vendredi 7 juillet 2023

Traverser le plancher...

 J'ai (re)lu pour vous le merveilleux livre Pourquoi ne passons-nous pas à travers le plancher ?

 

Quand on pose cette question, on est amené à  considérer  deux « solides »,  à savoir notre corps et le plancher. Dans les deux cas il s'agit de matière, c'est-à-dire in fine d'atomes. 

Or, dès le collège,  nous apprenons de les atomes sont  « vides ». Pour nous représenter l'atome d'hydrogène, on nous invite à penser que si le proton du noyau est comme une orange place de la Concorde,  à Paris, alors l'électron est un grain de poussière à Versailles. 

Si l'on considère des atomes plus gros, le carbone, l'oxygène, il en va de même. 

Ajoutons d'ailleurs  que cette description ne vaut pas grand-chose et que c'est une toute première approche. La question des tailles des particules est bien plus passionnante qu'une simple métaphore. 

 

Revenons à notre question : même si notre corps est fait de très nombreux atomes, il n'en reste  pas moins que tous ceux-là sont très vides, et il en va de même pour le plancher. 

On serait donc amené à conclure, dans cette description naïve de « particules » très petites, bien localisées et séparées par de grandes distances, que le corps et le plancher pourraient s'interpénétrer, de sorte que nous glisserions à travers le plancher. Le fait est que nous ne glissons pas. 

Cette question est la même que bien d'autres qui résultent d'une vision naïve de la matière. Par exemple, à propos des membranes cellulaires, des doubles couches de phospholipides (plus d'autres molécules) : les manuels représentent les phospholipides par une petite sphère munie de deux pattes grêles, et les images des doubles couches de phospholipides montrent un réseau très serré de telles molécules. Pourtant, là encore, la composante matérielle est quasi rien ; or ces doubles couches de phospholipides limitent véritablement les cellules, empêchant les échanges entre  l'extérieur et  l'intérieur, et heureusement, sans quoi notre corps se viderait de son contenu, et l'environnement pourrait s'y introduire ! 

Autre exemple un peu plus technique : les micelles qui se forment quand on met du savon dans de l'eau. Là, les têtes sphériques n'ont qu'une seule jambe (on dit une queue), et ces molécules de savons se regroupent, les têtes à l'extérieur et les queues à l'intérieur, formant des  sphères. Pourtant le chimiste a de quoi s'étonner, car il sait que le motif représenté par les têtes se réduit à quatre ou cinq atomes, alors que les queues sont des longues chaînes de carbone et d'hydrogène.
Pourquoi représente-t-on quatre atomes comme une grosse sphère, et une chaîne 20 atomes de carbone comme une frêle queue ? 

La réponse à cette dernière question éclaire la question initiale  de notre corps et du plancher : ce qui compte, c'est moins la « matière » que son influence, c'est-à-dire les forces  électriques d'attraction ou de répulsion. Dans le cas des micelles, par exemple,  les têtes  sont chargées électriquement, et elles se repoussent  très vigoureusement. Ce que l'on symbolise ainsi, par de grosses têtes, c'est un  rayon d'action et ce sont des champs  électromagnétique qui nous empêchent donc de traverser le plancher. Quand on joue avec  des champs électriques ou magnétiques à l'échelle macroscopique, par exemple quand on utilise des petits aimants comme on en colle sur le réfrigérateur,  les forces ne sont pas bien grandes,  mais comme elles varient comme l'inverse de la distance au carré, elles deviennent considérables aux distances inter-atomiques, interparticulaires. 

 

Et c'est ainsi que nous ne passons pas à travers le plancher. Si cette question vous intéresse, je vous recommande ce livre de poche écrit en anglais Why you don't fall through the floor, ainsi que le livre publié par le même auteur,  J. E. Gordon, aux Editions Pour la Science.

jeudi 6 juillet 2023

La tendreté des pâtes cuites

  Tiens, nous cuisons une Flammkuecha ou une pissaladière, voire une pizza, c'est-à-dire une couche de pâte, obtenue par mélange de farine et d'eau. 

Nous avons utilisé un rouleau ou un autre instrument afin d'obtenir une épaisseur assez régulière. Cette pâte, éventuellement avec une garniture, est placée dans un four très chaud, par exemple  200 °C. 

A cette température, les parties externes de la pâte ont leur eau qui s'évapore, ce qui produit un croûte croquante. À l'intérieur, la température reste toujours inférieure à 100°, parce que, tant qu'il y a de l'eau, la température ne peut guère augmenter (au mieux quelques degrés, parce que cette eau n'est pas pure, mais contient des "solutés", des composés dissous*). 

La chaleur arrive donc à la surface, et de l'eau s'évapore donc de la partie supérieure et de la  partie inférieure de la pâte, tandis que la tendreté du centre subsiste. 

 

Je  propose un exercice aux amateurs de sciences de la nature, un petit calcul : connaissant les lois classiques de transfert de la chaleur, connaissant la température du four, connaissant la chaleur latente d'évaporation de l'eau (combien il faut d'énergie pour évaporer une masse d'eau donnée, à la température de 100 °C),  pouvons-nous calculer quel sera, après 10 minutes de cuisson par exemple, l'épaisseur des croûtes inférieure et supérieure ? 

La réponse à  la question est intéressante, parce que si l'épaisseur totale de la pâte est inférieure à la somme de ces deux épaisseurs,  alors nous obtiendrons une couche de pâte entièrement croquante ;  en revanche, si l'épaisseur totale est supérieure à la somme des deux épaisseurs, alors nous ferons un coeur tendre entre deux couches croquantes. 

