jeudi 22 février 2018

Une pièce dans un liquide

Dans nombre de préparations culinaires, il y a une masse plongée dans un liquide. 

Par exemple, dans un coq au vin, il y a la viande plongée dans le vin. Dans le blanchiment des épinards, il y a les feuilles d'épinard placées dans l'eau bouillante. Dans une cuisson à l'anglaise, il y a également des légumes que l'on fait bouillir dans l'eau. Pour cuire des pommes de terre, on les place dans l'eau froide et salée, que l'on porte à ébullition. Pour un poisson poché, la chair est mise dans un court-bouillon. Et ainsi de suite.

La cuisine a souvent considéré qu'il y avait des échanges entre la pièce immergée et le liquide, et c'est parfois juste : c'est comme cela que l'on prépare les bouillons. Bouillons de viande, de poisson, de carottes... Mais la question inverse se pose : peut-on donner du goût à une pièce en la cuisant dans un liquide ? La réponse peut s'obtenir expérimentalement, mais des considérations théoriques ne sont pas inutiles pour prévoir ou interpréter.

Il y a plusieurs phénomènes qui peuvent -je dis bien qui peuvent- concourir à l'entrée d'un liquide dans une pièce.

Le premier est la diffusion, phénomène que l'on voit bien en action quand on place une goutte d'encre dans un verre d'eau : progressivement l'encre se disperse, et l'eau se teinte un peu.
Ce phénomène a lieu sans que l'on ait besoin d'agiter l'eau ou l'encre. Si l'on veut s'en convaincre, il suffit de prendre un verre d'eau très calme et d'y déposer très doucement une goutte d'encre : en une demi heure environ, l'eau se teinte, la goutte disparaissant. Pourquoi cette dispersion ? Parce que les molécules d'eau, qui sont comme de très petits objets animés de mouvements (pensons à des boules de billard) viennent heurter les molécules de l'encre, initialement groupées, et leur communiquer leur énergie par des chocs, de  sorte qu'elles les dispersent.
Cette diffusion moléculaire est à l’œuvre, par exemple, quand on place des morceaux de carotte, de la viande, des feuilles de thé dans de l'eau froide ou chaude : les molécules des matières immergées, quand elles ne sont pas enfermées dans des structures qui les empêchent de bouger, diffusent dans le liquide, tandis que le liquide diffuse dans les parties qui lui sont accessibles. Quelles sont ces parties ? Pour les tissus végétaux, il y a lieu de considérer qu'ils sont faits de deux types de tissus, à savoir le parenchyme et les tissus conducteurs. Le parenchyme n'est pas facilement accessible, parce qu'il est composé de cellules jointives, sortes de petits sacs fermés. En revanche, le tissu conducteur est fait de canaux, qui, comme ils sont ouverts, sont en communication avec le liquide extérieur : il peut donc y avoir des échanges par diffusion.

Un autre mécanisme  par lequel le liquide extérieur peut entrer dans les matières est la capillarité.

Cette fois, pensons à un pinceau dont on place la pointe dans de la peinture un peu liquide : on voit alors le liquide monter entre les poils, parce que le liquide, en quelque sorte, colle aux parois. Le mécanisme est apparenté à celui qui fait remonter un liquide sur le bord d'un verre, et qui engendre ce que l'on nomme u ménisque dans un petit tube. Quand il y a une fente, une fissure, une crevasse dans un solide, le liquide où ce solide est immergé entre dans le solide par capillarité. Et l'on comprend ainsi que , un bouillon corsé puisse donner du goût à des matières telles que le poireau, ou une masse de feuilles d'épinards…

Un troisième mécanisme qui permet à un liquide d'entrer dans un solide est l'osmose. 

