Affichage des articles dont le libellé est empesage. Afficher tous les articles
Affichage des articles dont le libellé est empesage. Afficher tous les articles

samedi 23 juillet 2022

L'épaississement de la farine chauffée dans l'eau

 
L'épaississement de la farine chauffée dans l'eau ? Dans nombre de préparations culinaires telles que les velouté, la crème pâtissière, etc., on chauffe de la farine dans de l'eau, et l'on obtient un épaississement, en même temps qu'une opacification. Pourquoi ?

La farine, comme les fécules, est principalement composée de grains d'amidon : de petits grains qui paraissent blancs, mais sont en réalité transparents, la blancheur résultant de réflexion de la lumière généralement blanche à leur surface.

Ces grains sont des couches concentriques, tels des cernes arbres, et chaque couche est composée de molécules de deux types : des molécules d'amylose, et des molécules d'amylopectine.

Toutes ces molécules d'amylose ou d'amylopectine sont des "polymères", à savoir des enchaînements de motifs élémentaires. Plus précisément, ce sont des "polysaccharides" : les motifs élémentaires sont des résidus de sucres, et principalement des résidus de glucose.

La différence essentielle entre les molécules d'amylose (il y en a plusieurs sortes, mais elles sont très semblables) et les molécules d'amylopectine (il y en a également diverses sortes), c'est que les molécules d'amylose sont linéaires, comme des chaînes, tandis que les molécules d'amylopectine sont ramifiées, comme des arbres.

Quand un grain d'amidon se trouve dans l'eau chaude, le mouvement d'agitation des molécules d'eau permet de venir déloger les molécules d'amylose de la surface du grain : ces molécules d'amylose "fuient" vers la solution, tandis que des molécules d'eau s'infiltrent entre les molécules d'amylopectine, et se lient d'ailleurs à elles.

Cette entrée de l'eau fait gonfler le grain, et les forces (on parle de "liaisons hydrogène") entre les molécules d'eau et les molécules d'amylopectine maintiennent le grain gonflé... un certain temps : quand on chauffe trop longtemps, la structure gonflée se défait, surtout quand on agite la solution (mixeur).
Et c'est ainsi que les sauce épaissie qui sont cuites trop longtemps finissent par se refluidifier.


jeudi 30 juin 2022

L'épaississement de la farine chauffée dans l'eau

 L'épaississement de la farine chauffée dans l'eau ? Dans nombre de préparations culinaires telles que velouté, sauce pâtissière, etc., on chauffe de la farine dans de l'eau, et l'on obtient un épaississement, en même temps qu'une opacification. Pouquoi ?
La farine, comme les fécules, est principalement composée de grains d'amidon : de petits grains qui paraissent blancs, mais sont en réalité transparents, la blancheur résultant de réflexion de la lumière généralement blanche à leur surface.
Ces grains sont des couches concentriques, tels des cernes arbres, et chaque couche est composée de molécules de deux types : des molécules d'amylose, et des molécules d'amylopectine. Toutes sont des "polymères", à savoir des enchainements de motifs élémentaires, et, plus précisément, ce sont des "polysaccharides" : les motifs élémentaires sont des résidus de sucres, et principalement des résidus de glucose. La différence essentielle entre les molécules d'amylose (il y en a plusieurs sortes, mais elles sont très semblables) et les molécules d'amylopectine (il y en a également diverses sortes), c'est que les molécules d'amylose sont linéaires, comme des chaînes, tandis que les molécules d'amylopectine sont ramifiées, comme des arbres.
Quand un grain d'amidon se trouve dans l'eau chaude, le mouvement d'agitation des molécules d'eau permet de venir déloger les molécules d'amylose de la surface du grain  : ces molécules d'amylose "fuient" vers la solution, tandis que des molécules d'eau s'infiltrent entre les molécules d'amylopectine, et se lient d'ailleurs à elles. Cette entrée de l'eau fait gonfler le grain, et les forces (on parle de "liaisons hydrogène") entre les molécules d'eau et les molécules d'amylopectine maintiennent le grain gonflé... un certain temps : quand on chauffe trop longtemps, la structure gonflée se défait, surtout quand on agite la solution (mixeur). Et c'est ainsi que les sauce épaissie qui sont cuites trop longtemps finissent par se refluidifier.


