jeudi 8 décembre 2022

Il faut des contrats précis !

 
Je reviens sur la question des évaluations, au cours des études, et quelle que soit la discipline.

Dans un billet précédent, j'ai discuté la question des évaluations des professeurs par les étudiants, et j'évoquais une difficulté régulière, à savoir que les évaluations sont parfois mauvaises quand le contrat d'études n'est pas clair, quel que soit la qualité du professeur.

Et il est exact que, étudiant en formation initiale (si l'on peut dire), j'ai trouvé détestable l'arbitraire de certains professeurs. Je ne dis pas que ces professeurs étaient mauvais, qu'ils enseignaient des choses fausses sans rien comprendre (ce qui se rencontre !), mais je dis ici que la précision des consignes qu'ils donnaient pour les devoirs ou examens laissait un flou où il y avait place pour l'arbitraire. C'est cela surtout que nous leur reprochions.

Dans une évaluation, qui correspond donc à une sorte d'examen, il y a lieu que la commande soit claire. Et j'ai bien vu des collègues très dévoués, très gentils, très impliqués, qui étaient mal évalués parce que le contrat qu'ils proposaient ne pouvait pas être respecté...  et qu'il ne l'était donc pas.

Là, je sors d'un examen de cuisine, où j'ai retrouvé ce même flou, qui était d'ailleurs aggravé par des différences entre les différents membres du jury.

D'une part, quand les mots de l'énoncé ne sont pas justes, ou quand ils sont flous, ou discutables, les membres du jury ne peuvent pas s'accorder sur les évaluations qu'ils font puisqu'ils n'évaluent pas les mêmes chose.
Par exemple si l'on demande d'évaluer la "saveur" d'un plat, alors quelqu'un qui n'a pas un usage affuté des mots jugera le sans doute le goût tandis que quelqu'un qui sait ce qu'est la saveur jugera... la saveur. Ce n'est pas la même chose !

De ce fait on comprend bien que les mots utilisés dans le contrat didactique sont suprêmement importants. Mais au-delà des mots, il y a les contenus, et là encore, la question se pose, car si l'on demande, par exemple, de respecter une disposition dans une assiette, les choses sont claires : la disposition est respectée ou pas. En revanche, si l'on ne stipule pas qu'une sauce doit être conforme à un canon très spécifique, par exemple celui de Joseph Favre, ou celui d'Edouard Nignon, ou celui de Bocuse, alors les étudiants sont parfaitement habilités à produire des choses différentes selon les bases qu'ils utiliseront. Et, en conséquence, les professeurs ne seront pas habilités à  les sanctionner de ne pas avoir utilisé la base qu'il avait implicitement en tête.

Il y a donc lieu d'être le plus précis possible, dans la commande.

D'ailleurs j'ajouterai volontiers que, dans l'évaluation, les critères et leur pondération doivent être explicites, parce que si, dans un plat, on ne stipule pas que le goût est essentiel, alors on peut obtenir une sauce parfaitement exécutée du point de l'exécution, et parfaitement ratée du point de vue du goût.

Oui, je veux des référentiels explicites, des critères d'évaluation explicites.

Un plat imposé, dans un examen de cuisine : n'oublions pas les "commandements" de la cuisine

C'est ici que se trouve l'analyse que je fais d'un examen de cuisine que je présidais hier : https://scilogs.fr/vivelaconnaissance/un-plat-impose-dans-un-examen-de-cuisine/

Pour un examen de cuisine

 J'analyse l'examen de cuisine que j'ai présidé hier : je ne suis pas un artiste, mais il y a lieu de bien penser la technique, d'abord. 


Voir ici https://scilogs.fr/vivelaconnaissance/a-propos-de-concours-de-cuisine/


mercredi 7 décembre 2022

 Le blanc d'oeuf

Ici, je veux décrire le blanc d'oeuf.

Nous savons tous qu'il s'agit d'un liquide un peu gluant, épais, jaune tirant vers le vert et, en réalité, structuré :  comme on le voit quand on casse un œuf dans une assiette très plate ; autour du jaune, le blanc se répartit en une couche avec des marches, et d'autant plus de marches d'ailleurs que l'oeuf est plus frais.