 Pour bien comprendre ce mécanisme, il n'est pas besoin d'aller chercher ailleurs qu'en cuisine une observation qui est la suivante : quand on met des fruits, telles des mirabelles, dans un sirop très léger, voire de l’eau, l'eau du sirop entre dans le fruit, le fait gonfler, puis éclater, même. Inversement, quand on met les fruits dans un sirop très concentré,  c'est l'eau de l'intérieur du fruit qui sort, de sorte que le fruit ratatine. Dans ce dernier phénomène, les échanges sont sélectifs, ce qui signifie que tous les composés ne sont pas autorisés à entrer ou sortir, de sorte qu'il est plus difficile de régler les échanges.

Souvent, en cuisine comme en science et technologie des aliments, on décrit des phénomènes complexes en disant rapidement  que le liquide « diffuse », mais cela n'est pas toujours exact, car, dans les phénomènes les plus généraux, plusieurs des trois mécanismes évoqués ont lieu simultanément, alors que la diffusion n'est que l'un d'eux. Surtout, les choses se passent à des vitesses très différentes, et, mieux, comme on le voit à propos de l'osmose, la nature des échanges diffère.
Il y a donc lieu de faire la différence. Par exemple, quand on met des feuilles de thé dans l'eau, il y a bien l'introduction de l'eau dans les feuilles par capillarité, diffusion des composés odorants vers l'eau, et osmose, puisque les feuilles de thé sont faites de cellules qui peuvent regonfler. Comment décrire le phénomène ? Dans un tel cas, selon la température, on dira simplement qu'il y a une macération (à température ambiante), ou une infusion (quand on place une matière dans de l'eau bouillante que l'on a cessé de chauffer),  ou une décoction (quand on fait bouillir le solide dans le liquide). Comme bien souvent en cuisine, il n'est pas nécessaire  d'aller y voir de trop près quand on n'a pas les yeux  pour cela. Par exemple, quand une viande brunit, il y a toute une série de réactions chimiques qui conduisent au brunissement, et la caramélisation, qui est une réaction des sucres, intervient, mais ce n'est qu'une des réactions. Il y a donc lieu d'éviter de dire « caraméliser une viande », sauf si l'on cuisait dans du caramel. Il suffit de dire justement « brunir la viande ». De même, dans le cas des échanges, il n'est pas nécessaire d'utiliser le mot «diffuser », quand on ne le maîtrise pas bien, et il suffit de parler d'échanges entre le liquide et le solide. C'est plus simple, non ? En tout cas, c'est plus juste !







Vient de paraître aux Editions de la Nuée Bleue : Le terroir à toutes les sauces (un traité de la jovialité sous forme de roman, agrémenté de recettes de cuisine et de réflexions sur ce bonheur que nous construit la cuisine)   

mercredi 21 février 2018

Air chaud et air froid

Michel Debost, flutiste de l'Orchestre de Paris et auteur de l'excellent livre Une simple flute  écrit qu'il ne sait pas pourquoi l'air soufflé rapidement paraît froid, alors que l'air expulsé lentement de la bouche paraît chaud.

Voici l'explication.

Tout d'abord,  l'air est un gaz, ce qui signifie qu'il est plein... de vide, avec quelques molécules qui se déplacent en ligne droite, rebondissant seulement quand elles se heurtent ou quand elles heurtent les parois du récipient qui les contient. La distance entre deux molécules est en moyenne d'une centaine de diamètres de molécules. Et ces molécules sont principalement des molécules de "diazote", avec deux atomes de l'élément chimique nommé azote, liés comme dans une haltère. Bien sûr, il y a aussi des molécules de dioxygène, faites de deux atomes d'oxygène. Mais bref, pour simplifier, pensons à des boules de billard qui partent dans toutes les directions de l'espace, et non pas seulement dans le plan d'un billard.
Si nous mettons un gaz dans un récipient cylindrique fermé par un piston, en posant seulement ce piston dans appuyer, il est en équilibre parce qu'il y a autant de chocs par unité de temps par les molécules enfermés dans le récipient  que par les molécules de l'air qui est au-dessus du piston. Mais si nous appuyons sur le piston, nous réduisons le volume du gaz dans le cylindre, de sorte qu'il y aura plus de chocs contre le piston... et c'est cela que nous sentons en appuyant  : véritablement nous luttons contre des chocs par les molécules.
A cela, il faut ajouter que les molécules n'ont pas toutes la même vitesse : il y en a de lentes et de rapides... mais plus le gaz est chaud, et plus la vitesse moyenne des molécules est grande. D'ailleurs, on mesure facilement que la pression augmente avec la température : dans l'expérience précédente, si nous chauffons le cylindre et le gaz qui s'y trouve, alors le piston remonte... parce que les molécules enfermées, plus rapides parce que plus chaudes, poussent davantage sur le piston.
 
