samedi 30 novembre 2019

A propos d'oxydation


En cuisine, on entend parler parfois d'oxydation  : c'est un mot un peu compliqué qui me fait soupçonner que certains de mes interlocuteurs ne savent pas exactement ce qu'ils disent. Il y a peu, j'ai entendu quelqu'un dire que les oxydation conduisaient toujours à du brunissement,  et je viens de trouver un exemple qui réfute cette idée.

Pour commencer, examinons en termes très simples ce qu'est une oxydation. Prenons l'exemple de l'action de l'oxygène -par exemple, celui de l'air, qui devrait d'ailleurs être nommé plus justement dioxygène- sur du fer. Le fer rouille : il est oxydé par le dioxygène.
Pourquoi ? Parce que les atomes du fer métallique cèdent des électrons aux atomes d'oxygène du dioxygène gazeux, ce qui fait des "ions" fer et des "ions oxygène". Ces ions sont électriquement chargés, et ils s'attirent comme la règle en plastique frottée attire les cheveux, ou comme un pôle nord d'un aimant attire un pôle sud.
Dans cette réaction, il y a au bilan le fait que le fer a perdu les électrons qui ont été gagnés par les atomes d'oxygène. Dans un langage ancien, on aurait dit qu'il y avait une affinité entre le fer et l'oxygène, mais aujourd'hui, on dirait qu'il y a une réaction d'oxydation du fer par l'oxygène. D'ailleurs, dans cette réaction, l'oxygène a été réduit, ce qui est l'opposé de l'oxydation.

Mais arrivons maintenant à l'exemple que je voulais donner. Quand il y a du carbone -pensons à du charbon- et de l'oxygène, alors cela peut faire du dioxyde de carbone : le carbone a été oxydé, comme le fer l'est quand il rouille.  Mais dans ce cas du carbone, la couleur noire du carbone disparaît, puisque le dioxyde de carbone est un gaz sans couleur. On voit donc que l'oxydation a fait disparaître une couleur marron, au lieu de la créer ! C'est bien ce que je disais  : un brunissement ne correspond pas toujours à une oxydation.

vendredi 29 novembre 2019

Comment faire de bonnes frites ?

De bonnes frites  ?

On m'interroge à propos de la confection des frites :  la question est d'obtenir des frites bien cuites,  avec un bon croustillant.

Il faut  analyser en termes physico-chimiques évidemment  :en partant du fait qu'une pomme de terre est un assemblage de petit sacs plein d'eau et de petits grains durs que l'on nomme des grains d'amidon.
Quand la pomme de terre est mise dans de l'huile à une température bien supérieure à celle de l'ébullition de l'eau, l'eau qui est présente dans les cellules de la surface se met à bouillir... et c'est là qu'il est bon d'avoir en tête cet ordre de grandeur  : un gramme d'eau, cela fait un litre de vapeur. Autrement dit, la vapeur prend beaucoup plus de place que l'eau liquide, de sorte qu'il n'est pas étonnant de voir des jets de bulles de vapeur sortir les frites que l'on plonge dans un bain d'huile chaude.
Évidemment, si l'eau est évaporée, en surface des frites, alors elle ne se trouve plus à l'intérieur, qui s'emplit de vapeur. Toutefois, il y a mieux, si l'on se souvient d'un des "commandements de la cuisine" (voir mon livre Mon histoire de cuisine, éditions Belin) : un aliment qui contient un liquide est mou, mais un aliment qui ne contient pas de liquide (huile, eau...) est dur.



De sorte que si l'on élimine l'eau de surface, on fait une "croûte", croustillante.
Comme pour la croûte du pain, comme pour la croûte d'un petit chou, comme dans la croûte d'une viande, comme pour un  soufflé, une croûte se forme donc progressivement autour des frites que l'on met dans l'huile chaude, et cette croûte est d'autant plus épaisse que le temps de cuisson est long.

Mais il y a un écueil :  à savoir que si le temps de cuisson est long, alors la surface des frites risque d'être trop brune, ce que l'on dirait trop cuite. Pour l'éviter, il suffit simplement de ne pas frire à une température trop élevée, et alors on peut prolonger le temps de cuisson. On règle alors l'épaisseur du croustillant comme on veut .

Il y a aussi la question des frites grasses, mais j'ai résolu cette question depuis longtemps en observant que c'est l'absorption d'huile par la frite quand la friture est terminée qui est responsable les frites grasses. Si l'on éponge les frites immédiatement au sortir du bain, alors il n'y a pas de l'huile absorbée. Le gain est considérable puisque il y a presque un demi gramme d'huile  en plus ou en moins par frite !

jeudi 28 novembre 2019

Une question difficile


Aujourd'hui, une question difficile, parce qu'elle porte sur une des réactions complexes de la science des aliments : la caramélisation, à ne pas confondre avec les réactions fautivement nommées "de Maillard", ni avec bien d'autres qui font apparaître des couleurs brunes dans les aliments.

Mais j'anticipe, et voici la question

 "Je me permets de vous soumettre une question qui m'intrigue depuis longtemps : avant d'attendre le stade de caramel, le sucre (saccharose) subit-il des transformations physiques ou chimiques lors de sa cuisson avec de l'eau ?
Plus précisément, lorsqu'on réalise un sorbet, par exemple, les recettes préconisent généralement de faire un sirop avec l'eau et le sucre, puis d'ajouter celui-ci au jus des fruits avant de sangler le mélange. Quel est l'intérêt de cette méthode ? N'obtiendrais-je pas le même résultat en dissolvant directement le sucre dans le jus de fruits ? Le sorbet n'en serait-il pas meilleur, dans la mesure où j'aurais évité la dilution par un apport d'eau supplémentaire ?
J'ai commencé à me poser cette angoissante question lorsque j'ai découvert, dans je ne sais quel grimoire, le verbe "décuire", qui me semble impliquer la réversibilité de la cuisson du sucre - contrairement à toutes les autres cuissons que je connais...
Si vous aviez l'amabilité d'éclairer ma lanterne, je vous en serais fort reconnaissant !