jeudi 20 août 2020

Pas d'équation pour l'empesage de l'amidon



On m'interroge à propos de l'empesage de l'amidon, et l'on me demande quelle en est l' "équation chimique". La réponse est : puisqu'il n'y a pas de modifications moléculaire, il n'y a pas de modification chimique ; les produits sont identiques aux réactifs.
Expliquons

Considérons une pâte, telle une pâte à pain ou une pâte à tarte. Il y a principalement : des "polysaccharides", des protéines, de la matière grasse, de l'eau.

Les polysaccharides sont initialement dans des granules d'amidon, avec des couches concentriques faites de deux sortes de composés :
- des amyloses : polymères linéaires du glucose
- des amylopectines : polymères ramifiés du glucose
Ici, je ne stipule pas la forme du glucose, ni plein d'autres caractéristiques, parce que cela ne sera pas utile pour la discussion, mais si l'on voulait aller plus loin, on le pourrait largement.
Puis il y a des protéines, notamment ce que l'on nomme le "gluten", mais également bien d'autres sortes. Les protéines, on le sait, sont des polymères dont les monomères sont des résidus d'acides aminés. Et ces protéines ont pour nom gliadines, ou gluténines, par exemple.
La "matière grasse" : en réalité, on utilise souvent du beurre, lequel apporte jusqu'à 18 % d'eau, plus des protéines et d'autres composés (tel ce sucre élémentaire qu'est le lactose), et, enfin et surtout, des "triglycérides", composés faits d'un résidu de glycérol (un "manche de peigne") et de trois résidus d'acides gras. Il y a environ 400 sortes de résidus d'acides gras, d'où un très grand nombre de combinaisons, pour engendrer une foule de triglycérides différents, tous mêlés.

Quand on chauffe, que se passe-t-il ?

Initialement, les granules d'amidons sont secs, mais quand l'amidon est chauffé en présence d'eau, l'amylose s'en échappe, se dissolvant dans l'eau, tandis que les molécules d'eau s'insèrent entre les molécules d'amylopectines et font gonfler les granules d'amidon. Il est souvent dit que des températures supérieures à 80 °C sont nécessaires pour cela.

Pour les triglycérides, ces molécules sont assez résistances. Certes, elles s'oxydent dans les huiles chauffées, mais -dans les conditions culinaire- cela ne change guère le comportement physique des graisses.

L'eau ? Elle s'évapore en partie, d'autant plus que la cuisson est plus longue. Son évaporation se fait à toute température (même à la température ambiante), mais l'ébullition a lieu à 100 °C dans les conditions habituelles de pression (niveau de la mer), plus bas quand on va en altitude. Surtout, sa présence limite la température des pâtes cuites : dans les conditions de pression où la température d'ébullition de l'eau est de 72 °C, la température des pâtes ne dépasse pas 72 °C.

Les protéines : il y a en a plusieurs sortes, qui peuvent ou non coaguler selon leur composition moléculaire. Dans le lait, par exemple, certaines coagulent (la "peau"), et d'autres (les caséines) non, en tout cas quand on chauffe.

L'eau ? C'est de l'eau, qu'elle soit ou non chauffée.


La chimie de l'affaire ?

Pour les polymères, il peut y avoir des "hydrolyses", et il y en a d'ailleurs, comme on s'en aperçoit en utilisant de la liqueur de Fehling (bleue) ajoutée à de l'eau de cuisson des nouilles : après une longue cuisson, le changement de couleur, du bleu au rouge, indique l'apparition de glucose libre. Pour les protéines, aussi, il peut y avoir des hydrolyses, mais il faut savoir que l'attaque des protéines par des acides très vigoureux prend des journées. Et les chimistes ont un ordre de grandeur en tête : chaque diminution de 10 °C correspond à un doublement du temps de réaction.