Tout cela étant posé, nous pouvons maintenant expliquer l'affaire du froid et du chaud. 

Observons que, dans notre système respiratoire, l'air est à la température du corps, soit environ 37 degrés. Et, quand on expulse doucement cet air, c'est bien cela que nous sentons sur la paume de la main que nous plaçons devant la bouche qui exhale doucement.
En revanche, quand on expulse l'air à grande vitesse, alors les molécules sont (dans une decription idéalisée) toutes avec la même vitesse et la même direction.
Pourquoi sent-on du froid ?  Observons d'abord que, puisque la vitesse moyenne d'agitation des molécules est de l'ordre de 400  Imaginons que nous soyons un petit génie qui se déplace à cheval sur une de ces molécules. Puisque toutes les molécules vont à la même vitesse, nous ne verrions aucun mouvement des autres molécules qui nous entourent... ce qui correspond à une vitesse d'agitation nulle, donc à une "température" nulle.

Mais il y a autre chose : quand on exhale, on expulse rapidement la totalité des molécules, avec leur énergie. Mais quand on souffle un étroit filet d'air rapide, alors on sait bien que l'on en expulse une très petite quantité, donc bien moins d'énergie (on se souvient que la vitesse de l'air expulsé est bien moindre que la vitesse d'agitation aléatoire des molécules). On capte donc moins d'énergie, donc moins de chaleur... même si nos capteurs de pression sentent une pression localisée.
Ce matin, une question technique qui m'a fait un peu réfléchir longtemps... alors que la solution était évidente :

Cher Monsieur
J’essaye de faire des pâtes fraîches sans gluten et sans œuf.
 J’ai déjà essayé avec de la farine de maïs blanc, farine de maïs jaune, farine de riz et de l’eau, mais il me manque un liant qui permettrait aux pâtes fraiches d’avoir une consistance identique ou approchante aux pâtes traditionnelles (avec semoule, œuf et eau). Pourriez-vous me dire si vous pensez à un liant précis ou quelques pistes ?

Le "gluten", c'est ce réseau de protéines qui se forme quand on malaxe de la farine de blé : il est dû à des protéines, et le réseau (pensons : filet) formé avec l'eau emprisonne les grains d'amidon.
A noter que l'on peut donc faire des pâtes en mélangeant du gluten (cela s'achète) avec n'importe quelle farine : blé, maïs, riz, etc.

Les oeufs, eux, sont utilisés dans les cultures où l'on ne fait pas des pâtes à partir de blé dur. Traditionnellement ce sont des ingrédients de riche, alors que les pâtes de blé dur sont des produits de populations plutôt pauves.

Mais, sans oeufs ni gluten ? Vous mettez la barre très haut : sans gluten ET sans oeufs !
Analysons que les oeufs apportent des protéines... et que le gluten est fait de protéines.
Il faut donc des protéines... que l'on trouve, par exemple, dans de la viande ou du poisson broyés. Ou quand on utilise des protéines végétales, ou des protéines sériques de lait.


Et hopla, comme on dit en Alsace

vendredi 16 février 2018

Pourquoi la cuisson d'un poulet est-elle si longue ?

Oui, pourquoi la cuisson d'un poulet au four est-elle si longue ?
Avec un rôtissage classique, dans un four à 180 ou 200 degrés, la cuisson dure environ une heure. Pourquoi est-ce si long, alors que la température est si élevée ? A cette question, il y a une réponse concise, que nous allons développer.