Des réactions avant la caramélisation ? Oui.

Commençons par le commencement. On part de sucre de table et d'un peu d'eau, et l'on chauffe. D'abord, le sucre se dissout, puis  on atteint l'ébullition : des bulles apparaissent, partant du fond de la casserole, montant dans le sirop et venant éclater en surface (en projetant de microscopiques gouttelettes qui salissent autour de la casserole ;-)).
Bien sur, il y a de la fumée, qui résulte de l'évaporation de l'eau, puis de la recondensation en gouttelettes dans l'air froid qui surmonte la casserole.
Puis on  voir la taille et l'aspect des bulles changer : si l'on mesurait la température, on verrait que, plus le sirop se concentre, plus sa température augmente, passant de 100 °C à 110, 120...
Puis, quand on atteint 140 °C environ, une couleur apparaît, d'abord jaune, puis blonde, puis brune (à ce stade, il y a une belle odeur de caramel), et enfin une odeur âcre envahit la cuisine.
Certainement, quand la couleur change, des réactions ont lieu, mais oui, il y a aussi des réactions quand une odeur apparaît... et même avant, surtout quand le sirop a été additionné de composés acides ou basiques : la molécule de saccharose se dissocie (on dit "hydrolyse") en glucose et en fructose, ce qui n'est pas anodin, car ces composés sont des "anticristallisants", qui évitent que le sirop, s'il était coulé sur un marbre froid, ne cristallise.
Bref, des transformations physiques, il y en a : le fait que les cristaux de sucre, formés d'empilements réguliers de molécules de saccharose, se dissocient, parce que les molécules d'eau, rapides (c'est cela, la "chaleur"), viennent heurter les empilements réguliers, ce qui libère les molécules de saccharose individuelles, lesquelles partent flotter dans l'eau. 
Mais mon correspondant est en réalité plus intéressé par la chimie que par la physique, et oui, les molécules de saccharose sont dégradées, au moins, d'abord, en glucose et en fructose.

Quand la température augmente un peu, la dégradation est plus poussée, et l'odeur de "cuit" que l'on sent est alors due à une foule de composés formés par le réarrangement des atomes de glucose, de fructose et de saccharose. Notamment se forme du 5-hydroxyméthylfurfural, qui s'échappe avec la vapeur. Et se forment aussi des "dianhydrides de fructose" qui, eux, ne s'échappent pas, restent dans la casserole, et réagissent avec des molécules de glucose pour former des polymères qui, au refroidissement, contribueront à la masse du caramel. Mais à ce stade, il y a mille molécules, parce que l'on oublie de dire que la caramélisation est une réaction telle que les chimistes hésiteraient à les faire, tant elle est énergique. Les dégradations sont dans tous les sens  !

A propos de sorbet, maintenant


Ici, la question est donc de faire un sorbet, et notre ami nous dit que certaines recettes  préconisent de faire un sirop avec l'eau et le sucre, puis d'ajouter celui-ci au jus des fruits avant de sangler le mélange. Obtiendrait-on le même résultat en dissolvant directement le sucre dans le jus de fruits ?
Certes, on peut mettre le sucre dans le jus de fruit, mais il faudrait alors chauffer le jus de fruit... et celui-ci prendrait un goût de cuit. Par exemple, il y a une étonnante différence avec les granny-smith, les poires, l'ananas, la fraises... et personnellement (mais c'est un goût personnel), j'aime bien avoir le goût du fruit non cuit, dans certains sorbets, et le goût du  fruit cuit dans d'autres.
Autrement dit, c'est une affaire de goût : si l'on veut le goût des fruits frais, la confection d'un sirop concentré que l'on ajoute au fruits que l'on broie est une bonne solution, mais si l'on préfère un goût cuit, alors oui, on peut ajouter le sucre au jus de fruits et chauffer.

Décuire

Enfin, vient la question de la "décuisson", qui n'est pas une véritable décuisson, en ce sens que ce n'est pas en ajoutant de l'eau et en chauffant un mélange de glucose et de fructose que l'on refera du saccharose !
Et la fameuse "décuisson" des sirops n'ira certainement pas transformer un caramel en sucre (contrairement  à la décuisson des oeufs, que j'avais proposée dès 1987 !).
Bref, le mot "décuisson" signifie seulement que l'on récupère un liquide, une "solution", au lieu d'avoir une masse solide.

Et plus

J'y pense : pour aider mes amis, je viens de publier dans l'Encyclopédie de l'Académie d'agriculture de France un texte sur les "sucres" : quelle est la différence entre un sucre, un glucide, un saccharide, un ose...
N'hésitez pas : c'est en ligne !


lundi 18 novembre 2019

Coup de feu sur les braisés !


Le braisage est une merveilleuse opération culinaire, que l'on fait en mettant dans une cocotte du lard, des oignons et des carottes, une viande, puis, par dessus, carottes, oignons et lard, plus un bon verre d'eau de vie. 
On met à four très chaud, pour brunir l'ensemble, puis on couvre et l'on cuit longuement "cendres dessus et dessous", ce qui signifie "à basse température". De la sorte, le tissu collagénique se dégrade, et la viande s'attendrit sans que l'intérieur des fibres musculaires ne durcisse. 