Mais finalement, 72 °C ?

Evidemment la question a été étudiée, comme on s'en aperçoit en quelques clics sur Google Scholar, avec les bons mots clés. Et, par exemple, dans Olkku (1978), on lit que la température initiale de gélatinisation d'amidon de blé est de 58 °C, avec une fin de transition à 64 °C. L'hydrolyse, elle, est décrite par Goni et al. (1997), par exemple.
L'oxydation des lipides ? Elle est rapide à haute température, mais elle a lieu même à la température ambiante, quand il y a de la lumière : c'est le rancissement, qui dépend des conditions, et s'accroît notamment en présence de fer.
Bref, il faut y regarder de plus près.


Goni I, Garcia-Alonso A, Saura-Calixto F. 1997. A starch hydrolysis procedure to estimate glycemic index, Nutrition Research, 17(3), 427-437.

Olkku H. 1978. Gelatinisation of starch and wheat flour starch-a review, Fd. Chem. (3), 293-317.

samedi 2 novembre 2019

Comment rater des crêpes

Crêpes ? Galettes ? Les Bretons font bien la différence, à savoir que les crêpes sont de froment, avec du lait et de l’œuf, tandis que les galettes sont de blé noir, avec de l'eau et du lait, sans œuf.
On a supposé que ces préparations étaient nées de la cuisson prolongée de farine et d'eau, comme quand on fait une bouillie. L'évaporation aurait laissé une mince couche qui se tenait : la crêpe était née.
Puis, bien sûr, il y eut des ajouts, tel l’œuf, qui fait tenir parce que ses protéines coagulent, mais donne aussi du goût. Mais c'était déjà une préparation de  riche. Puis, dans certaines régions, il y eut la bière, qui apportait du moelleux ; ou du blanc d’œuf battu en neige, pour augmenter le volume et changer la consistance. Bref, mille crêpes différentes sont nées.

Ce qui reste, c'est que la crêpe est une mince couche, avec de l'amidon empesé dans un liquide (eau, lait, bière), et, parfois, de l’œuf qui donne de la consistance à l'ensemble.

Rater une crêpe ? Il y a les crêpes qui cassent quand on les tourne, ou encore les crêpes qui brûlent par endroits et restent  insuffisamment cuite ailleurs... Pour les crêpes qui cassent, c'est que leur tenue n'est pas suffisante, évidemment, ou, autrement dit, que leur tenue n'est pas suffisante par rapport à leur poids. Ainsi, quand l'instrument de cuisson n'est pas parfaitement plat, il peut y avoir un centre épais et des bords trop minces, ou un centre trop mince et des bords épais. Dans le premier cas, les bords seront brûlés quand le centre restera insuffisamment cuits, et la crêpe cassera quand on voudra la retourner. Dans le second cas, le centre ne tiendra pas la couronne épaisse autour, à moins que celle ci ne se soutienne seule... mais comme on aura retourné pour éviter que le centre ne soit brûlé, il y a fort à parier que la crêpe ne se tiendra pas.
Cela étant, la maîtrise du feu s'impose même quand l'ustensile est plat, parce que... Avez vous observé que les crêpes ne sont pas identiques sur les deux faces, quand elles sont un peu épaisses? En effet, la première face est est très liquide, et il y a évaporation de l'eau, tandis que l'amidon s'empèse, que l’œuf coagule éventuellement. Puis vient un moment où la coagulation est faite dans toute la masse, et la crêpe commence à gonfler par endroits, malgré des cheminées. Si l'on retourne, alors la face qui arrive contre l'outil de cuisson est déjà cuite, de sorte que cette fois, l'eau sous la forme de vapeur ne peut plus s'échapper, et c'est là que de grosses cloques se fond, avec la crèpe qui n'est plus au contact de l'ustensile, par endroits, alors qu'elle y reste ailleurs... et brunit parfois trop fort. Là, ce serait bon de pouvoir réduire le feu, n'est-ce pas ?