Évidemment, s'il y a du liquide en hauteur, en haut des marches, c'est qu'il ne coule pas, et s'il ne coule pas, cela prouve que ce liquide est retenu.
Effectivement, il est en quelque sorte gélifié : le blanc d'oeuf est un gel  très fragile, mais un gel quand même, et les marches sont toutes des gels différents.

Cela dit, ce qui nous intéresse cette fois, c'est la constitution de ce blanc d'oeuf en molécules puisque nous avons vu que les molécules sont l'essentiel de la matière de la cuisine.

Quand on regarde un blanc d'œuf à la loupe, il est donc transparent et légèrement jaune tirant vers le vert d'ailleurs. Mais il paraît homogène.

Il faut encore un microscope extraordinairement puissant pour voir un tableau bien différent : cette fois, on voit les très nombreux objets tous identiques, que l'on a nommé des molécules d'eau, qui bougent en tous sens, se heurtent, rebondissent les uns contre les autres, à des vitesses de plusieurs centaines de mètres par seconde. Mais contrairement à l'eau pure, le "tableau moléculaire" ne s'arrête pas là : il y a aussi, entre les molécules d'eau,  des objets bien plus gros que les molécules d'eau, comme des fils repliés sur eux-mêmes.
Ces objets-là ce sont ce que l'on nomme des molécules de protéines.

Dans le blanc d'oeuf, il y a des molécules de protéines d'environ 300 sortes.
Et au total, la masse des protéines dans un blanc d'oeuf est environ 10 fois plus faible que la masse des molécules d'eau.

Ces molécules de protéines bougent également mais bien plus lentement que les molécules d'eau.

Les évaluations

 Recevant d'un collègue, un message à propos d'évaluation d'une de mes interventions par ses étudiants, je lui réponds que, pour les évaluations, disons que, au delà du contenu (que l'on peut ajuster) comme on veut, le style un peu provocateur peut déplaire... mais en général aux plus bornés, sans humour (amusant : je suis régulièrement mal évalué par les plus mauvais des étudiants, dans des groupes, et très bien par les bons... ce qui me va assez bien).

En revanche, au delà de la boutade précédente,  il faut souvent faciliter les choses en disant bien le contenu à l'avance, et en respectant cette sorte de "contrat". Et l'évaluation, alors, consiste à voir l'adéquation du contrat.
Chaque fois que j'ai vu une évaluation mauvaise des professeurs (pour moi ou pour d'autres, notamment dans le cadres des Hautes Etudes de la Gastronomie, c'était une différence entre la "commande" et le "résultat".

D'ailleurs, il y a lieu de ne pas confondre une conférence et un cours, pour lequel il doit y avoir
- l'exposé d'un chemin d'études, dans un paysage que l'on décrit
- des monitions pour que les étudiants étudient en suite

Mais je le répète, il faut que la commande soit initialement claire pour tous.

mardi 6 décembre 2022

La distillation, c'est une séparation physique, pas de réaction chimique

Au premier ordre, la distillation est une opération de physique et pas de chimie.

J'ai expliqué que les matières alimentaires étaient le plus souvent fait de molécules, très petits objets de différentes sortes  :  molécule d'eau dans l'eau, molécule de triglycérides dans les huiles, molécules de saccharose dans les cristaux de sucre....

La chimie est cette science qui explore les transformations des molécules.
Par exemple, quand on chauffe énergiquement du sucre, alors il se transforme comme chacun sait quand on fait du caramel : on part de cristaux transparents, et l'on obtient une matière brune, avec une saveur moins sucrée, un peu amère, et une belle odeur de caramel.

Lors de cette transformation qu'est la caramélisation, les objets tous identiques qui étaient les molécules de saccharose du sucre sont cassés, et certains morceaux se ré-associent de sorte que finalement on obtient des molécules différentes de celles du saccharose initial.

Il n'y a pas de "molécule de caramel" au sens d'une seule sorte de molécules, mais des molécules de tas de sortes différentes avec des noms qui n'ont pas d'intérêt ici.

Dans d'autres cas, il n'y a pas de réorganisation des molécules  (brisure, morceaux qui se lient, etc.), mais simplement une séparation.

C'est le cas de la distillation.

Partons par exemple de vodka, qui est faite de 60 pour cent d'eau et de 40 pour cent (en volume, mais c'est un détail) d'un alcool que l'on nomme éthanol : avec un super microscope ,on verrait environ 6 molécules d'eau pour 4 molécules d'éthanol.

