vendredi 21 juin 2013

Vendredi 21 juin 2013. Des questions : Comment perfectionner la vulgarisation ?



Pour expliquer pourquoi la vulgarisation ne fait pas parfaitement son travail, prenons un exemple : la loi d'Ohm. Au XIXe siècle, le physicien allemand Georg Simon Ohm mesure des différences de potentiel associé des intensités de courant, en faisant passer divers courants dans un même conducteur, et il découvre que le rapport, le quotient, de la différence de potentiel par l'intensité du courant est constant, pour un même conducteur : c'est la résistance électrique de ce conducteur particulier.
Jusque là, la vulgarisation-récit se tient. Et puis, pour expliquer la découverte, il a suffi d'imposer aux interlocuteurs une simple division.
Pourquoi la loi d'Ohm ? Pour arriver aux mécanismes qui sont derrière la loi, il faut maintenant discuter la notion d'électrons et leur propagation dans les conducteurs. Présenter des électrons ? On pourra encore recourir à une expérience : celle d'un tube de Crookes, par exemple, un tube où l'on fait le vide, et où l'on met une différence de potentiel électrique entre deux électrodes, placées aux extrémités du tube. Un récit. Et pour décrire le propagation des électrons dans un conducteur ? n pourra sans doute se limiter à une description en mots.

Toutefois, qui nous prouve que ces récits sont exacts ? Que ce ne sont pas de fantasmagoriques élucubrations, comme le sont les récits des pseudo-sciences ? Les sciences quantitatives ont cela de merveilleux que ce sont pas des récits au hasard, que ce ne sont pas des divagations : parmi l'ensemble des possibilités de mécanisme, c'est l'adéquation des mesures à la théorie qui conduit à la sélection d'un ou de plusieurs mécanismes admissibles.

Passons au second exemple : l'effet photoélectrique, étudié par Albert Einstein. On place deux plaques métalliques en vis-à-vis, à l'intérieur d'un tube en verre où l'on a fait le vide, et l'on applique une différence de potentiel modérée entre les deux plaques. Rien ne se passe.
Puis on éclaire une des plaques, à l'aide d'une lumière de longueur particulière, par exemple du rouge. Rien ne se passe. On augmente l'intensité de la lumière, ce qui correspond à une énergie de plus en plus grande, et rien ne se passe. Puis on change de longueur d'onde de la lumière, passant du rouge au bleu, par exemple et soudain, pour une longueur de particulière, le courant se met à passer.
Jusque là, on a expliqué le phénomène, par un recours à l'expérience, mais comment expliquer le phénomène ? Le calcul, dans ce cas n'est pas difficile ; il est à la portée d'un étudiant de baccalauréat. Mais c'est le calcul qui dit tout ! Bien sur on aurait pu « expliquer » que la lumière est faite de « grains » nommés photons, chacun porteur d'une énergie particulière. Mais comment expliquer l'effet photoélectrique ? Seul le calcul en donne une explication, et ce n'est pas la transcription du calcul avec des mots du langage naturel qui aide à comprendre, au contraire même : les phrases deviennent très longues, les notions s'enchaînent les unes aux autres, et l'on découvre à cette occasion que le calcul formel, où des idées comme l'énergie, la masse... sont remplacés par les lettres, M, E..., est bien est bien plus efficace pour la compréhension que la description avec des mots.
La description avec des mots ne donne pas de compréhension des phénomènes, et seul le calcul - très simple- permet de comprendre combien le travail d'Albert Einstein, dans ces circonstances, était mervielleux. La vraie tâche de la vulgarisation, c'est donc, dans ces cas-là, d'expliquer les calculs !
Comment la vulgarisation s'y prendra-t-elle pour s'améliorer ?

