mercredi 7 février 2018

Métiers de bouche ? Non, métiers du goût

Mes amis cuisiniers sont dans leur monde, mais je crois que nous ne perdons rien (litote) à connaître celui-ci.

Par exemple, dans les cercles culinaires, il est de la dernière grossièreté de mettre le pain à l'envers... parce que, disent-nos amis, ce n'est pas respecter le travail du boulanger. Pourquoi pas : cela ne coûte guère de mettre le main debout, comme il a été cuit.
# Par exemple, pour beaucoup de cuisiniers, le mot "cuistot" est du dernier péjoratif. Qu'à cela ne tienne : nous éviterons de l'utiliser, et nous gagnerons en beauté de langue, même si nous ne voyons pas l'offense.

 Cette introduction pour arriver à l'expression "métiers de bouche", qui est bien utilisée officiellement : on le trouve notamment sur le portail de l'Économie, des Finances, de l'Action et des Comptes publics. C'est dire.
Eh bien, malgré cela, des amis cuisiniers trouvent que la dénomination est scandaleuse, et ils auraient voulu "métiers de la gastronomie"... ignorant que la gastronomie n'est pas de la cuisine élevée, mais la connaissance raisonnée de tout ce qui se rapporte à l'être humain en tant qu'il se nourrit. Désolé, mais ce n'est donc pas une proposition recevable.

Que faire pour les consoler ? J'ai proposé d'utiliser plutôt "métiers du goût", qu'il s'agisse d'ailleurs de technique, de technologie ou d'art. Apparemment, mes amis y trouvent leur compte... et je vais donc rester à cette dénomination.







Vient de paraître aux Editions de la Nuée Bleue : Le terroir à toutes les sauces (un traité de la jovialité sous forme de roman, agrémenté de recettes de cuisine et de réflexions sur ce bonheur que nous construit la cuisine)

Mousses au chocolat

Une question d'un correspondant, ce matin :

Quelle différence que peuvent avoir le beurre de cacao et la matière grasse butyrique de la crème sur la stabilisation d une mousse au chocolat?


Hélas mon correspondant fait des mousses au chocolat, et non pas des chocolats chantilly (https://www.agroparistech.fr/Le-chocolat-chantilly.html)... mais la réponse vaut pour les deux.

Partons d'une  mousse au chocolat. C'est une matrice de chocolat fondu, additionné de beurre et de jaune d'oeuf, où l'on a ajouté cette mousse  qu'est un blanc d'oeuf battu en neige.
Lors du refroidissement, le chocolat et le beurre recristallisent, ce qui fige l'ensemble... si la température est assez faible.
Dans mon livre "Mon histoire de cuisine" (Belin, Paris, 2014), je donne les domaines de stabilités de la matière grasse du chocolat (il fond entre 34 et 37 degrés) et de  la matière grasse du beurre (la fusion commence à -10 degrés et finit vers 55 degrés.
Autrement dit, le chocolat stabilise mieux la mousse... mais attention aux temps chauds  !






Ce matin, une question :


"Je vous écris au sujet d’une question concernant une émulsion H/E  (huile dans l’eau) dont la phase continue est partiellement sucrée.

Dans le cas d’une préparation contenant 70% d’huile, 30% d’eau, 10% de saccharose, et d’un tensioactif  est-ce que le l’huile va s’émulsionner avec les 30% d’eau ou  avec 20% à 25% d’eau  puisque le saccharose est reconnu pour retenir une partie de l’eau (retenir je ne sais pas si c’est le meilleur terme pour traduire le côté hygroscopique du saccharose)".

