative de ce phénomène (on en mesure des caractéristiques judicieusement choisies)
(3) le regroupement des résultats de mesure en "lois" synthétiques, c'est-à-dire essentiellement en équations ;
(4) la recherche -par induction, c'est là un point central- de concepts, notions, théories, mécanismes quantitativement compatibles avec les équations dégagées ;
(5) la recherche de conséquences des théories ainsi "induites" ;
(6) les tests expérimentaux de ces conséquences, en vue de réfutations qui permettent de boucler, afin d'améliorer des théories toujours insuffisantes.
D'autre part, la ou les technologies (à discuter), elles, visent l'amélioration des techniques, et elles ont un but pratique, puisque "technique" signifie "faire".
Pour autant, la science n'est pas au-dessus de la technologie, et la technologie n'est pas au-dessus de la science : ce sont deux activités séparées ! Et Pasteur lui-même observait que sa volonté de contribuer au bien-être de l'humanité l'avait détourné de ses travaux scientifiques (par exemple, l'exploration de la chiralité) vers la technologie, mais il l'avait mûrement décidé.
Des collègues évoquent, à côté de ces termes de science et de technologie, celui d'ingéniérie, mais il n'est pas bien clair, et, en tout cas, il tombe clairement du côté de la technologie, puisque le Journal officiel en dit :
"Ensemble des fonctions allant de la conception et des études à la responsabilité de la construction et au contrôle des équipements d'une installation technique ou industrielle (en anglais : engineering)"
(Arrêté du 12 janv. 1973 ds Lang. fr., Paris, J.O., 1980, p. 21).
Bien sûr, certains peuvent utiliser les termes avec diverses acceptions idiosyncratiques... mais ils risquent de n'être compris que par eux-mêmes.
Ajoutons enfin :
- que le mot « science », utilisé dans une expression telle que « science du coordonnier » n'a rien à voir avec les sciences de la nature, puisque, ici, le mot « science » signifie seulement savoir ; or comment refuser à un corps professionnel d'avoir un savoir ? Ce serait idiot… tout comme il serait idiot de confondre ce savoir empirique avec les sciences de la nature
- que les mathématiques ne sont pas des sciences de la nature, mais des "mathématiques", et elles ne se confondent pas avec le calcul, qui est, comme on l'a vu, le quotidien des sciences de la nature
- qu'il ne peut en aucun cas exister des "sciences appliquées", puisque des science ne sont précisément pas appliquées ; une expression comme "sciences appliquées" est un oxymore fautif, tout comme carré rond.
Tout cela étant dit, puisque la confusion règne (c'est un fait) beaucoup en "sciences et technologies des aliments", et que les étudiants notamment sont perdus, je me suis amusé à recopier la table des matières d'une revue de la discipline pour essayer d'y voir plus clair. A noter que le mot "chimie" figure dans son titre, et que ce mot, déjà, prête à confusion, comme je l'ai expliqué dans d'autres billets, puisque l'on a tendance à confondre dans ce mot... de la science, de la technologie, et même de la technique.
Pourtant, un examen attentif de l'histoire de la chimie montre que la chimie est une science de la nature, et que les travaux techniques (industries) ou technologiques ne sont pas de la chimie proprement dite, mais de la technologie ou de la technique, des applications de la chimie qui ne devraient pas être nommées "chimie".
On est proche de la confusion qui règne en médecine, si bien dénoncée par Claude Bernard, qui observe justement que la médecine est une technique, que la recherche clinique est une technologie, et que la science de la médecine est la physiologie !
Mais lançons nous... même si, on va le voir, l'exercice finit par être lancinant.
Bioactive compounds of beetroot and utilization in food processing industry: A critical review : ici, au moins, on commence facilement, car il est question d'utiliser des composés des betteraves dans l'industrie. C'est clairement de la technologie. Certes, il aura fallu identifier les composés "bioactifs" avant de les étudier, mais l'intention est claire. Intention ! Le mot est essentiel, parce que l'on peut fort bien imaginer que des ingénieurs ou des technologues, voire des techniciens, s'intéressant à leur travail, fassent une découverte, mais il faudra l'intention, pour aller plus loin, et c'est à ce titre que l'on a parfois dit que Rumford avait découvert la convection.
