Il y a des termes aussi mal utilisés qu'ils sont communément employés. Et il en va ainsi des "sucres" et de leurs cousins.
Heureusement il y a cette entreprise merveilleuse, même si elle reste imparfaite, de l'Union internationale de chimie pure et appliquée, et, plus particulièrement, de son "Gold Book", qui donne des définitions internationalement acceptées (https://goldbook.iupac.org/).
Commençons par "sucre" : c'est un terme un peu imprécis, mais que l'on utilise souvent pour désigner les "monosaccharides" et les petits "oligosaccharides" (PAC, 1995, 67, 1307).
Les monosaccharides? Ce sont des aldoses, des cétoses et nombre de leurs dérivés par oxydation, désoxygénation, substitutions, alkylation et acylation de groupes hydroxyles, branchements.
Les aldoses ? Des polyhydroxyaldehydes H[CH(OH)]nC(=O)H, avec n ≥ 2) et leur hémiacétal intramoléculaire. Les cétoses : des sucres cétoniques, c'est-à-dire des polyhydroxycétones H–[CHOH]n–C(=O)[CHOH]m–H et leurs hémiacétals intramoléculaires, le groupe oxo (C=O) étant généralement en C-2.
Là, nous sommes armés pour considérer les "oligosacharides" : le préfixe oligo signifie "quelques", et il est utilisé pour désigner des composés formés par la répétition de quelques résidus (entre 3 et 10) de monosaccharides.
Les polysaccharides, eux, sont des répétitions de plus de 10 unités ; on les nomme aussi des glycanes.
Et les saccharides sont les monosaccharides, les disaccharides, les oligosaccharides et les polysaccharides.
Ce blog contient: - des réflexions scientifiques - des mécanismes, des phénomènes, à partir de la cuisine - des idées sur les "études" (ce qui est fautivement nommé "enseignement" - des idées "politiques" : pour une vie en collectivité plus rationnelle et plus harmonieuse ; des relents des Lumières ! Pour me joindre par email : herve.this@inrae.fr
jeudi 30 décembre 2021
Sucres, oses, saccharides...
mardi 28 décembre 2021
Je vous présente le fructose, disons le D-fructose
Le fructose est un composé de la famille des oses, disons simplement des sucres.
La forme D du fructose (on dit D-fructose) est un des trois sucres que l'on trouve généralement dans les plantes (les racines, les fruits, les tiges...), avec le glucose et le saccharose.
Il a une saveur sucrée, environ deux fois et demie plus sucrée que le saccharose, qui est lui même bien plus sucré que le glucose.
La molécule comporte six atomes de carbone, six atomes de carbone et douze atomes d'hydrogène.
En solution aqueuse (le cas général, pour les aliments), la molécule est refermée sur elle-même (67 % des molécules, à instant particulier).
Jadis, lorsque la chimie était encore dans l'enfance, on a cru que le D-fructose (on ne faisait pas la différence entre le D-fructose et le L-fructose) était fait par l' "assemblage" de molécules d'eau à des atomes de carbone, comme si l'on avait eu la formule (C-H2O)6.
Et c'est la raison pour laquelle on a parlé d'hydrates de carbone.
Mais la chimie a progressé, et elle a corrigé cette idée très fausse. Raison pour laquelle on ne doit plus parler d'hydrates de carbone, mais d'oses, de sucres, etc.
D'ailleurs, il ne s'agissait pas de simples assemblages, mais bien de molécules identifiables (après qu'on avait compris ce qu'était une molécule !).
La réaction du D-fructose et du D-glucose conduit à la formation du saccharose, ou sucre de table.
Les atomes étant réarrangés, lors de la réaction (et certains étant perdus), il n'y a plus de molécules de D-fructose ni de molécules de D-glucose dans la molécule de saccharose, mais seulement des "résidus" de D-glucose et de D-fructose.
Cristallisé, le D-fructose fait une poudre blanche.
Cette poudre peut se dissoudre dans l'eau, pour faire une solution aqueuse de D-fructose.
