mardi 16 juillet 2013

Vive les sciences quantitatives, puisqu'elles cherchent sans cesse à « valider


--> Lors d'un précédent billet, j'ai vanté l'intelligence remarquable de la méthode mise en oeuvre par les sciences quantitatives. Ici, je voudrais faire part d'une caractéristique merveilleuse et hélas trop méconnue des sciences quantitative : la validation.
C'est quelque chose qui n'est guère enseigné au collège, au lycée, ou même à l'université. Au mieux, on nous dit qu'il faut « vérifier » les calculs, en les refaisant, en faisant une estimation du résultat, un ordre de grandeur, afin de voir que le résultat obtenu n'est pas exorbitant. C'est bien insuffisant, toutefois.
Or la validation est quelque chose de vraiment essentiel, et il faut répéter qu'il n'y a pas de travail scientifique sans beaucoup de validation.

De quoi s'agit-il ? Il s'agit de considérer, d'une certaine façon, que le diable est caché derrière tout résultat expérimental, derrière tout calcul. De ce fait, nous devons considérer a priori que nos résultats scientifiques, sont faux.
Oui, nos propres résultats, ces résultats que nous avons obtenus à la sueur de notre front, sont biaisés, gauchis, erronés, fautifs... Malgré tous le soin avec lequel nous avons préparé nos expériences, malgré tout le temps que nous avons consacré à nos études, nous devons craindre d'avoir laissé passer des erreurs, tels des poissons dans un filet percé. De même pour les calculs : même s'ils nous ont fait transpiré, même si nous avons séché pendant des jours, nous devons craindre qu'ils soient faux.

En conséquence de quoi nous devons trouver des moyens de tester les résultats expérimentaux, les calculs.
Au minimum, au tout petit minimum, une expérience doit être refaite plusieurs fois de suite. Pour les calculs, c'est une autre affaire, bien plus intéressante, et je propose de discuter cela une autre fois.
Revenons donc aux expériences et à leurs résultat. Il s'agit donc de refaire les expériences, mais pas de les refaire « automatiquement », telles des machines, pas les refaire à l'identique, sans quoi, évidemment, les mêmes erreurs se produiront à nouveau. Il s'agit de les refaire en exerçant un esprit critique, en remettant en question tous les gestes qui ont été faits pour pour la production du résultat. Non seulement nous devons pouvoir justifier toutes les caractéristiques des expériences, mais nous devons douter de la façon dont elles sont conduites, dont nous les avons nous-mêmes conduites, et des résultats qui sont donnés

Un exemple : la simple mesure d'une température. Ordinairement, dans la vie quotidienne, on prend un thermomètre et on lit l'indication qu'il donne. En science, le strict minimum consiste à douter de la fiabilité de cet instrument de mesure, à le plonger par exemple dans un récipient contenant de l'eau et de la glace (ce que l'on nomme de la glace fondante), afin de vérifier que l'indication est bien 0 °C, puis à plonger le même thermomètre dans l'eau bouillante, afin de vérifier que l'on obtient bien cette fois une indication de 100 °C.
Deux mesures, c'est une indication, pas plus... alors que l'on s'intéresse à des valeurs qui ne sont ni 0 ni 100, mais à toutes les valeurs dans cette gamme. Avoir foi que que l'instrument donnera les bonnes mesures entre 0 et 100 alors qu'il donne seulement des mesures correctes pour 0 et pour 100 ? C'est la porte ouverte au diable.

Bref lors d'une expérience, il y a lieu de douter de tout, toujours, tout le temps, à tout moment, et l'on comprend que la répétition n'est qu'une indication de plus, guère mieux. Le bon scientifique a des raisons de mal dormir, car il ne doit compter que sur lui-même, se surveiller, s'évaluer, se corriger, craindre le diable... Chaque résultat doit être reproduit, discuté prudemment, obtenu par d'autres moyens... validé en un mot.