Tout cela étant dit, je reçois ce message : 

Monsieur This Bonjour,
Il m’est arrivé ce week-end de perdre foi dans ma cocotte Staub, dans ma plaque à induction puis dans mon boucher que j’adore. Ma blanquette Ô combien si traditionnelle et facile fut dure comme du bois. Et du bois dur… Rien n’y fit. Pas même le lendemain.
 J’ai lu vos lignes et j’ai compris (un peu tard…) les fibres, le collagène, la température basse. J’ai vu – et je vous l’annonce honteusement – la mienne bouillir. Il était trop tard.
Bien, désormais la science à travers vos lignes a fait son travail et j’ai compris le pourquoi.
 Maintenant que mon dos est tout fouetté d’erreur : avais je une solution autre que la rage et l’accusation des uns et des autres ? Ma question est simple : si notre vie trop moderne ne nous a pas permis de surveiller la température de la joue, du jarret, du quasi et qu’il est devenu tout dur, révolté d’avoir été chauffé : y a-t-il une science inverse pour récupérer l’affaire ?
Et est ce applicable à temps pour servir à Madame ? Aidez-moi par pitié !


Sans attendre, ma réponse : 

Cher Monsieur
Ne perdons pas confiance dans nos cocottes... mais mettons-les dans un four correctement réglé, notamment à des températures comprises entre 60 et 100 °C. Evidemment, il faut des fours modernes, à la norme "verte", pour une cuisson très longue.
En revanche, nos Anciens avaient raison de dire que le "coup de feu" est la mort des braisés : on ne peut dé-coaguler une viande trop cuite, et la seule ressource, alors, consiste à cuire encore plus longtemps, afin d'obtenir une complète gélatinisation du  tissu collagénique, quitte ensuite à faire tremper cela dans une émulsion qui ira nourrir les chairs de matière grasse.
Madame devrait donc attendre !

dimanche 17 novembre 2019

La cuisine note à note ? Ca progresse

Car reçu ce matin ce message  :

Bonjour Monsieur,
Mes deux enfants de 16 et 13 ans et moi-même souhaiterions suivre une initiation à la cuisine "note à note". Donnez-vous des cours particulier le WE ? Ou le soir en semaine ? Si oui, comment pouvons-nous organiser une session avec vous ?
Je vous remercie par avance pour votre réponse, et je vous souhaite une bonne semaine,


J'y ai répondu dans la minute :


N'étant pas cuisinier (mais chimiste : des équations !), je ne donne pas de cours de cette  cuisine note à note que j'ai inventée  (que je promeus toutefois dans le monde entier), mais vous pourriez vous adresser à la  Société Iqemusu : https://iqemusu.com/fr/note-a-note/

D'ailleurs, c'est lui (avec des sociétés comme Louis François) qui vend les produits dont vous aurez besoin.
Il y a peut être aussi des chefs Patrick Terrien ou Pierre-Dominique Cécillon, ou encore Julien Binz, à Ammerschwihr, et peut être le chef Guillaume Siegler, du Cordon bleu Paris.
Pour moi, j'organise des séminaires mensuels gratuits (il suffit de me demander l'inscription sur les listes de distribution), et aussi des cours publics annuels.

Bien à vous




samedi 16 novembre 2019

Des questions


Ce matin, des questions techniques :

1. Comment incorporer des oeufs dans du beurre pommade afin d'obtenir une masse homogène, sans grumeaux de beurre ?
2. Est-ce que le fait de clarifier le beurre avant de l'émulsionner avec du sucre, permet d'obtenir un mélange qui ne se sépare pas au frigidaire par la suite ?


Pour la première question, il y donc lieu de disperser des oeufs, à savoir une solution aqueuse, dans du beurre, lequel a une structure qui change avec la température. Certes, si la température est basse, la proportion de matière grasse sous la forme solide est élevée, et il y a peu de graisse en phase liquide. Dans la structure solide, l'eau du beurre (un peu moins de 20 pour cent) est dispersées, et le malaxage du beurre avec l'oeuf ajoute des "poches" aqueuses dans le solide.
Mais quand  la température augmente, alors la fraction de solide est réduite, et l'on s'approche d'une phase huile, où l'"eau" de l'oeuf se disperse facilement. Et plus on bat, plus les poches d'eau sont petites et dispersées, comme dans une émulsion de bon aloi (ici, une dispersion d'eau dans la matière grasse, contrairement à une mayonnaise, qui est une émulsion de matière grasse dans l'eau).
Bref, j'aurais tendance à réponse qu'il suffit de battre suffisamment, dans un beurre pas trop froid.

Pour la seconde question, je ne sais vraiment pas, car l'oeuf apporte de l'eau, en plus de l'eau présente dans le beurre... et, d'autre part, je n'ai jamais observé  la séparation du mélange au réfrigérateur, comme cela est indiqué.

vendredi 15 novembre 2019

De l'acide citrique dans l'eau fait-il comme du jus de citron ?

Nous avons comparé de l'acide citrique à du citron
Oui, le jus de citron doit beaucoup de son acidité à l'acide citrique... mais pas seulement. Et, notamment, le jus de citron a une odeur que les solutions d'acide citrique n'ont pas.
N'empêche que la ressemblance est frappante, au point que nous avons voulu comparer en aveugle du jus de citron et des solutions d'acide citrique.