Vous voulez savoir quoi d'autre ?
samedi 25 décembre 2021
Les diagrammes logarithmiques
N'oublions pas mes années passées (pour moitié) à faire la revue de vulgarisation Pour la Science : alors qu'il s'agit d'une revue de "haut niveau", illisible par ceux qui n'ont pas un minimum de bagage scientifique, je savais bien, naguère, que les graphes étaient difficiles pour beaucoup de lecteurs, et qu'il fallait donc les éviter ou les expliquer de façon détaillée. Nos lecteurs pouvaient comprendre la notion de fonction, mais il ne fallait pas en abuser. Manifestement, ce que je dis ici est plus "avancé", et certains me pardonneront, j'espère, car c'est pour des étudiants engagés dans des étudies techniques, technologiques ou scientifiques que j'écris.
Mon objectif : expliquer l'intérêt des diagrammes logarithmiques (semi logarithmiques ou "log-log"), mais, aussi, expliquer pourquoi il faut en user avec circonspection.
Pour les besoins de l'explication, je crée deux séries de points, associées respectivement à des fonctions x^3 et x^10 (à noter que je fais tout cela en utilisant ce merveilleux logiciel qu'est Maple : comment un étudiant en technique, technologie et science peut-il ne pas l'utiliser ?) :
for i to 10 do
p[i] := i^3;
q[i] := i^10;
end do;
Commençons par examiner une représentation de la fonction
x^3;
. Là, sur un axe horizontal, nous portons des valeurs de x, et nous indiquons verticalement les valeurs de la fonction. Les deux axes sont gradués régulièrement : pour l'axe horizontal, par exemple, il y a autant de distance entre 2 et 3 qu'entre 5 et 6, puisque les deux différences 3-2 et 6-5 sont égales (à 1).
La représentation de la fonction est la suivante :
with(plots);
pointplot({seq([i, p[i]], i = 1 .. 10)}, labels = ["x", "y=f(x)"], view = [0 .. 10, 0 .. 1000], symbol = soliddiamond, color = blue, symbolsize = 30);
Si nous voulons maintenant représenter la fonction
x^10 sur le même graphe, nous rencontrons une difficulté, car voici ce que nous sommes amenés à tracer :
pointplot({seq([i, q[i]], i = 1 .. 10)}, labels = ["x", "y=f(x)"], view = [0 .. 10, 0 .. 1000], symbol = soliddiamond, color = blue, symbolsize = 30);
Là, un seul point peut être indiqué, car le deuxième, correspondant à l'abscisse x = 2, doit apparaître à une ordonnée 2^10 = 1024 qui sort du cadre du graphique.
Bien sûr, on pourrait agrandir ce dernier :
pointplot({seq([i, q[i]], i = 1 .. 10)}, labels = ["x", "y=f(x)"], view = [0 .. 10, 0 .. 2000], symbol = soliddiamond, color = blue, symbolsize = 30);
pointplot({seq([i, q[i]], i = 1 .. 10)}, labels = ["x", "y=f(x)"], view = [0 .. 10, 0 .. 10^11], symbol = soliddiamond, color = blue, symbolsize = 30);
Et ce n'est pas bon, parce que, cette fois, les premiers points semblent tous à la même ordonnée, ce qui est loin d'être vrai !
La fonction logarithme est intéressante, parce qu'elle permet de bien voir les différences, aussi bien quand les valeurs sont petites que quand elles sont grandes
pointplot({seq([i, log(p[i])], i = 1 .. 10)}, labels = ["x", "y=f(x)"], view = [0 .. 10, 0 .. 20], symbol = soliddiamond, color = blue, symbolsize = 30);
Bien sûr, on évitera de penser que la courbe soit ainsi de type racine carrée, mais, au moins, on pourra voir les différences sur les points initiaux comme sur les points finaux.
Mieux même, on pourra voir des différences qui auraient été difficiles à voir autrement :
with(plottools);
a := pointplot({seq([i, log(p[i])], i = 1 .. 10)}, labels = ["x", "y=f(x)"], view = [0 .. 10, 0 .. 20], symbol = soliddiamond, color = blue, symbolsize = 30);
b := pointplot({seq([i, log(q[i])], i = 1 .. 10)}, labels = ["x", "y=f(x)"], view = [0 .. 10, 0 .. 20], symbol = soliddiamond, color = blue, symbolsize = 30);
display({a, b});
Jusque ici, on observera que je n'ai pas utilisé d'échelles logarithmiques, pour les graphes, mais seulement représenté les logarithmes des valeurs. Je trouve cela plus simple.