Est-ce une prudence excessive ? La question des « extractions » trouve que non. Par exemple, récemment, dans notre groupe, nous avons mis au point une nouvelle méthode d'analyse des sucres dans les tissus végétaux, et, après un long travail, nous avons montré que la meilleure méthode d'extraction de ces sucres, afin de les doser, était fautive de près de 50 % !
D'autre part, toujours dans notre laboratoire, des collègues qui s'intéressent aux éléments métalliques dans les végétaux ont montré que même avec l'utilisation d'eau régale bouillante (un mélange d'acide nitrique et d'acide sulfurique concentrés) ne ne permettait pas de séparer la totalité des métaux présents, en vue de leur analyse. Les erreurs, dans ce cas atteignent environ 10 %.
Dix pour cent, alors que nos méthode d'analyse sont juste à la partie par millième de milliardième ! On voit bien qu'il il y a là de quoi travailler beaucoup, et surtout, de quoi douter beaucoup, toujours, de nos résultats.
Il y a lieu de valider, et ce mot de validation doit absolument être prononcé très répétitivement devant les élèves, les étudiants, qu'ils soient en formation initiale ou en plein exercice de la science.


lundi 15 juillet 2013

La question de l'enseignement des sciences quantitatives



La question de l'enseignement des sciences quantitatives (pour les autres formes de savoir éventuellement nommées sciences, je suis incompétent) me taraude, parce que, élève, j'étais incapable d'écouter un professeur, en raison d'un tour d'esprit personnel un peu bizarre, sans doute pas entièrement recommandable. Du coup, ne pouvant écouter des professeurs, j'utilisais des livres (dans ma case, pendant le cours, et rarement des livres de la matière qui était exposée dans la salle).

Pourquoi faire ainsi ? Parce que je ne supportais pas de ne pas comprendre. Or je suis lent. Un livre (ou un site internet, aujourd'hui), c'est la possibilité d'aller à son rythme, et, notamment, de se donner le temps de s'apercevoir qu'on n'a pas compris un point, de s'arrêter pour bien comprendre.

Est-ce un bon conseil à donner aux étudiants que de leur recommander de ne jamais supporter de ne pas comprendre ? Oui, mille fois oui, s'ils sont conduits à travailler davantage, à aller chercher des compléments d'information, ou des explications meilleures que celles dont ils disposaient initialement.
Surtout, cela enseigne à apprendre, ce qui est bien mieux que se contenter d'apprendre.

Evidemment, il y a des difficultés, car savons-nous vraiment ce qu'est la température ? L'énergie ? Le désordre ? Toutes ces notions sont très imparfaitement comprises, même des « professionnels », et l'on n'irait pas loin si l'on s'arrêtait à chaque mot. Toutefois, il reste vrai qu'il y a des phrases vraiment incompréhensibles qu'il n'est pas possible de supporter. Ou, du moins, qu'il n'est pas possible de supporter sans poser la question : je ne comprends pas, pouvez-vous m'expliquer ?
Manifestement, une rénovation des systèmes d'enseignement s'impose !

dimanche 14 juillet 2013

Dimanche 14 juillet 2013 . Il faut que j'apprenne à expliquer ce qu'est un composé



« Une carotte est un assemblage de molécules : surtout de l'eau, puis  de la cellulose, des pectines, des sucres, des acides aminés... »

Cette phrase est à la fois juste... et incompréhensible pour tous mes amis qui ne connaissent pas la chimie. Elle n'est donc pas une explication correcte, et c'est pourquoi, aujourd'hui, j'ai décidé de donner des explications claires, parce que je sais que l'enjeu est de taille : il en va du développement de la cuisine, car, avec la cuisine note à note qui commence à apparaître, le succès dépendra de la bonne compréhension de l'idée de composé. Il en va aussi du débat démocratique sur les pesticides, le bio, les OMG, le risque chimique... : comment juger si l'on ne comprend pas ce dont on parle ?

Pour commencer, commençons par le sens du mot « molécule », et, pour le comprendre, commençons par une comparaison. Les molécules sont comme de très petites briques. Très, très petites, invisibles à l'oeil nu, ou même à la loupe, ou même au microscope optique classique. Elles sont environ mille fois plus petites que les plus petites structures que l'on peut apercevoir avec un bon microscope. Et de la même façon qu'il peut y avoir des briques les différentes formes, il est facile de comprendre qu'il peut exister des briques de différentes formes.