Bref, bien des façons de rater une crêpe. Les réussir ? Avec des crêpes très minces, bien des écueils précédents disparaîtront, parce que la vapeur d'eau peut s'échapper mieux !


dimanche 16 septembre 2018

Le séchage du pain au chocolat

Une question d'il y a quelques jours :

Je me permets de vous contacter pour une question relative au pain au chocolat : il m'arrive de ne pas manger immédiatement un pain au chocolat que j'ai acheté, de sorte que je le laisse dans le sachet de la boulangerie sans prendre de précaution particulière, et, le lendemain, il a forcement perdu de l'humidité. 
Lorsque j'imagine un pain au chocolat qui reste sur une table, je pense en générale que la table va protéger le pain au chocolat sur le dessous et que le reste va être plus dur.
Quand je trempe alors le pain au chocolat dans du lait, je remarque que les bords sont bien plus difficile à rendre humide que le reste. Pourquoi mon pain au chocolat n'est-il pas séché uniformément ?
Ce n'est jamais par le dessus qu'il sèche. Il est bien plus sec aux extrémités, alors que les bords du pain au chocolat ne touchent pas forcément le papier du sachet qui, par capillarité, pourrait absorber l'humidité du pain au chocolat. J'ai déjà remarqué le même phénomène lorsque le sachet de mon pain au chocolat était bien ouvert ou même sans protection ou durant la nuit.
Je n'ai pas essayé de mettre mon pain au chocolat en position verticale la nuit pour voir si cela change quelque :)
Que se passe-t-il au niveau moléculaire ? Les liaisons hydrogène  avec les molécules d'eau les pousseraient-elles à fuir l'évaporation et à se concentrer au centre ?
Je remarque aussi que les miettes dans le lait se regroupent au centre du bol de lait lorsque je le pose dans l’évier sans finir de le boire,  et cela aussi m'intrigue. Le phénomène est plus visible avec des miette de cookies ! :)
Je vous remercie pour votre attention, en espérant ne pas vous avoir dérangé avec mes questionnements un peu farfelus. Cordialement.





C'est un gros morceau, et il y a en réalité plusieurs questions. Tout d'abord, le "séchage" des produits panifiés n'est pas toujours une simple perte d'eau : le "rassissement" inclut la perte d'eau, mais pas seulement, comme nous allons le voir.
Partons d'eau et de farine, ce qui est commun à tous ces produits ; la cuisson produit un "empesage",  à savoir que, notamment, les grains d'amidon de la farine absorbent l'eau, gonflent et se soudent en formant un "gel" nommé empois. Ce gel, c'est la mie, souple et translucide.
Quand les produits sont stockés, la mie perd certainement de l'eau, ce qui correspond à un séchage. Mais il y a pire, à savoir une "rétrogradation de l'amidon".
Pour comprendre de quoi il s'agit, il faut savoir que les grains d'amidon de la farine sont composés de molécules de deux sortes : des molécules d'amylose et des molécules d'amylopectine. Les premières sont comme de minuscules fils, et les secondes comme de minuscules arbres. Lors de la cuisson, des molécules d'amylose peuvent migrer hors des grains, et elles vont alors flotter dans l'eau ; mais, au cours du stockage, ces molécules migrent et se réassocient en zones "cristallines", sans eau. Cette réassociation correspond à une mie plus "rigide", plus dure. L'eau est présente, mais pas organisée comme il le faudrait... et c'est ainsi que ce rassissement-là peut être combattu par un réchauffage, qui resolubilise les molécules d'amylose.
Pour les molécules, peu importe donc la position, le contact avec le papier ou avec la table !

A propos du trempage, je manque d'informations pour interpréter, mais il est clair que la perte réelle d'eau est plus nette sur les bords qu'au centre. Et là, ce n'est pas une rétrogradation qui est en cause, mais bien le séchage, semble-t-il.
Enfin, il y a les miettes qui se regroupent dans le bol, et là, il faudrait faire des études plus poussée, mais je peux quand même signaler que si des miettes grasses incurvent la surface de l'eau sous elle, elles en abaissent le niveau, de sorte que des miettes voisines peuvent glisser vers le bas, et se réunir.