Ma réponse n'est au fond qu'une sorte de légende du schéma suivant :



Ce que j'ai d'abord représenté, c'est une émulsion de type huile (en jaune) dans eau (en bleu). En  pratique, faisons un "geoffroy", en fouettant de l'huile dans du blanc d'oeuf, par exemple : les protéines et les autres molécules sont  trop petites pour être représentées à cette échelle, où la taille des gouttes d'huile est entre 0,001 et 0,1 millimètres. 
Le schéma inférieur représente un fort grossissement du petit cercle : 
- le fond est noir, parce que, entre les molécules, il n'y a rien, du vide
- à gauche, les peignes à trois dents sont les molécules de triglycérides ; pour mieux faire, j'aurais dû les orienter dans toutes les directions, mais c'est un détail
- à droite, on voit les molécules de saccharose (en bleu) dispersées au milieu des molécules d'eau (une boule rouge avec deux boules blanches)
- je n'ai pas réprésenté les molécules de tensioactifs, mais elles seraient sur le trait jaune, sous la forme de "cheveux" (pour les protéines).

Reste à commenter  le : "le saccharose est reconnu pour retenir une partie de l'eau".  Cette phrase est à la fois discutable et peu claire.
Le "est reconnu" invite à demander  : par qui ? Et à rappeler que, en sciences, l'argument d'autorité ne joue pas. Les faits expérimentaux ont toujours raison.
D'autre part, le saccharose "retient" l'eau : que cela signifie-t-il ?
Ce qui est un fait, c'est que les molécules de saccharose sont "hérissées" (ce n'est pas représenté sur mon schéma) de groupes "hydroxyle", avec les atomes carbone du squelette liés à un atome d'oxygène lui-même lié à un atome d'hydrogène. Cela  donne au  saccharose une structure chimique très semblable à celle des molécules d'eau, au moins pour ce qui concerne les interactions avec les molécules voisines.
De ce fait, quand le sucre est dans l'air humide, il s'entoure de molécules d'eau de l'atmosphère, parce que les forces sont donc notables entre les molécules de saccharose et les molécules d'eau.
Dans de l'eau  liquide, les forces (nommées "liaisons hydrogène") permettent la solubilisation du sucre dans l'eau, à des concentrations considérables.
Finalement, on pourrait tout aussi bien dire que l'eau "retient" le sucre, ou que le sucre "retient" l'eau, mais je crois que le  mot "retient" est mal choisi. Il suffit de dire qu'il y a des liaisons entre les molécules de sucre et les molécules d'eau.

Et, finalement, je reviens à l'expérience : si vous faites un geoffroy, en fouettant de l'huile dans du blanc d'oeuf, vous pouvez ajouter autant de sucre que vous voulez jusqu'à atteindre la limite de solubilité dans la petite quantité d'eau (30 grammes pour un blanc environ) du blanc. Si l'on compte un litre de sucre par kilogramme d'eau, on voit qu'on peut facilement mettre 30 grammes de sucre pour un blanc émulsionné (soit un volume d'huile maximal de 600 grammes d'huile environ). Si l'on ajoute plus  de sucre, ce dernier restera sous la forme de cristaux non dissous. 







Vient de paraître aux Editions de la Nuée Bleue : Le terroir à toutes les sauces (un traité de la jovialité sous forme de roman, agrémenté de recettes de cuisine et de réflexions sur ce bonheur que nous construit la cuisine)

mardi 6 février 2018

Mes inventions mensuelles

Je m'y perdais avec mes inventions données chaque mois (depuis 17 ans) à mon ami Pierre Gagnaire.

J'ai donc récapitulé ici celles qui ont des noms de chimistes (plus quelques unes qui sont souvent confondues) :