Et tout cela grouille en tous les sens, car la vodka est liquide à la température ambiante.

Si l'on chauffe cette vodka, alors les molécules d'éthanol partent les premières du liquide, formant une vapeur  (invisible) qui s'élève au-dessus du récipient qui contient la vodka chauffée.
Cette vapeur, à ce stade, est faite quasi exclusivement de molécules d'éthanol. Et, à ce stade, la température, du liquide, comme celle de la vapeur, est alors d'un peu moins de 80 degrés.

Mais quand toutes les molécules d'éthanol sont parties sous la forme de vapeur, il ne reste presque que des molécules d'eau dans le liquide.
Si l'on chauffe alors d'avantage, alors la vapeur qui s'échappera sera constituée de molécules d'eau.

La vodka, c'est donc un mélange de deux sortes de molécules : des molécules d'eau, et des molécules d'éthanol.

Et la distillation consiste à chauffer pour évaporer, puis refroidir les vapeur pour qu'elles se "recondensent", qu'elles forment un liquide.
Et c'est ainsi que le liquide obtenu d'abord, c'est de l'éthanol bien plus concentré, tandis que l'eau reste dans le liquide.

La distillation, qui ne casse pas les molécules, n'est pas une transformation moléculaire, ce n'est pas de la chimie, mais de la physique, comme ces opérations que la filtration, le broyage, la décantation...



 Le monde (de la cuisine) est fait de molécules

Puisqu'il y a lieu d'expliquer la chimie commençons par les principales matières que nous rencontrons en cuisine : l'eau, l'huile, le sel, le sucre, la farine, le beurre.


Commençons donc avec l'eau


Pour l'eau, imaginons un verre d'eau devant nous. Nous percevons un liquide incolore et transparent, homogène.
Si nous le regardons avec une loupe, nous continuons à voir ce liquide incolore et transparent, apparemment homogène.
Il faut un microscope extraordinairement puissant pour finalement distinguer que l'homogénéité n'est qu'apparente et que, en réalité, l'eau est faite d'une myriade de petits objets tous identiques, qui bougent en tous sens et très rapidement (plusieurs centaines de mètres par seconde).

Il ne nous sera pas difficile d'accepter de nommer ces objets des "molécules d'eau", n'est-ce pas ?

Je propose ici de ne pas aller plus loin dans la description de ces molécules et de nous contenter de dire que l'eau est en réalité constitué de ces molécules d'eau entre lesquelles il n'y a rien, du vide.
La masse de l'eau, c'est la somme des masses de tous ces petits objets tous identiques.

Et la différence entre l'eau du robinet, ou  l'autre pluie, ou l'eau de mer, et cetera,  cela tient à la présence, parmi ces molécules d'eau, d'autres molécules de nature différente, ce que l'on pourrait nommer en quelque sorte des impuretés si l'on se réfère à l'eau parfaitement pure.
Il faut d'ailleurs ajouter que le mot "impureté" ne doit pas avoir de connotation péjorative, car la neige fondue , qui fait de l'eau très pure, et néfaste pour  notre organisme, et nous avons besoin de la présence de ce que l'on nomme des "ions",  parmi les molécules d'eau.

Mais là , avec le mot "ion",  je sais  que je suis allé trop trop loin, et je propose de passer à la seconde matière que j'avais annoncée,  à savoir l'huile.

L'huile est encore un liquide, également transparent, plutôt jaune... bien que cette couleur soit encore due à des "impuretés" : l'huile parfaitement purifiée serait incolore.  

À nouveau, à l'œil nu, l'huile paraît homogène ;  et, à la loupe, elle le paraîtrait aussi.
Et là encore, il faut un microscope extraordinairement puissant pour voir que l'huile est composée d'une myriade d'objets très semblables (pas parfaitement identiques),  et différents des molécules d'eau.
Nommons-les "molécules de triglycérides".

Avec ces deux exemples,  on voit  on comprend que la matière est souvent faite de molécules, et c'est exact  : nous avons déjà rencontré les molécules d'eau et les molécules de triglycérides.


Passons donc au sucre.