Pour commencer, nous avons préparer des solutions de diverses acidités, afin de sélectionner celle qui avait la même acidité approximative. Cela se faisait au vu de tous.
Puis nous avons organisé un test triangulaire, lors duquel des participants du séminaires recevaient trois échantillons numérotés, sans savoir leur nature, avec deux échantillons identiques et le troisième différent. Ils devaient dire quels échantillons étaient identiques.
Le résultat a été intéressant : oui, la différence a été faite, mais difficilement !
De sorte que, maintenant, j'utilise souvent de l'acide citrique dans ma cuisine.

jeudi 14 novembre 2019

Des viandes froides

Des fricandeaux ?  Ce matin, je reçois ce message :

Pour ce dimanche, je compte préparer un fricandeau, selon votre recette qui a déjà plusieurs fois émerveillé mes invités, et qui a de plus l'immense avantage d'être quasiment prêt à servir chaud, à l'arrivée des convives.
Cependant, la question serait de connaître votre avis sur l'idée de servir cette préparation froide.
Cela vous semble-t-il envisageable, ou tout simplement déraisonnable?.


J'ai répondu à mon interlocuteur que "ma recette" me semblait être celle que je donnais dans mon livre Révélations gastronomiques... et il m'a confirmé que c'était bien le cas. Je vous y renvoie donc.




Cela étant, pour répondre à sa question, il faut un "modèle", une théorie : les viandes sont faites de fibres, sortes de tuyaux très fins qui contiennent de l'eau et des protéines thermocoagulables ; les fibres sont limitées et jointoyées par du "tissu collagénique", fait d'une protéine qui est nommée collagène.
Quand on chauffe une viande, on désorganise le tissu collagénique. Ce tissu se contracte, et fait sortir le jus, tandis que la viande durcit, puisque l'intérieur des cellules coagule, comme pour du blanc d'oeuf. 
En revanche, dans une cuisson à basse température, très longue, le tissu collagénique se dissout plutôt, et, ainsi dégradé, il ne peut plus se contracter, et la viande s'attendrit, d'autant que l'intérieur des fibres ne durcit pas notablement. 

Quand une viande refroidit, on voit qu'elle durcit si elle contient beaucoup de collagène, qui gélifie. Et  il y a alors le gel qui solidarise les fibres, et ajoute de la dureté (cela disparaîtrait si l'on chauffait).
Cependant, imaginons qu'on ait laissé la viande attendrie cuite à basse température refroidir dans son jus, alors ce dernier entrerait dans la viande par capillarité, avant de gélifier. Capillarité ? Ce phénomène  survient quand on plonge un pinceau dans un liquide coloré : les forces entre le liquide est le poils du pinceau auront aspiré le liquide vers le haut.
Tiens, d'ailleurs, connaissez vous mon "shitao", qui utilise cet effet ? Vous le trouverez décrit dans un autre de mes livres, Mon histoire de cuisine





Cela étant, il suffit de porter la viande "froide" à plus de 36 degrés pour que le gel se défasse... ou bien de cuire très longtemps pour qu'il ne puisse plus gélifier, les protéines étant suffisamment dégradées, ou bien d'ajouter des enzymes protéases (un morceau d'ananas frais, par exemple) qui dégradent les protéines.

mercredi 13 novembre 2019

L'aspartame libère du méthanol ?

Oui, le méthanol est un sale composé : il donne mal au crâne, il rend fou, aveugle, contribue au développement de cirrhoses...  On sait qu'il faut se méfier comme de la peste des eaux-de-vie mal distillées, c'est-à-dire quand les têtes et les queues de distillation n'ont pas été éliminées. Mais, pour autant, faut-il craindre l'aspartame, qui peut libérer du méthanol  dans l'organisme ? 

Pour expliquer la question, il faut expliquer que l'aspartame est un édulcorant intense, c'est-à-dire un composé qui donne une saveur très sucrée même quand il est en très petite quantité (200 fois plus sucré que le sucre), et qu'il a l'avantage de ne pas apporter de calories, de ne pas provoquer de caries, comme le fait le saccharose, le sucre de table. C'est un "dipeptide", c'est-à-dire un composé dont la molécule est faite de deux résidus d'acides aminés, ces briques de toutes les protéines de notre organisme, avec un groupe méthyle attaché à l'un des deux résidus d'acides aminés.
Quand l'aspartame est consommé, il est divisé en phénylalanine, en acide aspartique et en méthanol... et là est la double question : il y a libération de la phénylalanine, d'une part, et du méthanol d'autre part.


La question de la phénylalanine

Pour la phénylalanine, c'est un acide aminé "essentiel", qui a  un rôle fondamental dans le système nerveux par une stimulation de la glande thyroïde. Il n'est pas synthétisé par l'organisme et doit donc être apporté via l'alimentation :  on le trouve dans les aliments riches en protéines d'origine animale et végétale : viande, poisson, oeuf, soja,  lait, fromage, etc.
Toutefois il y a une maladie nommée phénylcétonurie, qui est une déficience en métabolisme de cet acide aminé. En France, une personne sur 17 000 est atteinte de cette déficience enzymatique (Trefz et al. 1994). Mais il y a les 16 999 autres, et pour ceux-là, la seule question qui se pose est celle du méthanol.