avogadro : royale dont on change le liquide
baumés : œuf stocké dans un alcool
berzélius : crème anglaise où l'on remplace le jaune d'oeuf par des protéines
chantillys : généralisation de la crème fouettée
braconnot : confiture à froid ou tomate mixée
cailletets : glace à l'azote liquide
caventous : vert de légume vertueux
chaptals : mousse de blanc d'oeuf foisonnée à l'extrême
chevreul : avec contraste simultané des goûts
cristaux de vent : chaptal cuit en meringue
debye : suspensions de microgels (dans O ou W)
degennes : perles d'alginate à coeur liquide
descartes : garniture de grosse pièce composée de cailles aux truffes à la sauce allemande, et servie dans des croustades
dirac : steak de protéines
faraday : ((G+S1+H) / E) / S2
ficks : petites boules de liquide dans une pâte à nouilles
fischers : gel d'un liquide additionné de caséines
florys : spaghetti gélifiés en tuyau
gauss : généralisation des millefeuilles
gay lussac : velouté foisonné
geoffroy : émulsion de blanc d'oeuf
gerhardts : systèmes feuilletés généralisant les pâtes feuilletées
gibbs : émulsion gélifiée chimiquement
grahams : des gibbs séchés
kesselmeyer : farine, eau, matière grasse, travailler, levure, travailler, fermentation, cuisson à la vapeur comme un Dampfnudeln
laplace : comme une omelette souflée, mais eau et protéines
lavoisier : royales extrèmes
lechatelier : végétal artificiel fait d'un matériau gélifié divisé, puis solidarisé avec un gélifiant
liebig : émulsion gélifiée physiquement
maillards : demi glaces de légumes
mendeleiv : infusions généralisées (huile, alcool…)
nollet : salade artificielle
onnes : flocons givrés
paré : émulsion dans une chair broyée
parmentier : avec farine sans gluten plus gluten de blé
pasteur : avec acide tartrique
peligot : caramels de glucose, fructose, etc
poiseuilles : les fibrés
pravaz : avec intrasauce
priestley : crème anglaise de viande ou poisson
quesnay : gougères ou choux dont l'oeuf a été remplacé par des protéines
thenard : coction à l'alcool
vauquelin : appareil de cristal de vent (chaptal) cruit aux micro-ondes
wöhler : sauce aux polyphénols
würtz : eau gélatine foisonnée

Une émulsion sucrée

Ce matin, une question :


"Je vous écris au sujet d’une question concernant une émulsion H/E  (huile dans l’eau) dont la phase continue est partiellement sucrée.

Dans le cas d’une préparation contenant 70% d’huile, 30% d’eau, 10% de saccharose, et d’un tensioactif  est-ce que le l’huile va s’émulsionner avec les 30% d’eau ou  avec 20% à 25% d’eau  puisque le saccharose est reconnu pour retenir une partie de l’eau (retenir je ne sais pas si c’est le meilleur terme pour traduire le côté hygroscopique du saccharose)".

Ma réponse n'est au fond qu'une sorte de légende du schéma suivant :



Ce que j'ai d'abord représenté, c'est une émulsion de type huile (en jaune) dans eau (en bleu). En  pratique, faisons un "geoffroy", en fouettant de l'huile dans du blanc d'oeuf, par exemple : les protéines et les autres molécules sont  trop petites pour être représentées à cette échelle, où la taille des gouttes d'huile est entre 0,001 et 0,1 millimètres. 
Le schéma inférieur représente un fort grossissement du petit cercle : 
- le fond est noir, parce que, entre les molécules, il n'y a rien, du vide
- à gauche, les peignes à trois dents sont les molécules de triglycérides ; pour mieux faire, j'aurais dû les orienter dans toutes les directions, mais c'est un détail
- à droite, on voit les molécules de saccharose (en bleu) dispersées au milieu des molécules d'eau (une boule rouge avec deux boules blanches)
- je n'ai pas réprésenté les molécules de tensioactifs, mais elles seraient sur le trait jaune, sous la forme de "cheveux" (pour les protéines).

Reste à commenter  le : "le saccharose est reconnu pour retenir une partie de l'eau".  Cette phrase est à la fois discutable et peu claire.
Le "est reconnu" invite à demander  : par qui ? Et à rappeler que, en sciences, l'argument d'autorité ne joue pas. Les faits expérimentaux ont toujours raison.
D'autre part, le saccharose "retient" l'eau : que cela signifie-t-il ?
Ce qui est un fait, c'est que les molécules de saccharose sont "hérissées" (ce n'est pas représenté sur mon schéma) de groupes "hydroxyle", avec les atomes carbone du squelette liés à un atome d'oxygène lui-même lié à un atome d'hydrogène. Cela  donne au  saccharose une structure chimique très semblable à celle des molécules d'eau, au moins pour ce qui concerne les interactions avec les molécules voisines.
De ce fait, quand le sucre est dans l'air humide, il s'entoure de molécules d'eau de l'atmosphère, parce que les forces sont donc notables entre les molécules de saccharose et les molécules d'eau.
Dans de l'eau  liquide, les forces (nommées "liaisons hydrogène") permettent la solubilisation du sucre dans l'eau, à des concentrations considérables.
Finalement, on pourrait tout aussi bien dire que l'eau "retient" le sucre, ou que le sucre "retient" l'eau, mais je crois que le  mot "retient" est mal choisi. Il suffit de dire qu'il y a des liaisons entre les molécules de sucre et les molécules d'eau.