Je reviens une seconde sur mon "Certes, il aura fallu identifier les composés bioactifs" : on voit qu'un travail technologique peut conduire à explorer le monde, à "lever un [petit, ici] coin du grand voile", ce qui correspond à une activité scientifique.
Et s'impose une observation : de même que l'on ne fait pas de chimie quand on respire, on ne fait pas de science quand on effectue certaines des tâches qui relève de sa méthode ; de même, une partie du public confond science et rigueur, mais il ne suffit pas d'être rigoureux pour faire une recherche scientifique. L'intention est essentielle, et les technologues qui auront ici identifié des composés bioactifs dans les betteraves, s'ils ont contribué à l'augmentation des connaissances, n'auront pas notablement contribué à la science. D'ailleurs, des composés "bioactifs" : on pressent qu'il s'agit seulement d'observer si des composés ont une action sur le corps humain... ce qui est une application.
J'ajoute aussi que je crois les étapes 4, 5 et 6 essentielles dans la recherche scientifique. Trop souvent, le travail n'est que technique, quand il s'arrête à la caractérisation quantitative des phénomènes.
Exploring the impacts of postharvest processing on the aroma formation of coffee beans – A review : ce deuxième travail semble annoncer clairement la couleur : il s'agit d'explorer un champ technique, à savoir ce qui se passe quand on a recueilli les fruits du caféier. Toutefois le titre n'est plus suffisant, ici, parce que l'on pourrait imaginer que les « chercheurs » ont tenté d'élucider des mécanismes à des fins de savoir, ou bien à des fins d'amélioration des procédés. On retrouve ici la question de l'intention, de l'ambition particulière de ce « chercheur » qui, selon les cas, est un chercheur scientifique ou un chercheur technologique.
En tout cas, ici, il faut y aller plus avant pour se déterminer... en se doutant que si l'on parle d'arôme, c'est bien que l'on pense à un effet sur l'humain... et donc à de la technologie, en vue de modifier le café pour qu'il soit mieux apprécié : si ce n'est pas de la technologie, cela !
Phenolic compounds and antioxidant activities of tea-type infusions processed from sea buckthorn (Hippophaë rhamnoides) leaves : ici, le mot "proccessed" fait penser à de la technologie, mais nous arrivons à un cas plus subtil, même si l'argousier est utilisé de façon technique. Ce qui est en cause, plus précisément, c'est cette exploration des activités antioxydantes des composés phénoliques de la plante. Vise-t-elle une simple caractérisation, pour une utilisation (technologique), ou la recherche de mécanismes ? Il faut lire en détail l'article... et l'on opte alors pour la seconde option.
Mais là encore, une observation, à propos de ce "processed" : le fait que des composés phénoliques soient différents avant ou après transformation de feuilles d'argousier est un phénomène dont l'exploration pourrait révéler des mécanismes inédits du monde... à condition d'être dans l'état d'esprit de les chercher. C'est sans doute dans cette idée que l'un de mes amis qui est un très bon scientifique évoque, parmi les stratégies scientifiques, le "abstraire et généraliser".
Chloroplast-rich material from the physical fractionation of pea vine (Pisum sativum) postharvest field residue (Haulm) : là, c'est facile, puisque c'est une valorisation de résidus de transformation. Technologie.
Bien sûr, avec beaucoup de mauvaise foi, on pourrait dire que l'on s'intéresse aux mécanismes particuliers qui permettent à des résidus du pois de contenir beaucoup de matériaux chloroplastiques, mais... la lecture de l'article montre que tel n'est pas le cas, puisque, au contraire, il s'agissait d'analyser technologiquement les nutriments des fractions isolées, par une technique un peu améliorée.
Characteristics of flavonol glycosides in bean (Phaseolus vulgaris L.) seed coats : ici, il s'agit donc de caractériser une classe particulière de composés dans les haricots, et l'on peut imaginer que l'objectif est de lever un coin du grand voile. D'ailleurs, la "science des aliments" n'est en réalité une science de la nature, et non une activité technologique, que dans la mesure où elle a cet objectif. On observera que nous avions eu le besoin d'introduire la gastronomie moléculaire comme une discipline scientifique, parce que avions vu que les "sciences et technologies des aliments", dans les années 1980, se résumaient presque à de la science des ingrédients, et à des études des procédés ; or il nous apparaissait clairement que nous pourrions identifier des phénomènes et mécanismes nouveaux si nous explorions des phénomènes peu considérés, avec l'objectif clair d'identifier des mécanismes et phénomènes nouveaux.