La réponse concise est la suivante :
- dans un four, les transferts de chaleur se font d'un gaz vers un solide ;
- dans la chair, la chaleur pénètre par conduction ;
- et l'évaporation de l'eau des couches superficielles consomme une énergie considérable, qui ralentit les transferts.


Expliquons maintenant ces trois phénomènes.



Pour le premier, on peut commencer par comparer l'entrée dans un sauna très chaud à l'immersion d'un doigt dans un verre d'eau très chaude. Alors que l'on peut facilement entrer dans un sauna, on expose très difficilement notre corps à un liquide très chaud. En effet, les transferts de chaleurs d'un liquide à un solide sont beaucoup plus efficaces que d'un gaz à un solide. Pourquoi ? Parce que les transferts de chaleur correspondent au fait que les molécules du liquide ou du gaz heurtent les molécules du solide et leur communiquent de l'énergie de mouvement : dans le choc, les molécules heurtées prennent des vitesses analogues à celles des molécules heurtantes, comme on le voit bien quand une bille de billart choque une bille immobile. Or la chaleur c'est cela : du mouvement des molécules : plus un corps est chaud, plus ses molécules sont en mouvement rapide. Une telle phrase n'est pas absolument suffisante, car on sait bien que quand on souffle de l'air contre notre main, on sent plutôt du froid. En effet, la chaleur, c'est plus précisément le mouvement désordonné des molécules, et non pas le  mouvement ordonné des molécules, comme dans un souffle, où elles sont toutes dans la même direction.

Dans un gaz ou dans un liquide chaud, il y a donc cette énergie de mouvement des molécules, qui va se communiquer aux molécules du solide. Toutefois un liquide est bien plus dense qu'un gaz, ce qui signifie qu'il y a beaucoup plus de chocs dans le cas du contact liquide-solide que dans le cas du contact gaz-solide.  De sorte que le transfert de chaleur est bien plus efficace à partir d'un liquide que d'un gaz.


Les transferts de chaleur par conduction, maintenant ? C'est en réalité ce que nous venons d'évoquer : des molécules d'un échantillon de matière heurtent des molécules d'un autre échantillon de matière, et la vitesse de ces dernières augmente. On comprend qu'un tel transfert soit lent, car si la surface est chauffée, les molécules de la surface vont ensuite heurter les molécules plus à l'intérieur de la viande, et les molécules de l'intérieur vont chauffer des molécules plus à l'intérieur encore, toujours par ce mécanisme d'augmentation des vitesses à l'occasion des chocs, jusqu'au coeur de la viande. Cela est lent.

Plus exactement, cela est lent pour les matériaux qui sont mauvais conducteurs de la chaleur, mais rapide pour les matériaux bons conducteurs. Ainsi, quand on met une cuiller en métal dans de l'eau liquide, on se brûle rapidement, alors que l'on peut tenir pendant très longtemps une cuiller en bois. Le métal est bon conducteur, contrairement au bois… et à la viande, qui est majoritairement faite d'eau. Pourquoi ces différences de conductivité thermique selon les matériaux ? Ce serait un peu long à expliquer ici, de sorte que je propose que nous en arrivions au troisième élément que nous devons présenter.


Il s'agit de se focaliser maintenant sur ce que l'on nomme la chaleur latente d’évaporation de l'eau : c'est la quantité de chaleur qui est nécessaire pour transformer de l'eau liquide en eau à l'état gazeux, en vapeur.  Même quand la température de l'eau est de 100 degrés, il faut une énergie considérable pour la faire passer de l'état liquide à l'état gazeux. En effet, le fait que l'eau soit liquide  correspond à l'existence de forces puissantes entre les molécules d'eau. Pour faire passer l'eau à l'état gazeux, il faut apporter une énergie supérieure à l'énergie de ces liaisons, et l'on s'aperçoit facilement que cette énergie est considérable quand on examine une simple casserole d'eau que l'on fait bouillir. Partant d'une température ambiante d'environ 20 degrés, on voit la chaleur du feu augmenter progressivement la température de l’eau, jusqu'à ce que l'on atteigne 100 degés ; mais là, il faut tant d'énergie pour rompre les liaisons entre les molécules d'eau que, tant qu'il y a de l'eau liquide, la température n'augmente plus, et reste à 100 degrés.