Et, finalement, je reviens à l'expérience : si vous faites un geoffroy, en fouettant de l'huile dans du blanc d'oeuf, vous pouvez ajouter autant de sucre que vous voulez jusqu'à atteindre la limite de solubilité dans la petite quantité d'eau (30 grammes pour un blanc environ) du blanc. Si l'on compte un litre de sucre par kilogramme d'eau, on voit qu'on peut facilement mettre 30 grammes de sucre pour un blanc émulsionné (soit un volume d'huile maximal de 600 grammes d'huile environ). Si l'on ajoute plus  de sucre, ce dernier restera sous la forme de cristaux non dissous. 







Vient de paraître aux Editions de la Nuée Bleue : Le terroir à toutes les sauces (un traité de la jovialité sous forme de roman, agrémenté de recettes de cuisine et de réflexions sur ce bonheur que nous construit la cuisine)

lundi 5 février 2018

A propos des Hautes Etudes de la Gastronomie

Les Hautes Etudes de la Gastronomie ? Un programme de formation au plus haut niveau, porté par une collaboration de l'Université de Reims-Champagne Ardennes et par l'Ecole du Cordon bleu.
L'idée ? Réunir les meilleurs intellectuels du champ de la gastronomie, toutes disciplines, pour arriver à une formation sanctionnée par un Diplôme Universitaire.

Je vous invite évidemment à visiter le site... mais en attendant, voici un témoignage reçu ce matin :




"It's been a while since I attended the Hautes Etudes du Gout program, but even now, when writing this, I still feel the thrill of it. And being the first in my country to take part in the HEG only intensified the excitement.

Therefore, I must confess I came to the HEG with high expectations - that's why I chose to do it, after all. However, to my surprise, even from the beginning, my expectations were exceeded, and as the days went by, I found myself immersed in an incredible universe of discovery and exploration, of knowing more and becoming more. The richness and complexity of the lectures, the overwhelming expertise of the lecturers, their willingness to openly share with us their vast research, their impressive discoveries, their fascinating work, turned every class into a real indulgence. What is more, the invaluable experiences like workshops, visits, demonstrations, and the memorable educational meals only added up to the learning process, turning it into a unique adventure. One filled with great lessons and lifelong memories.

Was it easy?  Of course not. In fact, I believe the most frequent word I heard during the HEG was "intense." We all wanted to soak up every bit of information - and indeed, we had so much to process over the two weeks. Learnings and topics that sparkled long talks after the classes, meaningful conversations, enriching debates with the colleagues - they all contributed to enhancing the atmosphere and creating the right space for thriving.

Because another significant aspect of the HEG is its multicultural, diverse environment, with like-minded, passionate people having different backgrounds and coming from all over the world. This led not only to great joy but also to beautiful friendships with amazing people, both as persons and as professionals. Having the opportunity to meet each and every one of them, and share this experience together, inspired me so much.

I attended the HEG to learn about gastronomy at the highest level. But in the end, I came back home learning so much more than this: learning about life, people and about myself. And now, as I'm working on my HEG thesis, I recall two words that Mr. Herve This wrote on a book he kindly agreed to sign for me - two words still gravitating in my mind to this day, like a mantra: "Celebrate knowledge!". HEG will keep feeding your hunger for knowledge months after the program ends because attending the HEG is indeed like going to a sumptuous banquet of knowledge."

Mélange de matières grasses

Les huiles alimentaires sont-elles toujours miscibles ? 

La question culinaire simple est en réalité d'une belle complexité physico-chimique, parce que l'idée classique d'énergie est battue en brèche... et que nous verrons que le problème est résolu d'emblée (autrement dit, tout ce que je vais expliquer pour commencer est parfaitement inutile en vue de répondre à la question posée ; désolé).