Bref, ici, il pourrait s'agir de science des aliments, et bien de science... sauf que la consultation de l'article révèle un "Results suggest seed coats of Windbreaker and Eclipse may have potential as functional food ingredients, though benefits may not be simply due to flavonols"... qui montre que le travail était technologique.
Wine production using free and immobilized kefir culture on natural supports : hopla, facile, non ? Mais c'est aussi l'occasion de voir que, jusque ici, nous n'avons pas eu un seul cas de science !
Variations in chlorophyll and carotenoid contents and expression of genes involved in pigment metabolism response to oleocellosis in citrus fruits: ouf, voilà enfin de la science ! Ici, de la science qui caractérise non pas les aliments, mais bien plutôt les ingrédients alimentaires, car c'est là une subtilité que je gardais en réserve, et qui agravait l'état des années 1980 : non seulement la science des aliments n'était le plus souvent que de la science des ingrédients, mais pire, ce n'était pas de la science des aliments, puisque c'était de la science des ingrédients ! Or je maintiens que les ingrédients ne sont pas des aliments, puisque manque l'étape de "cuisine". Un exemple : un sanglier vivant n'est pas un aliment ; pour faire un aliment à partir de ce sanglier, il aura fallu tuer l'animal, le dépecer, le préparer, le "cuisiner"... Ce qui n'est pas une mince affaire, et ce qui change du tout au tout la chair de l'animal.
Use of a smartphone for visual detection of melamine in milk based on Au@Carbon quantum dots nanocomposites : et là, c'est facile, puisque c'est de la caractérisation technique. N'épiloguons pas
Physicochemical properties and phenolic content of honey from different floral origins and from rural versus urban landscapes : à la lecture du seul titre, les deux possibilités scientifique et technologique se présentent, à savoir que l'on pourrait explorer les compositions et des caractéristiques des miels de différentes origines, en vue de comprendre comment ils sont formés, par exemple, ou bien l'on pourrait chercher à attribuer des propriétés à partir de l'environnement de production, mais je propose surtout de conserver cet exemple observer que certains travaux publiés s'arrêtent à la caractérisation : si l'on est charitable, on peut admettre qu'il s'agisse de science, avec une ou deux étapes préliminaires... mais la caractérisation n'a de sens que si l'on identifie des mécanismes !
Effect of interesterified blend-based fast-frozen special fat on the physical properties and microstructure of frozen dough : bon, de la technologie. Là encore, on pourrait faire de la science si l'on était vraiment scientifique... mais
Effect of phosphates on gelling characteristics and water mobility of myofibrillar protein from grass carp (Ctenopharyngodon idellus) : on se trouve dans l'avant dernier cas, et l'on pose la question de l'objectif, avant de trancher. L'article, lui, nous dit qu'il s'agit de technologie : dommage pour la science, tant mieux pour la technologie.
Hydrolysis and oxidation of lipids in mussel Mytilus edulis during cold storage : je pressens un travail technologique. Car même si l'on caractérise l'évolution des lipides lors du stockage au froid, l'étude s'arrête là.
Particulate organohalogens in edible brown seaweeds : de la science des ingrédients ou de la toxicologie ? Cette fois, il faut aller voir l'article, dont le résumé est le suivant :
Brown algae, rich in antioxidants and other bioactive compounds, are important dietary seaweeds in many cultures. Like other marine macroalgae, brown seaweeds are known to accumulate the halogens iodine and bromine. Comparatively little is known about the chemistry of chlorine in seaweeds. We used synchrotron-based X-ray absorption spectroscopy to measure total non-volatile organochlorine and -bromine in five edible brown seaweeds: Laminaria digitata, Fucus vesiculosus, Pelvetia canaliculata, Saccharina latissima, and Undaria pinnatifida. Organochlorine concentrations range from 120 to 630 mg·kg-1 dry weight and organobromine from 150 to 360 mg·kg-1, comprising mainly aromatic organohalogens in both cases. Aliphatic organochlorine exceeds aliphatic organobromine but is positively correlated with it among the seaweeds. Higher organochlorine levels appear in samples with more lipid moieties, suggesting lipid chlorination as a possible formation pathway. Particulate organohalogens are not correlated with antioxidant activity or polyphenolic content in seaweed extracts. Such compounds likely contribute to organohalogen body burden in humans and other organisms.