Pour le  le méthanol, il faut y regarder de plus près

Soit un morceau de sucre dans un café, par exemple. Cela représente environ 10 grammes. Pour avoir la même sucrosité, il faut environ 200 fois moins d'aspartame, soit 0,04 gramme. Est-ce "beaucoup" ?
Il faut comparer cela à des consommations classiques, telle celle de fruits, par exemple, car ces derniers apportent des pectines, lesquelles libèrent également du méthanol. De fait, Lindinger et al. ont mesuré en 1991 la quantité de méthanol dans l'organisme, après la consommation de fruits. Ils ont d'abord mesuré un méthanol basal, dont on ne comprend pas encore l'origine, et qui atteint 2 milligramme par litre (ce méthanol pourrait résulter de fermentations dans le tube digestif). Après l'ingestion de fruits, la quantité de méthanol est multipliée par 10 environ.
Finalement, l'Agence nationale de sécurité des aliments observe qu'un litre (un litre !)  de boisson sans sucre contenant de l’aspartame produit environ 48 mg de méthanol, tandis qu'un litre de jus de fruits ou de légumes contient environ 200 à 280 mg de méthanol. Cela indique que les quantités de méthanol apportées par l’aspartame en tant qu’additif alimentaire sont inférieures à celles apportées par certains aliments naturels (Maher, 1986).
Tiens, je trouve pour une autre comparaison que la teneur en méthanol dans les eaux de vie est réglementée à 0,6 grammes par litre d'alcool à 50 °, soit, si l'on consomme 2 centilitres, cela fait d'un coup 12 milligrammes de méthanol.



Références :
Friedrich T, De Sonneville L, Matthis P, Benninger C, Lanz-Englert B. 1994. Neuropsychological and biochemical investigations in heterozygotes for phenulketonuria during ingesting of high dose aspartame (a sweetener containing phenylalanine), Human Genetics, 93, 369-374.

mardi 12 novembre 2019

Les polyphénols, de quoi s'agit-il ?


On m'interroge sur ce que sont les polyphénols.

Le mot "polyphénol" est effectivement largement répondu autour de nous : on lit que les polyphénols sont bons pour la santé, qu'ils sont antioxydants,  on voit des réclames qui prétendent qu'ils sont bons pour la peau, contre le vieillissement, etc.... et je viens de m'assurer, par des questions à des amis honnêtes, qu'ils ignorent en réalité ce que sont ces composés.

Bien sûr, un objet peut se caractériser par ses propriétés, mais, en l'occurrence, ce que l'on entend ou ce qu'on lit est loin d'être toujours juste.  Tout d'abord à propos des propriétés curatives, on aurait intérêt à se souvenir que les panacées n'existent pas. Et, d'ailleurs, les bons médecins savent bien que les médicaments sont assortis d'effets secondaires, et que l'on doit recourir à ces produits (les médicaments) de façon experte et parcimonieuse. On se souviendra de ce pharmacien qui vendait à Paris des régimes dont l'efficacité était avérée, mais qui ont conduit à des dizaines de cas d'insuffisance rénale très grave. Et puis, en matière de commerce, on se méfiera quand même des publicités, car quel marchand dirait les inconvénients de ses produits ?

Ici, c'est l'occasion de rappeler que l'invite mes amis à se méfier des mots   de plus de 3 syllabes,  qui cachent trop souvent de l'idéologie ou du mercantilisme le plus déloyal. En l'occurrence, le mot "polyphénol" a quatre syllabes, tandis qu'anti-vieillissement en a trop pour que je perde mon temps à les compter, tout comme pour "antioxydant". D'ailleurs, ce dernier mot a un statut bizarre, entre la chimie et la médecine... avec quand même ce fait que les  chimistes ne parlent pas de composés antioxydants,  mais de composés réducteurs.


Et puis, au fond, la plus grande confusion règne entre les polyphénols, les composés phénoliques, les tanins...  

Le monde du vin, en particulier, dit trop souvent n'importe quoi à ce propos,  par exemple avec des expressions comme « les tanins fondent », ce qui est une absurdité, puisque les chimistes savent au contraire que, quand un vin vieillit, les tanins s'agrègent, et grossissent ! D'ailleurs, ce sont les mêmes qui utilisent ces expressions erronées et qui confondent la saveur avec le goût, qui propagent l'idée fausse d'une carte de la langue qui reconnaîtrait les soi-disant quatre saveurs... alors qu'on sait depuis des décennies qu'il y  a un nombre infini de saveurs.

 
Bref la plus grande confusion règne à propos de tous ces composés et il faut donner des explications

L'expérience étant la manière la plus efficace d'expliquer, commençons par prendre un fruit rouge ou une fleur, telle une rose rouge, et broyons ces tissu végétaux dans de l'eau. Après filtration, on récupère dans les deux cas une solution colorée qui est faite évidemment d'eau, mais aussi de composés sapides, par exemple des sucres (incolores) ou  des acides (incolores aussi), et finalement de composés qui donnent la couleur à la solution.
Si l'on est chimiste, on peut fractionner cette solution, par des opérations classiques de cristallisation, de précipitations, de distillation, etc. mais je ne veux pas rentrer dans ces détails et je propose de partir des composés purs qui auront été  isolés pour leur couleur.


Voici le phénol. Les boules grises représentent des atomes de carbone, la boule rouge un atome d'oxygène, et la petite boule un atome d'hydrogène.  C'est un "monophénol.

 

Parmi ces composés, les tissus végétaux renferment des chlorophylles, les caroténoïdes, et d'autres, parmi lesquels ceux qui nous intéressent : les phénols.
De couleur rouge à bleue, ces composés changent  de couleur avec l'acidité du milieu : par exemple, quand on met des framboises dans de la soude (il faut surtout ne pas manger), on voit les fruits de venir verts ! Ou encore, quand on ajoute du jus de citron dans un thé foncé, on le voit s'éclaircir, et virer  au jaune. Inversement, si l'on ajoute du vinaigre aux framboises verdies, elles reprennent leur couleur rouge, tout comme le thé redevient marron si on lui  ajoute du  bicarbonate de sodium (qui va faire mousser, mais c'est une autre histoire). 
Bref, les composés colorés responsables de ces changements de couleur sont des "composés phénoliques".
 « Composés phénoliques »  : c'est donc le nom d'une catégorie général de composés dont les molécules contiennent au minimum 6 atomes de carbone attachés en un cycle hexagonal, avec un des atomes de carbone lié à un atome d'oxygène, lui-même lié à un atome d'hydrogène :

Une molécule réduite à cela, avec des atomes d'hydrogène sur les autres atomes de carbone, c'est une molécule du composé que l'on a nommé "phénol" et qui fut découvert en 1650.