Ces briques constituent la matière : dans un morceau de matière, solide ou liquide, ou gazeux, il n'y a que des molécules, avec rien (du « vide ») entre. De l'eau, par exemple ? Elle est entièrement faite de « briques » toutes identiques, les «  molécules d'eau » : dans un verre d'eau, il y a plein de molécules d'eau, toutes identiques.
Une carotte, maintenant ? Elle est composée majoritairement d'eau : cette eau ne coule pas, ce qui signifie qu'elle est tenue, mais par quoi ? La encore, une comparaison s'impose : pensons à un aquarium empli d'eau ; cette fois, l'eau ne coule pas parce qu'elle est retenue par les parois de l'aquarium. De même dans une carotte il y a des espèces de parois, mais, dans ce cas particulier, il vaut mieux imaginer les parois qui forment les alvéoles dans un rayon d'abeilles. Le miel liquide est tenu dans les alvéoles, et les parois sont en cire. Pour une carotte, les alvéoles sont considérablement plus petites que les alvéoles des rayons d'abeille, et elles ne sont pas en cire, mais faites majoritairement de celluloses (encore des molécules, analogues à des piliers, cette fois) et de pectines (des câbles qui solidariseraient les piliers).
Mais enfin, voici l'image que je propose : à l'aide de piliers -molécules de cellulose et de câbles-molécules de pectines, construisons un volume alvéolé ; dans les alvéoles, ajoutons des briques-molécules d'eau. Nous avons là presque la structure d'une carotte ! Que manque-t-il ? Bien des détails, mais je propose que nous nous cessions de considérer l'architecture, la structure physique, pour nous concentrer sur la « composition chimique », les types de briques présents. Parmi les briques-molécules d'eau, il faut imaginer qu'il y a des briques-sucres, et des briques-acides aminés. Les sucres ? Il y en a trois sortes : les briques glucose, les briques fructose, et les briques saccharose. Les acides aminés ? Pensons à une vingtaine de sortes de briques que nous nommons glycine, alanine, tyrosine, tryptophane... Prenons de ces briques, et ajoutons-les dans les alvéoles, parmi les briques molécules d'eau. Cette fois, l'assemblage que nous avons construit est solide, mais il est composé essentiellement de liquide ; l'eau  dissout les sucres et les acides aminés.
Évidemment, il manque encore beaucoup de choses pour faire une racine de carottes : des protéines, des pigments... Et des composés qui font marcher tout l'ensemble, une sorte de plan qui est exécuté automatiquement : les molécules d'acide désoxyribonucléique, ou ADN.
Arrêtons-nous là, toutefois, pour passer à la notion de « composé ». Jusqu'ici, nous avons parlé de molécules. Par exemple, les molécules d'eau. Ce que nous n'avons pas encore vu, c'est que l'eau est un composé. Non pas qu'elle soit « composée » de molécules d'eau, mais parce que ce que l'on nomme eau est une sorte de molécules. Il y a là la différence entre un objet d'une sorte, et la catégorie d'objet. Un chêne particulier est un chêne, mais les chênes forment une catégorie.

samedi 13 juillet 2013

Samedi 13 juillet 2013. Les sciences de l'homme et de la société


« Sciences humaines et sociales » ? C'est soit une périssologie (un pléonasme mal maîtrisé, donc une erreur), soit une impossibilité !
Il s'agit ici de bien comprendre que la faute du partitif est partout, et que cette faute de langue conduit à des erreurs de pensée.

Qu'entend-on avec « sciences humaines » ? Que, a contrario, il existerait des sciences inhumaines ? Qu'entend-on avec « sciences sociales » ? Que les autres sciences seraient asociales ?
En réalité, les deux expressions sont erronnées, car les sciences, faites par les êtres humains sont toutes humaines, mais les sciences elles-mêmes ne sont pas des êtres humains ; les sciences, d'autres part, ne sont pas sociales, car elles ne le seraient que si elles étaient une émanation du groupe, ce qui n'est pas ce que l'on signifie.

Derrière tout cela, il y a l'erreur, hélas répandue, du « partitif », à savoir que le « cortège présidentiel » n'est vraiment une expression juste que si le cortège est le président ; autrement, on doit parler du cortège du président, ce qui n'est pas la même chose.
Même difficulté, souvent incomprise, derrière l'expression « sciences appliquées » : Louis Pasteur a combattu toute sa vie cette expression, parce qu'elle est une impossibilité, dans la mesure où les sciences, précisément, ne sont pas appliquées, sans quoi elles deviendraient de la technologie, de la technique. Il y a une différence entre « sciences appliquées » et « applications des sciences » : la première expression est une erreur grave, alors que la seconde est parfaitement juste. Pasteur prenait l'exemple de l'arbre et du fruit, sans le pousser beaucoup, mais on pourrait ainsi parler d' « arbre fruité » et de « fruit de l'arbre » : là, on voit mieux l'erreur du partitif !