Puis, pour terminer, je vous invite à regarder ce que donne la première fonction quand on affiche le logarithme de x, et le logarithme de y :
pointplot({seq([log(i), log(p[i])], i = 1 .. 10)}, labels = ["x", "y=f(x)"], view = [0 .. 10, 0 .. 20], symbol = soliddiamond, color = blue, symbolsize = 30);
Une droite ! Mais on se souvient que c'est une courbe qui est loin d'être linéaire.
jeudi 23 décembre 2021
Du positif, toujours du positif !
A une jeune amie, aujourd'hui repartie du laboratoire, je demandais comment ça allait, ce qu'elle faisait de beau par les temps qui courent, et elle me répond :
"J’ai eu un trimestre assez chargé car j’essayais de valider mes heures de laboratoire et on a fini le programme principal pour l’année (il nous reste les options le trimestre prochain).
En ce moment je m’intéresse aux recherches des professeurs dans le departement de chimie pour voir sur quoi j’aimerai faire ma thèse de master l’an prochain. La bonne nouvelle est que j’ai éliminé la chimie organique, de sorte que je commence à voir un peu plus ce que j’aimerais étudier !
Et ma réponse est immédiate :
Super pour tes études... mais n'oublie pas que la vie se construit avec des envie, et pas avec des exclusions, car ce sont les enfants qui disent "je n'aime pas" (les épinards).
D'ailleurs, tu me fais penser à xxxx, que j'ai vu hier, et qui est à xxxx, ayant réussi son concours. Je lui avais conseillé d'être excellent dans "quelque chose", n'importe quoi mais quelque chose. Et cet âne s'est décidé, avec un copain, de se lever très tôt et de bosser pour devenir exceptionnel... mais il a fait passer la forme avant le fond.
Ouf, dans nos discussions d'hier, il a compris le message, et il vient de se décider à être bon en "biochimie". Un grand pas de fait.
lundi 20 décembre 2021
La corde à vide, l'omelette nature et les exercices
Une jeune amie violoncelliste, déjà professionnelle, est partie à l'étranger pour recevoir les enseignements d'un des plus grands violoncellistes du monde... et elle a passé six mois à jouer des "cordes à vide" : la main gauche ne modifie pas le son des cordes, il n'y a pas de vibrato, et c'est seulement le bras droit qui fait le son, avec l'archet.
Pourquoi a-t-on cantonné la jeune violoncelliste dans cette activité ? Parce que, malgré son niveau technique ou artistique avancé, c'est le jeu du bras droit, de la main droite qui pêchait, qui était le plus à même de développer des qualités obtenues par ailleurs, parce que c'était l'essentiel, la condition du reste. Parce que jouer, avec toutes les difficultés à la fois (la main droite, la main gauche, la lecture, l'expression, etc.) ne lui permettait pas de résoudre le principal problème qui entravait son développement musical.
De même, les jeunes cuisiniers qui allaient apprendre chez Ferdinadt Point étaient cantonnés à la confection d'omelettes nature. Pourquoi ? Parce que, sur une telle préparation, réduite au minimum, il y a déjà beaucoup à maîtriser, beaucoup à comprendre. Il faut un vrai tour de main pour arriver à une omelette proprement formée, bien repliée sur elle-même (de ce choc donné en biais sur la queue de la poêle), baveuse au centre, mais quasi croustillante sur la surface, bien dorée, bien prise, tendre, moelleuse, bien assaisonnée.
Et puis, dans un apprentissage classique de la cuisine, où l'on n'avait pas séparé les composantes sociale, artistique et technique, il y avait déjà beaucoup de difficultés à arriver à un produit réussi de tous ces points de vue, sans analyse.
Il n'y a guère de raison pour laquelle l'apprentissage du calcul doive être différemment, pour laquelle l'apprentissage de la chimie puisse être différent. Et c'est la raison pour laquelle les manuels qui proposent des exercices de difficultés croissantes s'imposent. J'ai déjà évoqué le livre de Nicolas Piskounov, Calcul différentiel et intégral, qui, même s'il a quelques imperfections, reste très bien fait, avec des exercices d'abord simples, simplissimes même, puis dont la difficulté augmente lentement. On ne saurait trop engagé inviter nos jeunes amis à faire TOUS les exercices, dans l'ordre où ils sont proposés.