Au départ, il y a la question de la miscibilité. Pourquoi du vin se mélange-t-il à de l'eau, mais pas de l'huile ? La question est difficile, et elle n'a été élucidée qu'il y a une dizaine d'années.

Commençons par une idée simple : une bille en haut d'une montagne roule vers le bas. Pour expliquer ce fait d'expérience, les physiciens ont introduit une notion, l'énergie potentielle", et établi une "loi de la nature", à savoir que les systèmes évoluent vers les états où l'énergie potentielle est inférieure. Dit ainsi, on ne semble pas avoir gagné grand chose, à part rendre abstrait ce qui était concret... mais ce sentiment n'est pas juste : il résulte du fait que la vulgarisation scientifique veut donner les résultats avec des mots, de sorte qu'il n'est pas étonnant que les mots ressemblent  aux mots. En réalité, derrière l'idée de l'énergie potentielle, il y a des quantités, des équations dont je vous prive (oui, je dis bien : je vous en prive, parce que la beauté des équations est merveilleuse).

Pour les atomes, c'est un peu pareil que pour les billes et les montagnes : de même, les atomes s'associent en molécules quand il y a des possibilités de liaison chimique sont satisfaites, et les physico-chimiste ont introduit une sorte d'énergie potentielle chimique, ce que l'on  nomme aussi des forces de liaisons chimiques. Les liaisons les plus faibles sont nommées liaisons de van der Waals, et il y en a entre les molécules de l'huile (ce que l'on nomme des triglycérides, mais j'y reviendrai) ; puis il y a des "liaisons hydrogène", par exemple entre les molécules d'eau, plus fortes que les précédentes ; et puis, beaucoup plus fortes, les "liaisons covalentes", c'est-à-dire les liaisons qui lient les atomes entre eux pour former des molécules, au lieu simplement de faire coller les molécules entre elles, comme dans les liquides ; enfin les forces électrostatiques, pour les atomes ou molécules chargés électriquement, ce qui assure la solidité des cristaux de sel, par exemple.

Cette première description permet d'expliquer certains phénomènes : par exemple, s'il n'y avait pas de liaisons hydrogène entre les molécules d'eau, qui sont de petites molécules, l'eau s'évaporerait quasi instantanément. Les liaisons hydrogène sont comme une sorte de glu, entre les molécules d'eau.
De même, pour les molécules d'huile, les liaisons de van der Waals sont une colle, bien plus faible... mais l'huile ne s'évapore guère, parce que les triglycérides sont de très grosses molécules, bien plus lentes (à température ambiante) que les molécules d'eau.
Examinons maintenant la constitution de ces molécules. Pour l'eau, c'est simple : chaque molécule d'eau est faite d'un atome d'oxygène lié à des atomes d'hydrogène, en une structure en forme de V. A la température ambiante, la vitesse moyenne des molécules d'eau est de 650 mètres par seconde.
Pour les molécules de triglycérides, la structure des molécules est plus compliquée : il faut imaginer une sorte de peigne avec des dents souples. Le manche est fait de trois atomes de carbone enchaînés linéairement, et chaque atome de carbone est lié par un atome d'oxygème à une longue chaîne d'atomes de carbone qui sont eux mêmes liés à un, deux ou trois atomes d'hydrogène. J'omets volontairement des détails, pour signaler seulement que de telles molécules ont un nombre d'atomes de carbone total de l'ordre de 20 à 100, avec un peu plus d'atomes d'hydrogène, et six atomes d'oxygène. Bref, une telle molécule est bien plus grosse qu'une molécule d'eau, et bien plus lente, aussi : la vitesse moyenne est seulement de 90 mètres par seconde.
En quoi cela fait-il une différence ? Imaginons que nous avancions assez lentement, en ligne droite, et que nous passions près d'un ami, que nous cherchons à attraper seulement en fermant les doigts. Si notre énergie de vitesse est faible, alors nous pourrons en entraîner notre ami avec nous ; en revanche, si nous allons très vite, nous ne parviendrons pas à l'entraîner. De même, des molécules lentes sont très sensibles aux liaisons possibles, même quand elles sont faibles, comme dans l'huile. Et comme les molécules de triglycérides peuvent donc s'attacher les unes aux autres, elles ne s'évaporent pas, sauf à atteindre environ 300 à 400 degrés.