Pour en revenir aux sciences « humaines et sociales », cela n'existe pas : il y a des sciences de l'homme et de la société.

vendredi 12 juillet 2013

Merveilleux Claude Bernard



Je ne crois pas encore avoir dit ici toute l'admiration que j'ai pour Claude Bernard. Non pas parce que ma mère se prénomme Claude et mon père Bernard ; non pas parce que mon laboratoire se trouve rue Claude Bernard ; mais parce que Claude Bernard fut l'auteur d'un extraordinaire livre sur la médecine expérimentale. J'invite tous ceux qui ne l'ont pas lu à ne pas rester une seconde de plus sans le livre. Claude Bernard y dit mille choses importantes, mais il dit notamment que la médeicne est une technique. Pas un art, puisqu'il ne s'agit pas, avec le sens moderne donné à ce mot, de produire de l'émotion. Non, il s'agit de soigner. Soigner est un geste technique, comme programmer, comme enfoncer un clou, tout comme résoudre une équation.
Claude Bernard distingue très bien la technique, c'est-à-dire la pratique médicale, et la technologie, qui est l'étude de cette technique en vue de son amélioration. Il parle ainsi de médecine expérimentale, de recherche clinique. Pour la technologie médicale, cette recherche clinique, par exemple, il s'agit d'améliorer la pratique médicale, d'améliorer une technique, par son étude. C'est donc, dans le sens littéral du terme de la technologie, de techne faire, et, logos, étudier.
Enfin Claude Bernard évoque la science de la médecine, si l'on peut dire, qui est la physiologie. La recherche clinique doit se fonder sur la physiologie pour améliorer la technique médicale ; c'est la physiologie qui une science, une science quantitative ; pas la recherche clinique, ni la pratique médicale. D'ailleurs, le prix Nobel de médecine est en réalité un prix Nobel de médecine physiologie, tant il est difficile de distinguer ces champs, ou, disons le plus justement, tant ces trois champs interagissent. Ils interagissent, mais ils ne confondent pas : la technique n'est pas la technologie, et la technologie n'est pas la science ! Quel est l'objectif, dans chaque cas ? C'est la compréhension des mécanismes des phénomènes ? Alors il s'agit alors de physiologie. C'est l'amélioration de la pratique médicale ? Il s'agit alors de recherche clinique, de technologie. C'est le soin ? il s'agit alors pratique médicale, de technique.
Oublions les baratins, oublions les fantasmes, nommons justement les choses, et, pour apprendre à le faire, lisons et relisons Claude Bernard !

jeudi 11 juillet 2013

La communication ? La répétition



Je viens de relire à des lettres d'Albert Einstein adressé à Jacques Hadamard, mathématicien français. Nos deux hommes discutent de la question du pacifisme, alors que Hitler et les nazis menacent le monde de guerre. Au détour d'un paragraphe, je trouve cette extraordinaire remarque d'Albert Einstein, qui dit qu'il faudrait inonder l'Allemagne de ballons portant des messages de propagande inverse. Car c'est là la stratégie de Hitler : la répétition, la répétition, la répétition, litanique, la répétition ! Et l'on comprend bien que la folie de Hitler le conduisit effectivement à répéter le façon nauséeuse, à répéter, répéter, répéter...
Je ne peux m'empêcher de rapprocher cette observation de la phrase de Lewis Carroll, qui disait « Ce que je dis trois fois est vrai ».
Regardons le monde de communication, de démagogie, où nous vivons. N'est-ce pas cela que nous voyons : des répétions de messages, des décervelements par répétition ?
Les « sages » croient qu'en disant une fois un message rationnel, ils dispenseront une fois pour toute la « bonne parole »... mais ils sont fous : (1) de se croire sages ; (2) de croire qu'ils peuvent éviter de répéter, répéter, répéter.
Une conclusion : dans nos combats, répétons.

mercredi 10 juillet 2013

Luttons contre la bêtise ! Promouvons la précision et le travail !

Un remarquable article, dans le numéro 17 de "Hardware, canard PC", juillet août 2013, p. 94. Il est intitulé "Du cresson et du wi-fi", et l'auteur, le "Doc", y examine des résultats d'une étude sur l'effet des ondes électromagnétiques sur la croissance végétale.
Dans un premier temps, l'auteur relate un petit travail de recherche bibliographique, à propos d'étudiantes danoise qui auraient montré que du cresson pousse mal quand il est exposé à des ondes. Puis il analyse l'affaire Séralini (hélas, pas besoin d'expliquer qui c'est : la presse en a beaucoup trop parlé, à commencer par le Nouvel Observateur), avec lucidité et courage avant de présenter des résultats expérimentaux... qui montrent, évidemment, que le cresson pousse très bien même en présence d'ondes intenses.
Tout cela est mené "aimablement", courageusement, précisément.

Je ne saurais trop vous inviter à vous procurer rapidement ce journal !