jeudi 20 juin 2013

Jeudi 20 juin 2013 : Les beautés de la RMN



Dans un billet précédent, nous avons examiné la nécessité de mesurer les fréquences de résonance, pour avoir une vue précise. La spectroscopie de résonance magnétique nucléaire est précisément une méthode précise, parce qu'elle met l'idée en oeuvre.
Lisons les mots : il s'agit de résonance magnétique nucléaire. Résonance, nous savons ce dont il s'agit. Magnétique, maintenant : c'est effectivement une méthode utilise un aimant très puissant pour aligner les aimants microscopiques que sont certaines particules subatomiques. Nucléaire : cette fois, nous ne craignons pas les isotopes radioactifs, car il n'en est pas fait usage ici ; non, ici, le mot « nucléaire » se rapporte au noyau des atomes, car les particules subatomiques, c'est-à-dire plus petites que les atomes, sont les particules du noyau des atomes, d'où le mot "nucléaire ».
En gros, dans la RMN (en abrégé), il s'agit donc d'utiliser un champ magnétique puissant pour commander le mouvement de ces minuscules aimants que ce sont les noyaux de certains atomes. Par exemple, le noyau de l'atome d'hydrogène, lequel se réduit à un proton.
En gros, la méthode aligne tous les protons d'un échantillon de matière, par exemple de l'eau : puisque les noyaux des atomes d'hydrogène se comportent comme de petits aimants, en les plaçant au contact d'un gros aimant, ces petits aimants s'alignent. Ensuite, on utilise un autre aimant pour les les perturber, ce qui est l'analogue de pousser une balançoire, et l'on observe à quelle fréquence ces petits aimants nucléaires reviennent à leur position initiale. On mesure une fréquence : il y a donc une grande précision.
Ce qui est surtout extraordinaire, dans cette méthode, c'est que les ingrédients techniques sont réduits à un gros aimant et à un aimant perpendiculaire au premier. Bien sûr, il faut un ordinateur pour enregistrer et traiter les signaux. Ainsi, des fréquences enregistrées, on déduit la façon dont les atomes sont liés entre eux dans les molécules. Oui ! Un aimant, de l'intelligence, et l'on voit apparaître sur un écran d'ordinateur (qui fait tous les calculs) un spectre, où des singaux particuliers révèlent la constitution atomique des molécules. Quelle technique extraordinaire !

mercredi 19 juin 2013

A propos de relativisme

Maurice Clavelin, la philosophie naturelle de Galilée, Albin-Michel, 1968 :

« Pas plus qu'un mode d'approche purement érudit, un mode d'approche purement sociologique ne peut hisser l'histoire des sciences à  la hauteur de son objet. Il va de soi qu'un auteur appartient à  son époque, de même qu'il est tributaire d'un certain équipement conceptuel et technologique, et l'oublier ne peut que conduire à  de périlleux anachronismes. Il est probable aussi que la science comporte toujours, quoi que en proportions variables, une part d'idéologie. Le fait néanmoins que, malgré ses liens peu niables avec le milieu, la science de la nature s'impose par son caractère à la fois universel et cumulatif suffit  à démontrer la vanité du relativisme. Soutenir que, dans le contexte socioculturel, se trouve la clé des problèmes et des concepts dont dépend le développement de la science, c'est donc à  nouveau demeurer sur ses marges ; c'est en même temps revenir à  un usage passablement obscur de l'explication causale, et, pour finir, diluer la connaissance scientifique parmi les autres formes de l'activité humaine».







On saurait difficilement mieux dire !

Mercredi 19 juin 2013 : L'Académie d'agriculture de France



Vous avez bien vu : j'ai parlé de l'Académie d'agriculture de France et pas de l'Académie d'agriculture.
De France ! Cela signifie qu'il s'agti d'une institution reconnue par l'ensemble des citoyens, français en l'occurrence. D'agriculture : jadis, l'agriculture était simplement... l'agriculture, mais le monde a changé, et il devient bien difficile de parler d'agriculture sans parler d'alimentation ou d'environnement. L'Académie d'agricuture de France s'intéresse donc à l'agriculture, à l'alimentation, à l'environnement.
« S'intéresse » : cela pourrait faire penser à une assemblée de vieillards qui occuperaient des loisirs en s'intéressant à l'agriculture, à l'alimentation, à l'environnement. Cette idée est complètement fausse. D'abord parce que l'Académie d'agriculture de France compte un petit nombre de membres, qui deviennent émérites quand ils vieillissent. Ensuite, parce que l'on ne devient pas membre de l'Académie d'agriculture de France par l'argent ou par le pouvoir. Les membres sont élus, après une période de probation pendant laquelle ils sont correspondants. Ils sont élus par les membres qui eux-mêmes ont été élues, de sorte que l'on obtient un groupe réduit de personnes choisies très spécifiquement pour être au-dessus de leurs intérêts personnels. Il n'y a pas de membres qui travailleraient pour une société industrielle et qui jugeraient des matières en fonction d'intérêts commerciaux ou financiers. Au contraire, il y a des individus au service de tous les citoyens, qui prennent sur leur temps pour analyser les évolutions du monde, qui essaient de voir les avancées des sciences et des techniques, mais aussi les évolutions des société, des groupes humains, en vue d'anticiper les modifications profondes de l'agriculture, de l'alimentation, de l'environnement.
Ces personnes qui ont été choisies, élues pour des compétences très spécifiques et un état d'esprit également très particulier (être au service des citoyens), ne cessent de se préoccuper des autres, et leurs travaux (il s'agit bien de travaux, pas de passer du temps dans un club, pas d'aller rejoindre des amis dans une association) font état de leurs occupations. Ce n'est pas une élite qui voudrait distribuer un savoir prétentieux, mais plutôt des individus qui savent reconnaître la petitesse de leur savoir personnel, l'immensité de leur ignorance, qui ont un réseau suffisant pour identifier des personnalités ayant des compétences utiles à tous, des compétences qu'eux-mêmes n'ont pas.
Et c'est ainsi que l'Académie d'agriculture de France se préoccupe du futur de l'agriculture, de l'alimentation, de l'environnement. L'académie des cultures est au service...