Avec cela, nous en savons assez pour revenir à la question initiale, sur la miscibilité. Considérons de l'eau, et imaginons que nous voulions y mettre une molécule de triglycéride. Quand la molécule de triglycéride arrive dans l'eau, elle établit des liaisons de van der Waals avec les molécules d'eau... ce qui nous conduirait à penser que l'huile peut se dissoudre dans l'eau... Mais cela est réfuté par les faits !

Pourquoi l'huile ne se dissout-elle alors pas dans l'eau ? Parce que, quand la molécule de triglycéride est introduite dans l'eau, elle oblige les molécules d'eau à se disposer autour d'elle d'une façon spécifique, déterminée par la structure moléculaire du triglycéride. Or c'est une découverte essentielle de la physique du 19e siècle que d'avoir compris que le monde évolue spontanément vers le désordre, pas vers l'ordre. Une molécule de triglycéride qui ordonnerait des molécules d'eau ferait évoluer le monde vers un état plus ordonné... ce qui "coûterait" de l'"énergie de désordre"... de sorte que cela n'arrive pas, en pratique.
Bref, si l'huile ne se dissout pas dans l'eau, c'est une question d'"énergie de désordre". Et nous avons maintenant les deux idées indispensables pour savoir si les huiles sont miscibles entre elles...

 A cela près que tout ce que je viens d'expliquer est inutile, comme je l'avais annoncé initialement. Nous aurions dû commencer par analyser que chaque huile est déjà un mélange d'un nombre parfois très grand de triglycérides différents. Et si on mélange deux mélanges, qui sont des mélanges de triglycérides distincts seulement par la proportion des divers triglycérides, pourquoi ne se mélangeraient-ils pas, alors qu'ils sont les mêmes constituants ?




Vient de paraître aux Editions de la Nuée Bleue : Le terroir à toutes les sauces (un traité de la jovialité sous forme de roman, agrémenté de recettes de cuisine et de réflexions sur ce bonheur que nous construit la cuisine)

dimanche 4 février 2018

Huiles et graisses

On entend mille choses, à propos des graisses  : 

- l'huile, ce serait mieux que le beurre ou la crème "pour la santé"

- les graisses végétales, ce serait mal (ou bien) dans le chocolat

- les matières grasses hydrogénées, ce serait très  mauvais

- et ainsi de suite. 

Je déplore que beaucoup de mes interlocuteurs qui font ainsi des déclarations à l'emporte pièce ne savent pas de quoi ils parlent, d'un point de vue physico-chimique. Manifestement, quelques données de base sont nécessaires pour se faire une idée. 


Commençons non pas par la chimie, ni par la physique, mais par la nutrition. Ce sera vite fait : je n'y connais rien, de sorte que je ne suis pas habilité à en parler ! 


Alors passons à la politique : on nous dit qu'on peut mettre des graisses végétales dans le chocolat, afin de régulariser les cours du cacao.
Pourquoi pas, mais le chocolat doit d'abord être et rester du chocolat, donc une matière dans la composition de laquelle ne viennent  pas d'autres corps gras que le beurre de cacao.
C'est là une question de loyauté. Et j'ai déjà déploré dans des billets cette possibilité donnée aux fabricants d'ajouter de la matière grasse végétale (quelle qu'elle soit)  en petite quantité au beurre de cacao.
Plus exactement, alors que le produit ainsi obtenu ne diffère probablement pas du chocolat (le mot que je conserve pour désigner le produit sans ajout de matières grasses autres que du beurre de cacao), je propose qu'on ait deux noms différents pour désigner les produits différents, sous peine de tromperie. Ce n'est pas la règle qui a été retenue,  mais il n'est pas impossible de changer la règle actuelle, en vue d'une plus grande loyauté. 