On voit donc que cette question de vaincre les forces entre les molécules d'eau liquide est fondamentale, et ce mécanisme se retrouve dans le poulet qui rôtit : l'air chaud qui environne le poulet transfère donc de l'énergie à la chair. La température de cette dernière augmente progressivement jusqu'à atteindre 100 degrés. Mais nous avons dit que  les aliments sont majoritairement faits d'eau, et notamment la viande qui en contient environ 75 pour cent, de sorte que la température dans un poulet sera toujours limitée à 100 degrés tant qu'il y a aura de l'eau dans la chair. Or  le poulet qui cuit comporte deux parties : le centre et la croûte. La croûte, c'est cette partie où toute l'eau de la viande a été évaporée, de sorte que la température a pu dépasser 100 degrés. La croûte est très mince. On le  voit mieux sur un pain, un gâteau ou un soufflé, où après une heure de cuisson, il n'y a qu'un ou deux millimètres de croûte. Si l'on avait mis un thermomètre dans le pain, gâteau ou soufflé, on aurait vu que la température restait partout inférieure à 100 degrés, sauf à atteindre la croûte, où, à l'extérieur de cette dernière la température est celle du four, tandis qu'elle est exactement de 100 degrés pour la couche interne.

Or avec une différence de température de 100 degrés, à l'intérieur de la croûte, et de 20 degrés, au coeur du poulet, le transfert de chaleur est lent. Bref ce mécanisme d'évaporation de l'eau réduit les transferts de chaleur.

Mieux qu'au four ! 

Finalement, avec ces divers phénomènes, on voit que le rôtissage classique n'est pas un procédé très efficace, et l'on comprend pourquoi l'emploi de micro-ondes, qui viennent déposer l'énergie à coeur des aliments, permet des cuissons bien plus rapides. Il manquerait la croûte ? Qu'est-ce qui nous empêche de cuire d'abord par micro-ondes, puis de faire cette croûte, avec un chalumeau, ou une résistance électrique ?

Cela, c'est pour les gens pressés, mais il y a une autre solution pour des cuisiniers pas pressés mais qui veulent faire du très bon : c'est la basse température qui a l'avantage de conserver des chairs très tendres et juteuses. Si l'on place un poulet dans un four ou dans un liquide à 70 degrés environ, les micro-organismes sont tués et les chairs coagulent, cuisent, mais sans se contracter excessivement, de sorte qu'elles conservent leur eau, leur jutosité, et en conséquence la tendreté de la viande.  Le phénomène est le même que pour des œufs que j'avais fautivement nommés « parfaits » quand je les avais  inventés il y a plusieurs décennies, mais ce serait trop long d'expliquer cela, et je renvoie vers des billets.

Avec un poulet cuit à basse température, on a donc une chair très tendre, juteuse, mais là encore, il manque la croûte. Qu'à cela ne tienne : l'emploi pendant quelques dizaines de secondes d'un chalumeau ou d'un pistolet décape peinture permet d'obtenir cette dernière, et c'est ainsi que l'on évitera avec bonheur les volailles sèches que l'on nous a trop souvent infligées à Noël. Avec la compréhension des phénomènes, nous cuisons enfin des volailles merveilleuses !