S'il n'y avait pas l'atome d'oxygène lié à l'atome d'hydrogène, alors on aurait la molécule du benzène  :

Avec six atomes de carbone, liés chacun à un atome d'hydrogène (non représentés), on a la molécule de benzène.
Et voici un autre phénol : il y a plus d'un groupe oxygène+hydrogène sur le cycle de six atomes de carbone.


Et quand il y a deux fois un groupe fait d'un atome d'oxygène et d'un atome d'hydrogène, alors c'est un oligophénol, avec le préfixe "oligo", rares :


J'en profite pour dire que certains phénols sont parfaitement toxiques, même s'ils sont « antioxydants ».
En outre, les composés phénoliques forment une famille très vaste, puisqu'il peut y avoir des tas d'autres motifs chimiques attachés à la structure initiale.
Voici un autre composé phénolique, et c'est également un polyphénol.


La relation entre composés phénoliques et oligophénols ? Les oligophénols doivent avoir au moins les six atomes de carbone et deux groupes oxygène+hydrogène, alors que, pour les composés phénoliques, la définition est plus large, puisque n'est imposé que le groupe de six atomes de carbones avec un groupe oxygène+hydrogène.
Autrement dit,  un oligophénol est toujours un composé phénolique, mais un composé phénolique n'est pas toujours un oligophénol.

Et les tanins ? 

Pour les tanins, une perspective historique s'impose  : les anciens artisans qui travaillaient le cuir avaient observé que les décoctions d'écorces d'arbres dans de l'eau faisaient des solutions très astringentes, qui avaient la particularité de "tanner le cuir", de le rendre plus résistant. Finalement les chimistes ont compris que les tanins sont des oligophénols particuliers : ce sont donc, ipso facto, des composés phénoliques. 
Mais les composés phénoliques ne sont pas tous des tanins, de sorte que nos dégustateurs de vin feraient bien d'être prudents quand ils parlent de tanins.
Tiens, je vous livre un petit paysage explicatif :

lundi 11 novembre 2019

Je vous présente l'éthanol

Je viens de comprendre que je n'explique parfois pas suffisamment. Considérons l'exemple de l'éthanol, dont je me suis souvent limité à dire que c'était l'alcool des eaux-de-vie ou du vin. Je ne suis pas sûr que cette indication suffise à bien faire comprendre, et  je me demande s'il n'est pas préférable de créer un faisceau d'informations qui constitue progressivement le dossier dont on a besoin.

L'expérience fondatrice, pour ce qui concerne l'éthanol, c'est la distillation, et, mieux, la distillation d'une solution sucrée qui aurait fermenté.  Mais il y a pour l'instant trop de syllabes pour que ce soit compréhensible, et le recours à l'expérience, réelle ou décrite, s'impose.

Commençons donc par prendre de l'eau, et dissolvons-y du sucre.
Regardons au microscope : nous ne voyons rien, le sucre étant dissous, et la solution formée étant transparente.
Puis ajoutons un peu de levure, ce que l'on achète chez le boulanger sous forme d'une espèce de pâte très friable. On agite un peu pour disperser la pâte dans  la solution sucrée... et cette fois, si l'on regarde au microscope, on voit de  petites formes rondes, qui flottent dans l'eau. Si nous sommes patients, nous les voyons libérer des bulles de gaz, grossir et se diviser en deux. En effet,  les levures sont des organismes vivants, unicellulaires puisque réduit à une sorte de sac vivant. Laissons-les  s'activer un moment, en protégeant   le récipient des courants d'air ;  puis, à titre expérimental, posons une allumette enflammée juste au-dessus du liquide  : l'allumette s'éteint, alors qu'elle resterait allumée si on la mettait au-dessus d'une solution d'eau et de sucre. C'est l'indication que le gaz formé par les levure me permet pas la combustion et, de fait, ce gaz est du dioxyde de carbone.
Si nous goûtons la solution, nous constatons  qu'elle est alcoolisés. Filtrons pour éliminer les levures... et nous récupérons une solution parfaitement transparente au microscope : les molécules qui donnent ce goût alcoolisé, comme les molécules qui donnaient la saveur sucrée, sont bien  trop petites pour être visibles avec un microscope.

Faisons donc différemment : distillons.