A propos d'huile de palme, aussi, il y a des débats : la question semble être politique, mais là, je n'y connais rien, et c'est en dehors de mon champ scientifique, de sorte que je ne dois  rien en dire. Et que je n'en dis rien.



La toxicologie, maintenant ? Il y a la question des matières grasses, et de leurs impuretés... Là, des explications de chimie sont nécessaires. Nous considérerons d'abord une huile, puis une matière plus complexe. 

Les huiles sont des matières, parfois jaunes, qui sont liquides à la température ambiante. Si l'on avait un microscope très puissant, on la verrait faite d'objets qui bougent en tous sens : des molécules. Ces molécules ont une construction particulière : elles sont comme des peignes à trois dents, et, mieux, avec trois dents souples, au point qu'elles peuvent  se mettre dans toutes les directions autour du manche. Les molécules de l'huile sont nommées "triglycérides", parce que le "manche", s'il était isolé, serait un composé nommé glycérol (le nom que les chimistes donnent à la "glycérine"), et qu'il y a trois dents. 

Et les acides gras, me direz-vous ? Si l'on ne dit pas n'importe quoi, il n'y en a pas dans l'huile. Oui, j'insiste : lorsque des "dents" isolées, qui sont alors des acides gras, réagissent avec un manche isolé, qui est donc du glycérol, pour former des triglycérides, des atomes sont échangés, perdus, etc., de sorte que le glycérol n'est plus du glycérol, et les acides gras ne sont plus  des acides gras. Finalement l'huile est faite, donc, de molécules de triglycérides. 

Et il y a beaucoup de sortes de molécules de triglycérides, parce qu'il y a de nombreuses sortes de "dents". Plus exactement, pour du lait, où de la matière grasse (qui fait ensuite le beurre) est dispersée dans l'eau, sous la forme de gouttelettes microscopiques, il y a 400 sortes de dents.
De sorte que le nombre de différents triglycérides est considérable. Partons en effet d'une molécule de glycérol, et faisons la réagir avec un acide gras : il y a 400 possibilités. Puis faisons réagir l'ensemble avec un autre acide gras : pour chacun des 400 résultats initiaux, il y a 400 possibilités, soit au total 400 fois 400, soit 160 000 possibilités. Et avec le troisièmc acide gras, cela fait donc des millions de molécules différentes. 

Pourquoi cela est-il intéressant ? Parce que les divers  acides gras déterminent le comportement physique des matières grasses. En gros, à une température fixe (par exemple la température ambiante), les grosses molécules bougent plus lentement que les petites.
Or quand les molécules ne peuvent pas bouger, elles restent sur place et forment un solide. De ce fait, les divers triglycérides, s'ils étaient purs, auraient des températures de fusion différentes. Pour les triglycérides du beurre, par exemple, les plus  fusibles fondent dès - 10 °C, et les moins fusibles  fondent à 50 °C. Dans le beurre de cacao, les moins fusibles fondent à 37 °C... comme le prouve l'expérience qui consiste à placer un carré de chocolat dans la bouche. 

Et ainsi, pour chaque  matière grasse, il y a un comportement de fusion différent... mais il y a une constante : aux  températures inférieures à la température de fusion des triglycérides les plus fusibles d'une matière grasse, cette dernière est à l'état solide ; aux températures supérieures à la température de fusion des triglycérides les moins fusibles, la matière grasse est entièrement liquide (l'huile à la température ambiante). 

Et aux températures intermédiaires ? Et bien, là, une partie est liquide, et elle est le plus souvent piégée dans la partie solide. Oui, dans une motte de beurre placée à une température comprise entre -10 °C et + 50 °C, il y a de la matière grasse liquide dans ce qui paraît solide. 

D'ailleurs, c'est une expérimentation amusante que d'ajouter de l'huile à du chocolat fondu, et à refroidir ensuite ; ou, inversement, à ajouter du beurre  de cacao à de l'huile (d'accord, c'est pareil ;-), mais on n'oublie pas qu'à côté de la dénotation, il y a  la connotation) : on change ainsi le comportement de fusion. 