mardi 18 juin 2013

Mardi 18 juin 2013. La connaissance par la gourmandise : Histoire de soufflé



Quels rapports peuvent exister entre la science quantitatives et les techniques et sciences ? Je ne me prends pas pour Jésus qui parlait en paraboles, car ce serait blasphéme, mais l'histoire de l'étude des soufflés répond bien à la question posée.
Partons de la cuisine et demandons nous pourquoi les soufflé gonflent ? Dans les années 1980, la théorie était que les soufflé gonflent, parce que les bulles d'air qui sont présentes (apportées lors du battage des blancs en neige) se dilatent à la chaleur, faisant augmenter le volume du soufflé. Voilà une « théorie » ; or les sciencitifique savent que toutes les théories sont fausses, disons insuffisantes.
En quoi cette théorie était-elle fausse ? Pour le savoir, il fallait mettre en oeuvre la méthode scientifique classique, qui consiste à chercher une conlusion de la théorie, une conséquences, puis à la tester expérimentalement. Pour chercher cettte conséquences, il suffit de penser à cette merveilleuse particularité de la méthode des sciences quantitatives, qui veut que tous les phénomènes soient nombrés, quantifiés, mesurés. En l'occurence, la théorie considérait l'expansion thermique, la dilatation d'un de l'air. Pour décrire ce phénomène, il existe des lois plus ou moins approchées, mais qui, quand même, donnent des résultats merveilleusement proches du résultat réel, pratique. L'une des lois élémentaires qui décrivent le résultat est ce que l'on nomme la « loi les gaz parfaits ». Elle stipule le produit de la pression par le volume est proportionnel à la température. Je vous épargne les calculs (ils sont amusants, mais leur exposé nous ralentirait dans la discussion ici proposée) : ils conduisent à prévoir une augmentation de volume de 20 à 30 pour cent seulement... alors que les soufflés peuvent gonfler de 200 pour cent... Si l'on améliore les calculs en tenant compte de la pression, c'est plutôt pire, ce qui signifie que les meilleures lois conduiraient à penser que le gonflement des soufflés est très faible par rapport à celui qui est dû à la dilatation thermique.
Il fallait donc en conclure qu la théorie était très insuffisante, très fausse.

Mais alors, pourquoi les soufflés gonflent-ils ? C'est une chose amusante, rétrospectivement, que d'observer que, à l'époque, on en avait aucune idée ! Il a fallu en des centaines de mesures de pressions ou de la température dans des soufflés pour finalement arriver à la conclusion qu'un autre phénomène que la dilatation thermique était à l'oeuvre.
Ce phénomène est apparu parce que des soufflés avaient été pesés avant et après la cuisson. Pesés ! Là encore, il s'agissait de suivre les traces des grands anciens, en l'occurence Antoine Laurent de Lavoisier, pour qui la balance était l'outil essentiel. Or quand on pèse un soufflé, avant et après cuisson, on découvre qu'il perd environ 10 grammes. Dix grammes ? Dix grammes de quoi ? Analysons : un soufflé est fait majoritairement de farine, d'eau, de protéines, de graisses. De sorte que, puisque les protéines, la graisse et la farine ne sont pas évaporables à la chaleur, c'est l'eau qui est perdue. Et, effectivement, c'est naturel, car la température dans le four, environ 200 °C, est supérieure à la température d'ébullition de l'eau.
Il faut donc conclure que c'est l'eau qui fait gonfler les soufflés, parce qu'elle s'évapore. Tout s'éclaire alors : la présence de la croûte, qui est une partie sans eau, les bulles que l'on voit monter et crever à la surface, si l'on regarde dans un four dont la porte est transparente...
Et puis, il y a le fait que 10 grammes d'eau font environ 10 litres de vapeur ! Pourquoi n'obtient-on alors pas des soufflés de dix litres ? Parce que les bulles sont perdues à la surface.
Au total, on n'aura pas de prix Nobel avec cette découverte, mais on aura la satisfaction de voir une saine application de la méthode de sciences quantitatives conduire à une bonne compréhension des phénomènes.
Mais je n'oublie pas que ce billet particulier est destiné à parler de gourmandise, c'est-à-dire de soufflés plutôt que des mécanismes de son gonflement. Et, là, le résultat scientifique a des implications immédiates. Puisque c'est l'évaporation de l'eau, et non la dilatation des bulles d'air, qui est le mécanismes essentiel de gonflement, pourquoi battre des blancs neiges ? De fait, dans un séminaire de gastronomie moléculaire, nous avons comparé un soufflé avec des blancs battus et un soufflés avec des blancs qui n'étaient pas battus mais qui était chauffé par le fond. A la stupéfaction de tous les participants du séminaire, les deux soufflés ont gonflé de la même manière ! Et c'est ainsi que la gourmandise éclairée des travaux scientifiques.