En pratique, c'est tout simple, puisqu'il suffit de chauffer et de conduire ensuite les vapeurs dans un système qui les refroidit, les recondense en un  liquide. Si nous laissons refroidir ce liquide distillé et que nous le goûtons, nous n'avons plus aucune saveur sucrée, mais, en revanche, il y a un goût brûlant, alcoolisé, comme pour une vodka très forte.
Cette fois, la solution est quasi exclusivement composée de molécules d'eau et de molécules d'éthanol, de l' "alcool" qui a été formé par la fermentation du sucre  par les levures.
Distillons à nouveau le distillat, et sa teneur en alcool augment. Bien sûr, il reste un peu d'eau, mais qu'importe :  le produit que nous avons obtenu,  c'est ce qui fut nommé de l'alcool.
Pourquoi avons-nous évoqué l'éthanol, et parler maintenant d'alcool ? Parce que d'autres procédé conduisent à des composés très voisins de celui que nous venons de préparer. Par exemple, quand on chauffe du bois à sec, on obtient un autre alcool qui a pour nom méthanol, ce que l'on nommait naguère esprit de bois, alors que l'alcool obtenu par fermentation était nommé esprit de vin.
Quand la chimie progressa et qu'elle découvrit l'existence des atomes et des molécules, vers la fin du 19e siècle, les chimistes arrivèrent progressivement à comprendre que l'eau est faite de molécules d'eau, des objets résultant de l'assemblage d'un atome d'oxygène et de deux atomes d'hydrogène. Ils comprirent  aussi que les molécule d'éthanol était faites d'un premier atome de carbone liés à trois atomes d'hydrogène et lié à un autre atome de carbone, qui est  lui-même lié à deux atomes d'hydrogène et a un atome d'oxygène lié un atome d'hydrogène. Le méthanol, lui, est d'un seul atome de carbone lié à trois atomes d'hydrogène et à un atome d'oxygène lié à un atome d'hydrogène. Progressivement, les chimistes comprirent que la liaison d'un atome de carbone à un atome d'oxygène lié à un atome d'hydrogène donnait des propriétés chimiques particulières, et les composés ayant ces propriétés (et cette constitution chimique) furent nommés "alcools".

Mais pour revenir à nos vins ou eaux-de-vie, ce sont des solutions aqueuses qui contiennent des teneurs différentes en cet alcool particulier qu'est l'éthanol : il y en a un peu plus de 10 pour cent dans les vins, et environ 40 à 50 pour cent dans les eaux-de-vie (je donne des ordres de grandeur). A noter que l'on dose de l'éthanol dans les fruits ou légumes... mais en très petite quantité.

dimanche 10 novembre 2019

Cuisinons des protéines

Alors que j'organisais un concours de cuisine note à note, des amis se sont inquiétés de l'usage des protéines... J'interprète qu'ils ne comprenaient pas bien ce dont il s'agissait. Oui, quand on n'est pas chimiste, il est légitime de s'interroger : des "protéines", c'est quoi ?

Le recours à l'expérience est quand même la meilleure des explications, et j'en propose plusieurs successives, ici.
La première consiste à cuire une viande, ou bien des pattes de poules, des pieds de veau ou de porc, dans l'eau pendant quelques heures, ce qui procure un bouillon qui gélifie en refroidissant.
Si l on prend cette gelée et qu'on la sèche, alors on obtient une matière transparente et craquante... comme des feuilles de gélatine... Et, d'ailleurs, c'est ainsi que l'on produit la gélatine ;-).
Si l'on regarde cette matière solide avec un microscope extraordinairement puissant, alors on voit un enchevêtrement de "fils" : ce sont des molécules de gélatine. Et la gélatine est une protéine, parce que si l'on y regarde d'encore plus près, on voit que ces fils sont des enchaînements de groupes d'atomes que les chimistes reconnaissent comme des parties de molécules qu'ils connaissent bien et qu'ils ont nommées des acides aminés.
D'ailleurs, si l'on chauffe longtemps de la gélatine en milieu un peu acide (ajoutons du vinaigre blanc dans de l'eau où l'on chauffe la gélatine), alors les molécules de gélatine (les "fils") perdent de leurs morceaux élémentaires, et le liquide s'enrichit d'acides aminés.
Une deuxième expérience, maintenant : prenons un blanc d’œuf, ce liquide jaune et transparent, et laissons-le sécher à l'air libre : il ne pourrira pas parce qu'il est protégé par une... protéine nommée lysozyme, et, après un séchage de plusieurs jours, on obtiendra -à nouveau- une matière transparente et dure, cassante : ce sont les protéines du blanc d’œuf. D'ailleurs, le blanc d’œuf, qui pèse pas loin de 30 grammes, est fait de 90 pour cent d'eau (environ 27 grammes) et 10 % de protéines (3 grammes). Dans ce cas, il y a plusieurs protéines dans le résidu solide.
A noter que, pour la gélatine en feuille ou le blanc d’œuf séché, on peut avoir des feuilles, mais aussi des poudres, ou des liquides. Pensons à des matières comme la farine ou le sucre en poudre, notamment. Et ajoutons que l'on peut retrouver des solutions en leur ajoutant de l'eau.

Le problème de l'apparence étant réglé, considérons maintenant la question de l'usage.
Une première particularité des protéines, c'est qu'elles n'ont pas de goût quand elles sont pures. Et, d'ailleurs, elles n'ont pas de couleur non plus : dans le blanc d’œuf, la couleur est due à de petites quantités d'un composé coloré nommé riboflavine... qui est une vitamine (B2)... utilisée comme colorant alimentaire sous le numéro E101(i).
Comme l'amidon, les protéines sont de longues molécules qui se dispersent dans l'eau et qui peuvent conduire à des gélifications, quand elles se lient. Par exemple quand on chauffe du blanc d’œuf, on obtient le blanc d' œuf cuit, gélifié ce qui signifie que l'eau présente ne coule plus, et c'est bien le cas quand on considère un blanc d’œuf cuit : le durcissement ne résulte pas de l'évaporation de l'eau, mais cette dernière est restée piégée dans une espèce de réseau, d'échafaudage formée par les protéines qui se sont liées.
D'autres gélifications peuvent avoir lieu avec d'autres protéines. Par exemple avec de la gélatine dissoute dans l'eau et que l'on refroidit : cette gélification-là se fait à froid, non pas à chaud.
Ou encore, dans les yaourts : les protéines du lait forment un gel quand des micro-organismes transforment le sucre du lait -le lactose- en acide lactique, qui acidifie le lait.
Ou encore un autre type de gélification se produit lors de la fabrication des fromages, et cette fois ce n'est ni la chaleur ni l'acidification qui agissent mais plutôt des enzymes, c'est-à-dire des protéines qui sont actives même en toute petite quantité : il suffit de quelques gouttes de "présure" pour faire coaguler une grande quantité de lait.