Commençons par dire que le chocolat est fait environ pour moitié de matière grasse (le beurre de cacao, donc) et de sucre. Et pensons à un coulant au  chocolat, gâteau  avec un coeur qui coule quand on ouvre le gâteau. Comment le faire ? Il faut faire une sorte de mousse au chocolat additionnée de farine, et placer, au centre, un "noyau" fait de chocolat rendu plus  fusible par l'ajout de matière grasse liquide à la température du service. On n'oublie pas, évidemment, de congeler ce noyau  pour le manipuler. Lors de la cuisson, il fond, et, quand on coupe le gâteau, dans l'assiette, le chocolat fondu en sort. 

Et par la même technique, on change le degré de fusion des matières grasses, on mélange du beurre avec de l'huile, de l'huile de palme avec de la matière grasse laitière, du beurre de cacao avec de la matière grasse  de fois gras, que sais-je ? 

Tiens, j'ai évoqué l'huile de palme, qui fait débat. Qu'en penser ? D'un point de vue chimique, elle est faite de triglycérides, comme le beurre, comme l'huile, comme le beurre de cacao. Après, il y a -semble-t-il, car en réalité, je n'y connais rien- des questions politiques, environnementales, mais on comprend bien que ce n'est pas à un physico-chimiste d'en parler. Pour moi, un triglycéride est un triglycéride... Chaque matière grasse a son comportement de fusion particulier, son intérêt nutritionnel particulier...

Reprenons les questions initiales. L'huile d'olive "meilleure" que les autres ? Cela n'a jamais été établi correctement, et ce n'est sans doute pas vrai. Il faut de tout, en quantités variées... et faire de l'exercice, pour se donner des chances de rester en bonne santé... si l'on ne fume pas, boit pas, etc.  

Les matières grasses végétales dans le chocolat ? Ayant déjà évoqué le cas, je n'y reviens pas. 

Les matières grasses hydrogénées : là, il faut entrer dans le détail moléculaire des "dents" des triglycérides, et expliquer que certaines de ces "dents" (le vrai nom est "résidu d'acide gras") sont "insaturées", et d'autres sont "saturées". En effet, les "dents" sont des enchaînements d'atomes de carbone (pensons à -C-C-C-C..., où la lettre C représente un atome de carbone). Parfois les atomes de carbone peuvent s'attacher les un aux autres plus fortement, ce que l'on représente par deux barres, au lieu d'une : -C-C=C-C... C'est cela que l'on nomme une "double liaison", ou un "insaturation". Or les triglycérides dont des "dents" ont des doubles liaisons sont plus fusibles que les autres. Pour obtenir une matière grasse solide, à partir d'une huile, on a découvert que l'on pouvait "hydrogéner" les triglycérides. 

Les avantages ? Les inconvénients ? Je vous renvoie vers une séance de l'Académie d'agriculture de France, où nous avions discuté la question. Il faut quand même savoir que certaines matières grasses saturées sont indispensables à notre bon fonctionnement physiologique. 



Toutes les graisses se vaudraient-elles ? Ce n'est pas ce que j'ai dit... et je voudrais terminer cette causerie en signalant que certains  triglycérides ont plus de "goût" que d'autres. Oui, de goût, alors que les matières grasses semblent ne pas avoir de goût quand elles sont pures. Il y a une dizaine  d'années, une équipe de physiologistes, à Dijon, a découvert que les triglycérides sont "coupés" par des enzymes, à proximité des papilles : ainsi sont  libérés des acides gras. Or les acides gras  "insaturés", quand ils sont assez longs,  peuvent se lier à des récepteurs de la bouche, comme une clé vient dans une serrure... et un "goût" est identifié. On a ainsi longtemps dit qu'un acide gras, c'était un acide gras, mais ce n'est pas exact : certains ont un effet sensoriel, en plus de l'onctueux qu'ont tous les triglycérides. 







Vient de paraître aux Editions de la Nuée Bleue : Le terroir à toutes les sauces (un traité de la jovialité sous forme de roman, agrémenté de recettes de cuisine et de réflexions sur ce bonheur que nous construit la cuisine)