Vient de paraître aux Editions de la Nuée Bleue : Le terroir à toutes les sauces (un traité de la jovialité sous forme de roman, agrémenté de recettes de cuisine et de réflexions sur ce bonheur que nous construit la cuisine)     

mercredi 14 février 2018

Il n'y a pas de "gélatine végétale" (horreur), mais des gélifiants végétaux ou d'algues

 Ces temps-ci, on voit apparaître le terme fautif de "gélatine végétale". J'invite mes amis à ne pas l'utiliser, sous peine de paraître bien ignorants... et de se condamner à l'échec technique.
Au fond, je fais un peu la fine bouche, car la popularisation de cette expression "gélatine végétale" est une sorte de couronnement : c'est la preuve que la cuisine moléculaire a gagné, qu'elle est partout, ce qui est donc une explication suffisante pour expliquer qu'elle ne soit plus nulle part. De même, après que le gaz a été mis à tous les étages, on ne l'a plus signalé, parce que cela était devenu inutile. De même pour la cuisine moléculaire : il y a partout, dans les cuisines, des siphons, de la basse température, et les gélifiants dont on m'accusait de vouloir empoisonner le monde avec. Ces derniers, notamment, sont vendus jusque  dans les supermarchés ; ils sont si populaires que l'on en vient à les confondre avec la gélatine, qu'on les dénomme fautivement du nom de cette dernière, dont on oublie aussi qu'elle fut un jour moderne.
Tout cela est confus, je vais expliquer en détail.


Un peu d'histoire

Jusque dans les années 1970, on faisait les aspics ou les bavarois à l'aide de pieds de veau. Il fallait cuire longuement les pieds dans de l'eau chaude, puis filtrer, clarifier, etc. C'était un procédé bien long, qui suscita bientôt la création d'usines qui se mirent à extraire et vendre la gélatine : en feuilles, en poudre. La gélatine ? C'est en effet la matière gélifiante du pied de veau et d'autres tissus animaux, de sorte que l'on n'avait plus qu'à utiliser des feuilles ou de la poudre pour obtenir, en quelques secondes, le résultat qu'on mettait auparavant des heures à atteindre.
Puis, dans les années 1980, j'ai vu qu'il existait de nombreux autres gélifiants : caraguénanes, alginates, agar-agar, gommes de guar, de caroube, etc.,  et c'est ainsi que je me suis retrouvé un jour à aller proposer à une des principales associations de cuisiniers français d'utiliser ces produits. L'accueil fut amical, et la réponse fut  négative. J'étais naïf et désolé. Car, alors que je n'avais rien à vendre, que je pensais aux progrès  de la profession,  je voyais bien des intérêts à l'emploi de ces composés : au choix, on pouvait faire des gels clairs, transparents, opaques, cassants, élastiques, mous... Bref, il me semblait que le cuisinier pouvait trouver plus de notes sur son piano qu'il y  en a dans un triangle!
Ajoutons que ma proposition d'employer ces produits était une partie de ma volonté de rénover les techniques culinaires, ce que j'ai nommé "cuisine moléculaire". Oui, la cuisine moléculaire voulait seulement (OK, ce n'est pas rien) rénover les techniques culinaires, avec l'hypothèse supplémentaire que l'on fait mieux ce que l'on comprend !

Finalement, j'ai parfaitement réussi mon coup, et la cuisine moléculaire s'est merveilleusement développée, comme une application de cette discipline scientifique, branche de la physico-chimie, qu'est la gastronomie moléculaire (je répète qu'il y a une différence essentielle entre les deux : la science et la technique ne se confondent pas, et  il faut être bien aveugle  -volontairement ?- pour ne pas comprendre la différence).