lundi 17 juin 2013

Lundi 17 juin 2013 : à venir cette semaine

Cette semaine, le billet du lundi est facile à faire, parce qu'il faut annoncer :
- le séminaire de gastronomie moléculaire : cet après midi, à 16 heures, sur le thème des bouillons et de la qualité de l'eau utilisée pour les faire

- une conférence à l'Ecole des Mines, 60 boulevard St Michel, 75005, demain à 19.00, dans le cadre de ParisTech

- une conférence jeudi, à 18.00, dans l'Ecole doctorale de François Taddei et M. Waquet, à
Faculté de Médecine Paris Descartes
24 rue du faubourg Saint Jacques
75014 Paris


Bonne semaine à tous

dimanche 16 juin 2013

Dimanche 16 juin 2013 : Vive la technologie ! Les crêpières ont-elles raison de dire que la pâte à galette doit être bien battue ?


La technologie ? C'est souvent une étape intermédiaire entre la technique et la science : c'est en posant des questions technologiques que l'on fait surgir des phénomènes scientifiques que la science quantitative peut ensuite explorer.
Les crêpières disent que la pâte à galette doit être bien battue, parce que, alors, les crêpes collent moins au bilic. Vrai ou faux ?
J'ai rencontré cette question il y a bien longtemps, alors que je travaillais dans une créperie bretonne. Je faisais la pâte à galette. J'utilisais  alors une grande bassine en plastique bien propre, j'y mettais de la farine de blé noir, du lait, du sel. Pas d'oeufs, car la tradition bretonne n'utilise pas d'oeufs dans la pâte à galette (elle en met dans la pâte à crêpes).
Je mélangeais donc les ingrédients, à la main (propre), et les crêpières me disaient que ma pâte à galette collait moins au bilic  quand la pâte était bien battue.
Battue ? Nous avions identifié que le geste à faire  pour obtenir des galettes qui ne collaient pas consistait a soulever la pâte à pleines mains, et à la jeter  dans la bassine, répétitivement.

Personnellement, j'avais  observé que ce geste qu'on me prescrivait de faire conduisait à l'apparition de bulles d'air, de grosses bulles d'air.  De sorte que je me posais la question depuis longtemps : l'introduction d'air dans une pâte à galette a-t-il un effet sur la confection des galettes de blé noir ? Passons sur le pléonasme « galettes de blé noir », car il est vrai que les galettes sont  toujours obligatoirement de blé noir, sans quoi ce sont des crêpes. Ce qui restait, c'est la question : l'introduction d'air dans la pâte change-t-il quelque chose aux résultats ?

Il m'a fallu des années, des décennies mêmes !,  pour avoir l'occasion de faire l'expérience correctement. Cela s'est fait au Salon de l'agriculture, en public, où nous avons introduit de l'air non pas la main, mais avec un batteur électrique. Une pâte à galette été divisée en deux moitiés, une moitié fortement aérée et l'autre moitié non. Puis des galettes ont été produites à partir de ces deux par dans la même poêle, sur le même feu...
Le résultat a été spectaculaire : oui il y a une différence considérable entre les galettes dont la pâte a été bien aérée et les galettes qui n'ont pas été battues. Pourquoi ? Je n'en sais toujours rien, mais je sais que l'expérience nous a fait progresser ; après des décennies d'incertitude, nous avons maintenant un résultat assez bien établi : il y a une différence entre des galettes à la pâte bien aérée, et des galettes dont la pâte n'a pas été battue. Je compte sur ceux  qui me suivront pour faire le travail d'analyse de ces deux résultats, et mieux comprendre le phénomène d'adhérence au bilic, pour des galettes bien aérées.
À vous...