Mais prenons une perspective un peu plus historique à propos des transformations des protéines que l'on fait ou que l'on peut faire en cuisine.

Quand on cuit de la viande, on provoque les protéines de la viande. De même pour le poisson et pour l'œuf. Là, on ne voit pas les protéines, qui ne sont pas extraite des ingrédients initiaux, mais le résultat résulte quand même de leurs modifications chimiques.
Avec des protéines à l'état pur, on reproduit cela de façon bien plus contrôlée, et c'est en quelque sorte ce qu'ont appris les cuisinier quand ils font des flans par exemple, où les protéines de l' œuf provoquent la gélification de l'appareil, ou dans les aspics, quand les protéines extraites classiquement du pied de veau permettent la gélification.
Cela dit, extraire la gélatine du pied de veau, et la purifier, cela s'apparente à extraire le sucre de la canne à sucre ou de la betterave : pourquoi le faire soi-même ? De même que nous n'allons plus arracher les plumes des canards, les tailler en pointe, faire bouillir de l'écorce d'arbre avec du fer rouillé pour faire nous-même notre encre, je vois mal pourquoi nous serions condamnés à revenir des décennies ou des siècles en arrière et pourquoi nous n'utiliserions pas directement des protéines que l'industrie a extraites à beaucoup plus grande échelle, beaucoup plus efficacement que nous, et certainement avec des degré de pureté que nous n'obtiendrions jamais dans nos cuisines.

Une anecdote véridique : il y a environ 20 ans, j'avais invité à diner des professionnels des métiers du goût, des journalistes culinaires et des gastronomes, et j'avais servi un aspic, fait de gélatine en feuilles. Mais l'un des plus grands pâtissiers du monde m'avait dit "Ah, on voit que c'est du pied de veau et pas de la gélatine en feuille, parce qu'il n'y a pas ce goût désagréables des feuilles". Comme quoi...


Bref, cuisinons des protéines !

samedi 9 novembre 2019

A propos de boissons gazeuses

On m'interroge à propos de boissons gazeuses, effervescentes, et je donne ici les explications demandées.

La question initiale portait sur l'eau pétillante, qui, comme chacun  sait, n'est pas effervescente quand la bouteille est fermée, mais où des bulles de gaz apparaissent quand on ouvre la bouteille qu'on verse de l'eau dans un verre.

Pourquoi ?

Commençons par examiner un verre d'eau, un liquide donc transparent.


 Si l'on regarde à la loupe on ne voit encore qu'un liquide de transparent, mais si l'on prenait une espèce d'hyper-microscope extraordinairement grossissant, alors on verrait des objets tous identiques qui  bougent en tous sens  : on les a nommés des molécules d'eau.
Et entre les molécules ? Rien,  du vide.



Au-dessus du verre ? Là, si l'on regarde à des distances de l'ordre de celles qui séparent les molécules d'eau, on voit également du vide mais si l'on prend une perspective plus large, alors on peut voir d'autres objets se déplacer, cette fois plutôt en ligne droite,  jusqu'à ce qu'ils heurtent quelque chose. Ces objets-là n'ont pas la même constitution que les molécules d'eau et, pour ce qui concerne l'air, on voit principalement des molécules de deux sortes : des sortes d'haltères nommées molécules de diazote et d'autres sortes d'haltères nommées molécules de dioxygène. Dans les molécules de diazote, il y a deux atomes d'azote attaché entre eux, et pour les molécules de dioxygène, il y a deux atomes d'oxygène. Tout simple non ?

Quand il y a de l'air au-dessus de l'eau, les molécules de diazote et de dioxygène vont toutes les directions, mais certaines vont en direction de l'eau, et quand elles atteignent les molécules d'eau, certaines s'immiscent entre elles  : on dit qu'il y a du diazote ou du dioxygène dissout dans l'eau.
Cette dénomination  est légitime, car  le phénomène est tout à fait analogue à celui que l'on aurait si l'on ajoutait un cristal de sucre, formé d'un empilement régulier de molécule de saccharose, dans de l'eau : les molécule de saccharose se disperseraient  entre les molécules d'eau, et l'on obtiendrait du saccharose dissout dans l'eau.
Pour en revenir à l'eau et l'air, il y a un équilibre qui s'établit  :  si on met de l'eau à l'air libre, les molécules d'eau vont finir par s'évaporer et, au bout de quelques jours, il n'y aura plus d'eau dans le verre, pas plus qu'il n'y a d'eau sur la route quelques heures après la pluie, surtout s'il y a du vent. Mais si l'on enferme de l'eau avec de l'air dans une bouteille, alors il y aura des molécules d'eau qui iront dans l'air, faisant une certaine humidité, tout comme il y aura des molécules d'air qui iront dans l'eau s'y dissoudre. 

Supposons maintenant que l'on presse l'air au-dessus de l'eau  :  alors on augmente la densité de molécule de diazote et dioxygène de l'air et l'on peut dissoudre davantage de ces molécules dans l'eau. Mais si l'on supprime rapidement la pression de l'air, alors ces molécules en surnombre, qui se sont dissoutes dans l'eau, vont en sortir, et  c'est là qu'elles feront des bulles d'air, ces bulles qui font l'effervescence de nos boissons gazeuses.