Parlons de gélifiants d'origine végétale

Aujourd'hui, on parle donc de "gélatine végétale", et je devrais en être content, mais l’expression me choque parce qu'elle est fautive, et que cette erreur terminologique engendre  des déboires techniques.
Faisant l'hypothèse qu'un bon technicien mérite de comprendre les outils qu'il emploie, et que les noms de ces outils sont importants au même titre que leurs caractéristiques, je veux expliquer pourquoi il faut parler de gélifiant végétal, et non de gélatine végétale (une gélatine végétale, cela n'existe pas !).
La gélatine n'est pas végétale : c'est une matière extraite des tissus animaux et faite d'une protéines collagène, modifiée à  des degrés divers par la cuisson qui l'extrait des tissus animaux.
La gélatine est agent gélifiant, ce qui signifie qu'elle permet de faire gélifier des solutions aqueuses, afin d'obtenir ce que l'on nomme des gels. La gélatine est de nature protéique, animale, et elle a des caractéristiques particulières, que les cuisiniers connaissent  bien, et au nombre desquelles on compte sa capacité à fondre à une température voisine de celle de la bouche, ce qui permet d'obtenir des gels fondants, par conséquent.
Les autres gélifiants (ou agents gélifiants) ne sont pas tous de nature protéique. Par exemple, l'amidon, la fécule, faits de molécules d'amylose et d'amylopectine, permettent de produire des gels que l'on nomme en l'occurrence des empois. Et, comme je le disais, il y a bien d'autres agents gélifiants que l'on peut extraire des plantes ou des algues. Souvent, ces composés sont des polysaccharides, de la même famille que l'amidon, et pas des protéines. Ce ne sont donc pas des gélatines. Et voilà pourquoi il est fautif de parler de protéines végétales.
De surcroît, il faut  que je signale que je viens de voir de ces sites qui vendent ces produits mal nommés : j'y ai vu qu'une des matières proposée sous ce nom fautif est en réalité faite de deux composés, et non pas d'un seul. Je n'ai rien à redire à ce mélange, surtout si cela donne des propriétés qu'un seul des deux composés n'aurait pas eu, mais il y a lieu d'être prudent et vigilant avec le commerce, qui est parfois déloyal, soit par ignorance soit par volonté : un mélange de composés n'est pas un gélifiant, mais un mélange de gélifiants. En l’occurrence, j'ai vu que les deux composés du mélangé à la désignation fautive étaient d'origine végétale, de sorte qu'on n'a pas à critiquer ce terme sauf à dire qu'il est un peu ambigu, car les produits sont plutôt "issus de végétaux", que "végétaux" eux-mêmes.

Est-ce ratiociner exagérément ? Je ne le crois pas, car il en va d'abord de la loyauté, de l'honnêteté. D'autre part, la discussion  que nous faisons ici est en réalité une manière d'aider mes amis à choisir les outils dont ils feront usage. Il faut surtout dire que le mode d'emploi d'un gélifiant d'origine végétale, fait d'un ou de plusieurs composés, n'est pas du tout celui de la gélatine, et que l'on ferait une erreur en le mettant en œuvre de la même façon.
Il y a un mode d'emploi, particulier, pas difficile, mais particulier.

Et c'est ainsi qu'avec des gélifiants variés, bien compris, bien utilisés, la cuisine sera encore plus belle !
















Ceci n'est pas un oeuf !

Ce matin, j'annonçais le premier repas 100 % note à note en France, le 21 février 2018, par le chef Julien Binz, àAmmerschwihr (Alsace).

J'y ajoutais l'image suivante 







L'un de mes correspondants m'a alors demandé :

"Je ne comprends pas ce qu'est la cuisine note à note : si l'on sert des oeufs sur le plat, en quoi est-ce note à note ? 


La première réponse est :
1. ce n'est pas un oeuf sur le plat !

La seconde réponse est :
2. la cuisine note à note est cette forme de cuisine qui n'utilise ni viande, ni légume, ni fruit, ni poisson, ni oeuf... On part de composés purs (eau, cellulose, pectines, polysaccharides, protéines, acides aminés, etc.) et l'on construit tous les aspects du plat :
- forme
- consistance
- odeur
- saveur
- couleur
 etc.

Et c'est ainsi que Julien Binz a décidé d'arriver à la création du plat dont l'image est ici donnée ! Ce n'est pas un oeuf... et l'on peut s'attendre à un goût très nouveau !


Tiens, pour la bonne bouche, je vous livre une seconde image de ses productions :


lundi 12 février 2018

La crème fouettée serait plutôt un gel foisonné

Pour l'enseignement de la cuisine, il y a des classifications simples, et hélas parfois trop fausses.

Par exemple, pour les émulsions, certains ont distingué des émulsions stables et des émulsions instables, alors qu'en réalité, toute émulsion est instable, puisque les gouttelettes d'huile dispersées dans l'eau d'une émulsion viennent crémer, en raison de leur densité inférieure. Plus ou moins vite, mais le crémage a quand même lieu, et il est donc assez illégitime de parler d'émulsion stable.