Cette fois, c'est un solide.
Si nous regardons les grains de sucre au microscope, nous voyons que ce sont des solides transparents, avec des faces planes.
Avec un très gros microscope, les grains sont encore homogènes, dans l'intérieur du grain.
Mais  si l'on prend maintenant un microscope extraordinairement puissant, alors, là encore, on s'aperçoit que le sucre est composé d'objets en très grand nombre, tous identiques : nous les  nommerons des molécules de saccharose.

Cette fois, dans le cristal, les molécules de saccharose ne bougent pas ou, plus exactement, elle se contentent de vibrer sur place, car elles sont empilées régulièrement. C'est d'ailleurs cela qui distingue un solide d'un liquide.


Passons maintenant au sel.

Cette fois, nous voyons encore, à la loupe, que le sel est fait de cristaux tous transparents. D'ailleurs pour le sel comme pour le sucre, la couleur blanche d'un tas de sel ou d'un tas de sucre n'est pas due aux grains, qui sont individuellement transparents et incolore, mais résulte de la réflexion de la lumière blanche du jour sur les faces de ces cristaux ; plus il y a le cristaux, plus le tas apparaît blanc, alors même que chaque cristal est transparent.

Pour le sel, si nous utilisions notre super microscope, nous verrions deux types d'objets : ces objets sont des "atomes de chlore" et des "atomes de sodium". Ils sont régulièrement empilés comme des cubes, et c'est leur liaison très forte qui assure la solidité du cristal de sel.

En réalité, ces atomes de chlore et les atomes de sodium, dans un cristal de sel, se sont échangés une petite partie qui est nommée "électron", ce qui a changé leur nom, d'atome en ion.
Mais c'est vraiment secondaire pour notre propos et je propose de rester à l'idée que  les cristaux de sel sont composés de ce qu'on nomme le chlorure de sodium, une entité où l'on imagine groupés un atome de chlore et un atome de sodium.


Avec le beurre, les choses se compliquent un peu.


Oui, le beurre est plus complexe... comme on le pressant quand on chauffe doucement du beurre : dans le beurre que l'on clarifie ainsi en chauffant très doucement et longtemps, on voit deux liquides se séparer, avec un liquide blanchâtre en bas et un liquide transparent et jaune par-dessus.

Le liquide blanchâtre du bas, c'est pratiquement de l'eau, et le liquide transparent et jaune par-dessus, c'est pratiquement de l'huile.
D'ailleurs on dit que le beurre fondu fait huile.

Effectivement, dans la partie inférieure, le super microscope montrerait essentiellement des molécules d'eau, tandis qu'il montrerait des molécules de triglycérides dans le liquide supérieur.
Dans le beurre lui-même, l'organisation de ces molécules est un peu compliquée, et je propose de garder ça pour une autre fois.


Pour passer maintenant à la farine, plus compliquée que le beurre.

La farine s'obtient par mouture de grains de blé, dont on élimine d'abord les enveloppes, ce que l'on nomme les sons.
Il reste, quand on moud la farine, une poudre blanche, d'autant plus blanche d'ailleurs que l'on s'est plus approché du cœur du grain.

Cette fois, une expérience encore nous permet de voir que la farine n'est pas une matière homogène : cette expérience fut faite  pour la première fois au 18e siècle, par des chimistes, et elle a pour nom  "lixiviation" :  
- on part de farine,
- on ajoute un peu d'eau,
- on travaille beaucoup pour faire une pâte qui devient de plus en plus dure à mesure que l'on travaille,
- puis on met cette pâte dans une grande bassine d'eau claire
- et on la malaxe doucement : en sort une poudre blanche que l'on a nommé l'amidon, et il reste entre les doigts une sorte de chewing-gum jaunâtre que l'on a nommé le gluten.

Je me hâte de dire que ni l'amidon ni le gluten ne sont chacun composés de molécules toute identiques, et l'on pourrait continuer à fractionner comme on vient de le faire, pour séparer l'amidon en plusieurs types de molécules dites de polysaccharide ; de même, le gluten en plusieurs sortes de protéines.

Mais on retrouve encore notre même idée la farine est faite de molécules,  certes de plus de variétés que dans l'eau ou dans l'huile, mais quand même, des molécules.

Et c'est ainsi que  le monde matériel de la cuisine est essentiellement fait de molécules.
Dans la farine, nous sommes sur la piste d'une complexité croissante qui augmenterait encore par exemple avec les viandes, les poissons, les fruits ou les légumes... mais ce sera pour une autre fois.