On voit que le résumé commence par vendre la salade, en termes d'application technique. Cela dit, le métabolisme du chlore ou du brome est une question passionnante. On n'oublie pas que l'iode fut découvert à partir des algues par Bernard Courtois.
Comparative studies on the yield and characteristics of myofibrillar proteins from catfish heads and frames extracted by two methods for making surimi-like protein gel products : bon, l'intention technologique est claire.
Point-of-use detection of ascorbic acid using a spectrometric smartphone-based system : idem.
Development and validation of a method for simultaneous determination of trace levels of five macrocyclic lactones in cheese by HPLC-fluorescence after solid–liquid extraction with low temperature partitioning : de l'analyse, donc de la technologie.
Rapid quantification of the adulteration of fresh coconut water by dilution and sugars using Raman spectroscopy and chemometrics : de la caractérisation, en vue de dépister des fraudes, c'est donc de la technologie.
Effect of pH and holding time on the characteristics of protein isolates from Chenopodium seeds and study of their amino acid profile and scoring : en réalité, il faut lire l'article pour voir que l'on est dans une caractérisation technologique.
Antioxidant activity of a winterized, acetonic rye bran extract containing alkylresorcinols in oil-in-water emulsions : là encore, on trouve le cas évoqué. Mais là, je commence à me lasser, et sans doute vous aussi.
Chemical profiles and antioxidant properties of roasted rice hull extracts in bulk oil and oil-in-water emulsion : il s'agit donc de caractérisation, et c'est l'occasion de signaler à nos jeunes amis qu'une caractérisation n'est qu'une caractérisation. Le contenu conceptuel est faible si l'on ne va pas jusqu'aux mécanismes. Mais, au fait, trouver le mécanisme d'un phénomène, c'est bien... mais est-ce une grande découverte ?
Distribution and effects of natural selenium in soybean proteins and its protective role in soybean β-conglycinin (7S globulins) under AAPH-induced oxidative stress: on sent la technologie à plein nez... Mais je propose que nous arrêtions ici, parce que c'est vraiment trop long, en observant seulement que les travaux scientifiques sont vraiment rares ! N'est-ce pas désolant ? N'est-ce pas un scandale que la revue en question évoque les sciences aliments.
Mais je dis assez souvent que se lamenter est inutile, et je vois surtout, là, la possibilité de développer véritablement des sciences des aliments, et pas seulement des ingrédients alimentaires ! Cela, ce me semble être précisément la gastronomie moléculaire !!!!!!!!!!!!!!!!!!!!!!!!!!!
Annexe: le reste des titres, pour que vous puissiez vous exercer
# Peels of tucumã (Astrocaryum vulgare) and peach palm (Bactris gasipaes) are by-products classified as very high carotenoid sources
# Diffuse light affects the contents of vitamin C, phenolic compounds and free amino acids in lettuce plants
# Solid-state fermentation of black rice bran with Aspergillus awamori and Aspergillus oryzae: Effects on phenolic acid composition and antioxidant activity of bran extracts
# Modifying Robusta coffee aroma by green bean chemical pre-treatment
# Microwave and ultrasound pre-treatments to enhance anthocyanins extraction from different wine lees
# Effect of sex on the nutritional value of house cricket, Acheta domestica L.
# Effect of anthocyanins on lipid oxidation and microbial spoilage in value-added emulsions with bilberry seed oil, anthocyanins and cold set whey protein hydrogels
# Comparison of real-time PCR methods for quantification of European hake (Merluccius merluccius) in processed food samples
# A unified approach for high-throughput quantitative analysis of the residues of multi-class veterinary drugs and pesticides in bovine milk using LC-MS/MS and GC–MS/MS
# Novel insight into the role of withering process in characteristic flavor formation of teas using transcriptome analysis and metabolite profiling
# High-sensitivity determination of cadmium and lead in rice using laser-induced breakdown spectroscopy
# Characterization and storage stability of chlorophylls microencapsulated in different combination of gum Arabic and maltodextrin
# Determination of serotonin in nuts and nut containing products by liquid chromatography tandem mass spectrometry
# Development of a DNA metabarcoding method for the identification of fifteen mammalian and six poultry species in food
# Comparisons of nutritional constituents in soybeans during solid state fermentation times and screening for their glucosidase enzymes and antioxidant properties
# Characterization of three different types of extracellular vesicles and their impact on bacterial growth
# Taste-guided isolation of sweet-tasting compounds from grape seeds, structural elucidation and identification in wines
# A value-added approach to improve the nutritional quality of soybean meal byproduct: Enhancing its antioxidant activity through fermentation by Bacillus amyloliquefaciens SWJS22
# UV and storage stability of retinol contained in oil-in-water nanoemulsions
# Screening of antimicrobials in animal-derived foods with desorption corona beam ionization (DCBI) mass spectrometry
# Effect of hulling methods and roasting treatment on phenolic compounds and physicochemical properties of cultivars ‘Ohadi’ and ‘Uzun’ pistachios (Pistacia vera L.)