De toute façon, cela n'a guère d’intérêt, car quelle que soit l'émulsion que l'on réalise en cuisine, on souhaite une certaine stabilité. De surcroît, de nombreuses sauces sont considérées comme des émulsions, alors qu’elles n'en sont pas.
Par exemple les sauces béarnaises ou hollandaises contiennent, certes, de la matière grasse liquide (le beurre fondu), mais, comme la crème anglaise, elles doivent surtout leur viscosité à la coagulation des protéines apportées par l'oeuf.

Mais revenons à la crème fouettée. 

Pour faire une crème fouettée, on part de crème. Déjà là, il y aurait une imprécision importante à la décrire comme une émulsion, car non seulement la phase aqueuse (de l'eau où se dissolvent notamment le lactose et certaines protéines) disperse des gouttelettes de matière grasse, mais elle disperse aussi de petits agrégats faits de protéines et de sels minéraux. Autrement dit, d’emblée, on doit considérer que la crème est un système hybride entre l'émulsion et la suspension.

Il y a pire, car la matière grasse laitière n'est pas entièrement liquide à la température ambiante.
Prenons un échantillon de matière grasse laitière débarrassée de son eau, le beurre clarifié. A la température ambiante, on a un système mou, parce que composé d'une partie de graisse liquide et d'une partie de graisse solide. Dans la crème, chaque gouttelette de matière grasse est ainsi faite de graisse liquide et de graisse solide. On n'a donc pas stricto sensu une émulsion.

Quand on fouette de la crème, il est certain que le fouet introduit des bulles d'air, fait « foisonner ». Le système final est donc « foisonné, ce qui est la caractéristique des mousses. Mais contrairement aux mousses simples, avec  des bulles de gaz dispersées dans un liquide, la crème fouettée doit sa fermeté à un autre phénomène, à savoir la fusion partielle des gouttes de matière grasse et l'établissement d'un réseau continu,de graisse solide. S'il y a un réseau continu, c'est que le système est formellement un gel, avec un réseau continu qui emprisonne un  liquide (et des bulles d'air).

D'une certaine façon, en simplifiant, la crème fouettée doit donc être décrite comme un gel foisonné. C'est plus juste que de dire qu'elle serait une mousse.

Suis-je en train de « compliquer » ? Je ne connais pas d'enfant qui ne puisse comprendre une telle structure, surtout si elle est assortie d'un schéma simple. En tout cas, une caractérisation juste de l'état du système permet de mieux comprendre les causes de ratage éventuel, à savoir qu'une quantité insuffisante de matière grasse ne permet pas de stabiliser les bulles d'air, car, avec trop peu de matière grasse, on ne parvient pas à faire le réseau continu de graisse du gel.
D'autre part, tous ceux qui ont essayé de fouetter de la crème en été, dans un pays un peu chaud, savent bien que la température est essentielle, preuve que la proportion de graisse solide est un paramètre fondamental de réussite, et aussi indication que la caractérisati
Quand on ajoute des glaçons, on augmente la proportion de matière grasse solide qui fait le réseau continu où seront piégés la matière grasse liquide, les bulles d'air, la phase aqueuse.


J'ajoute que rien de tout cela n'est compréhensible si l'on confond mousses et émulsions, et je conclus que quatre termes sont essentiels pour l'enseignement, dont nous étions partis : gels, émulsions, mousses, suspensions.
En conséquence, il semble indispensable de présenter ces quatre systèmes aux jeunes cuisiniers, afin de leur donner des outils intellectuels qui leur serviront pour leur pratique technique et artistique, sans parler de leurs réflexions technologiques.









Vient de paraître aux Editions de la Nuée Bleue : Le terroir à toutes les sauces (un traité de la jovialité sous forme de roman, agrémenté de recettes de cuisine et de réflexions sur ce bonheur que nous construit la cuisine)