L'apprentissage de la chimie, d'autre part ? Il y a lieu d'apprendre les gestes essentiels, en partant des plus simples, avant d'aller faire des choses compliquées. Je crois, ainsi, que peser, est la base. D'ailleurs, c'est amusant de voir, sur nos cahiers de laboratoire, que certains stagiaires s'améliorent progressivement : on voit les pesées, à 0,0001 g près, devenir de plus en plus reserrées, avant d'arriver au stade où les trois pesées successives conduisent à des valeurs égales.
Intéressant, aussi, le soufflage de verre, parce qu'il apprend à bouger correctement les doigts. Intéressant les dosages à la burette, parce qu'ils permettent de penser aux divers aspect expérimentaux.
Et c'est seulement ensuite que, ayant compris que le soin est essentiel pour l'obtention de bons résultats expérimentaux, on pourra faire des montages plus compliqués, pour des extractions au Soxhlelt, pour des distillations, pour la confection d'organomagnésiens...
samedi 18 décembre 2021
Quels commandements pour la cuisson des légumes ?
Les légumes sont des parties de végétaux, comme les fruits, mais contrairement à ces derniers, ils n'ont pas tous les sucres qui sont appréciés par les animaux : ces derniers sont "manipulés" par les plantes, dont ils disséminent les semences.
Mais les plantes doivent aussi protéger les parties vitales : des composés phénoliques variés des végétaux sont amers ou astringents.
En outre, les parties non-fruit des plantes doivent aussi, souvent, assurer la structure de la plante, d'où des composés de structure, qui rigidifient les plantes. Il s'agit des "fibres", notamment dans les ciments intercellulaires, mais aussi de divers polysaccharides : celluloses, hémicelluloses, pectines.
Sans compter la lignine, qui donne beaucoup de rigidité
Bref, il y a lieu d'attendrir, d'amollir les légumes, notamment en dégradant la paroi végétale.
Et il faut lutter contre l'amertume et l'astringence.
L'impossible théorique et l'impossible pratique
La considération de l'existence des molécules nous permet d'imaginer des choses quasi impossibles : pas impossibles en théorie, mais impossibles en pratique.
Je m'explique en considérant un cristal de sel posé sur une table.
Un tel cristal est un empilement régulier, dans les trois directions de l'espace, d'atomes alternés de sodium ou de chlore. Pensons à de petits cubes empilés... mais qui vibrent, dans les trois directions de l'espace.
On entend parfois parler d' "ions" pour un tel cristal, mais débarrassons-nous pour l'instant de cette notion : c'est seulement que les atomes de chlore et de sodium se sont échangés des particules nommées "électrons", et le fait qu'un électron de chaque atome de sodium ait été donné, que chaque atome de chlore ait capté un tel électron, rend les atomes électriquement chargés, de sorte qu'ils s'attirent mutuellement : c'est cela qui donne la cohésion au cristal de sel, qui le rend dur.
Mais revenons à notre cristal, avec les atomes dans des positions fixes, aux noeuds d'un réseau. Les atomes vibrent, avons-nous dit, autour de leur position moyenne : cela signifie que, à un moment donné, certains sont décalés vers le haut, ou vers le bas, ou vers la gauche, ou vers la droite, ou vers l'avant, ou vers l'arrière.
Considérons seulement le mouvement vers le haut ou vers le bas, car on pourrait faire le même raisonnement pour les autres directions. A un moment donné, il y a une chance sur deux qu'un atome particulier aille vers le haut, et une chance sur deux qu'il aille vers le bas. Pour deux atomes, il y a quatre possibilités : les deux atomes vont vers le haut, ou les deux atomes vont vers le bas, ou bien un atome va vers le bas tandis que l'autre va vers le bas, et encore le dernier cas, avec le premier atome vers le bas tandis que l'autre va vers le haut.
Imaginons que le cristal soit fait seulement de deux atomes : avec les deux atomes qui vont vers le haut, ce serait le cristal tout entier qui irait vers le haut, qui se soulèverait de la table.
Et, en supposant un changement de direction toutes les secondes, on aurait un soulèvement toutes les quatre secondes.
Mais le cristal n'est pas fait de seulement deux atomes, mais d'un nombre considérable : environ 10 milliards de milliards. Et la probabilité que plus d'atomes soient vers le haut que vers le bas serait considérablement diminuée, d'autant que les changements ne sont pas toutes les secondes, mais bien plus rapidement.
Bref, on voit que, en théorie, le cristal peut se soulever spontanément, sans miracle, mais que, en pratique, nous ne le verrons jamais faire ce qui serait considéré comme miraculeux.