# Traditional rose liqueur – A pink delight rich in phenolics
# In vivo anti-hyperuricemic and xanthine oxidase inhibitory properties of tuna protein hydrolysates and its isolated fractions
# Sensory descriptive and comprehensive GC–MS as suitable tools to characterize the effects of alternative winemaking procedures on wine aroma. Part I: BRS Carmem and BRS Violeta
# Kinetics of lipid oxidation in omega fatty acids rich blends of sunflower and sesame oils using Rancimat
# Encapsulation of grape seed phenolic-rich extract within W/O/W emulsions stabilized with complexed biopolymers: Evaluation of their stability and release
# Evaluation of near-infrared (NIR) and Fourier transform mid-infrared (ATR-FT/MIR) spectroscopy techniques combined with chemometrics for the determination of crude protein and intestinal protein digestibility of wheat
# Impact of consumer behavior on furan and furan-derivative exposure during coffee consumption. A comparison between brewing methods and drinking preferences
# Effects of heat-moisture treatment after citric acid esterification on structural properties and digestibility of wheat starch, A- and B-type starch granules
# Glycine betaine reduces chilling injury in peach fruit by enhancing phenolic and sugar metabolisms
# Effects of skim milk pre-acidification and retentate pH-restoration on spray-drying performance, physico-chemical and functional properties of milk protein concentrates
# Simultaneous determination and risk assessment of fipronil and its metabolites in sugarcane, using GC-ECD and confirmation by GC-MS/MS
# Extraction of lycopene using a lecithin-based olive oil microemulsion
# Discrimination of geographical origins of Chinese acacia honey using complex 13C/12C, oligosaccharides and polyphenols
# β-Agarase immobilized on tannic acid-modified Fe3O4 nanoparticles for efficient preparation of bioactive neoagaro-oligosaccharide
# Influence of fried food and oil type on the distribution of polar compounds in discarded oil during restaurant deep frying
# Structural elucidation of fucoidan from Cladosiphon okamuranus (Okinawa mozuku)
# Determination of lipophilic marine toxins in fresh and processed shellfish using modified QuEChERS and ultra-high-performance liquid chromatography–tandem mass spectrometry
# Discrimination of Brazilian lager beer by 1H NMR spectroscopy combined with chemometrics
# Synergistic effect of mixture of two proline-rich-protein salivary families (aPRP and bPRP) on the interaction with wine flavanols
# Impact of a post-fermentative maceration with overripe seeds on the color stability of red wines
# Inhibitory effects of dietary soy isoflavone and gut microbiota on contact hypersensitivity in mice
# Metabolite characterization of powdered fruits and leaves from Adansonia digitata L. (baobab): A multi-methodological approach
# Isolation of antioxidative compounds from Micromelum minutum guided by preparative thin layer chromatography-2,2-diphenyl-1-picrylhydrazyl (PTLC-DPPH) bioautography method
# Effect of guar gum on the physicochemical properties and in vitro digestibility of lotus seed starch
# Preparation of an intelligent pH film based on biodegradable polymers and roselle anthocyanins for monitoring pork freshness
# Extraction, structural characterization and stability of polyhydroxylated naphthoquinones from shell and spine of New Zealand sea urchin (Evechinus chloroticus)
# A review of microencapsulation methods for food antioxidants: Principles, advantages, drawbacks and applications
# Transcriptome and proteome analyses of the molecular mechanisms associated with coix seed nutritional quality in the process of breeding
# The synthesis and characterization of a xanthan gum-acrylamide-trimethylolpropane triglycidyl ether hydrogel
Vous avez vu beaucoup de science, vous ?
Inscription à :
Articles (Atom)