En pratique, les cuisiniers répondent à la question par l'expérience, mais les étudiants en physico-chimie obtiendront facilement le résultat par un simple calcul.  Et puis ? Ce type de problème ne conduit-il pas à l'étude de la physico-chimie ? A la connaissance par la gourmandise ? 

 

* A titre indicatif, quand on fait bouillir 200 g d'eau additionnés de 200 g de sel, la température d'ébullition de l'eau n'est pas de 100 °C, mais de 103 °C ; pas de quoi fouetter un chat.

mercredi 5 juillet 2023

Wallace

Je reçois de mon savant ami Jacques Reisse un exemplaire de son livre Wallace, plus darwiniste que Darwin, mais moins politiquement correct, publié par l'Académie royale de Belgique. 

Je n'ai pas encore lu le livre, mais je me promets de le lire avec délectation, car j'ai confiance en Jacques, et que son travail d'historien de la biologie (il est pourtant physico-chimiste) est "estampillé" par Michel Morange, qui, lui, est un historien estampillé (professeur à l'Ecole normale supérieure). 

Le quatrième de couverture est le suivant : Alfred Russel Wallace (1823-1913) est l’un des plus grands naturalistes du 19e siècle. Autodidacte génial, co-inventeur de la théorie de l’évolution, explorateur de régions inconnues d’Amazonie et de l’archipel malais, père de la biogéographie, écologiste avant l’heure mais aussi socialiste, anticapitaliste, antimilitariste,  féministe et donc « politiquement incorrect » dans l’Angleterre victorienne. 

Wallace est déiste et spiritualiste : il croit a l’existence d’un monde des esprits, à l’existence d’un pouvoir organisateur surnaturel, aux fantômes et en cela, aussi, il est « politiquement incorrect » pour ses collègues et amis comme Huxley, Hooker, Darwin qui cherchent à dégager la science de toute contrainte philosophique ou religieuse et à la fonder sur des bases rationnelles.

Wallace est un personnage fascinant sur le plan scientifique et personnel. Sa vie est un vrai roman !

mardi 4 juillet 2023

J'ai (re)lu pour vous : Gouttes, bulles, perles et ondes, par Pierre-Gilles de Gennes, Françoise Brochard et David Quéré

Alors que je conseille cette lecture du livre Gouttes, bulles, perles et ondes à des étudiants, je vois l'occasion de célébrer la mémoire de Pierre-Gilles de Gennes, qui fut un remarquable physicien, lauréat du prix Nobel. 

Le comité Nobel a dit de lui qu'il était l'égal de Newton. Je ne sais si c'est vrai (puisque je n'ai pas connu Newton, et que l'avenir le dira), mais je sais qu'il transforma une partie de la physique, imposant le paradigme de la matière la matière molle. 

La matière molle ? Ce sont  tous ces systèmes colloïdaux : gels, mousses, émulsions, suspensions... Pour les décrire, il faut une physique très particulière, qui a donc été nommée physique de la matière molle, soft matter physics en anglais. 

Pierre Gilles de Gennes a travaillé avec de nombreux collègues plus jeunes que lui, souvent de talent, et il a publié de nombreux articles et quelques livres. L'un d'eux, Scaling concepts in physics, est tout à fait remarquable, car il s'inscrit dans la lignée des travaux de renormalisation, un concept essentiel en physique, mais il faut admettre que ce n'est une lecture de chevet que pour ceux qui calculent comme chantent les rossignols. 

Pierre Gilles a également été un pionnier de la percolation, il a fait une foule de travaux, sur la supraconduction, les cristaux liquides... Je crois surtout qu'il a  promu un usage, une pratique tout à fait particulière en physique, qui consiste à considérer les ordres de grandeur (je simplifie).
Par exemple, la circonférence d'un cercle, strictement égale à  2 pi r, varie comme le rayon r. La  surface du disque, elle, varie comme r au carré... Des collègues de Pierre Gilles de Gennes ont ainsi produit un livre sur les polymères qui est exempt de toute équation compliquée, puisqu'il se contente d'écrire : « varie comme ». Ce livre remarquable n'est pas traduit en français, mais je le conseille vivement à tous les étudiants en physico-chimie. 

 

J'arrive maintenant au livre particulier que je voulais conseiller, Gouttes,  bulles, perles et ondes. C'est un livre d'initiation : pensons à des élèves de licence ou de mastère. Parfois on sent la patte d'un auteur particulier (le livre a été rédigé par De Gennes, Françoise Brochard et David Quéré), parfois on ne la sent pas, mais ce livre est merveilleux notamment parce qu'il donne un coup de projecteur sur des objets d'une famille très précise. 

La méthode de Pierre Gilles de Gennes est  mise en oeuvre de façon homogène et l'on ne sort certainement pas plus bête de la lecture de ce livre (vous vous rappelez que j'aime autant la litote que l'euphémisme ou l'antiphrase), que je recommande donc très vivement

lundi 3 juillet 2023

Emerveillons-nous des sciences, émerveillons-nous de la technologie, émerveillons-nous de la technique

J'insiste : aux jeunes, nous devons offrir deux voies également passionnantes, à savoir la technologie, d'une part, et la science quantitative, d'autre part. 

Il est temps que nous apprenions à nous émerveiller des extraordinaires résultats de la technique et de la technologie. 

Nos systèmes de chauffage, de transport, nos médicaments, nos cosmétiques, nos peintures et vernis, nos systèmes électroniques et informatiques... Derrière presque chaque objet de notre quotidien, il a de l'intelligence technique, de l'intelligence technologique, et parfois des applications des sciences... 

 

Mais faut-il que je retombe dans ce travers qui consiste à mettre la science très haut, et la technologie en dessous, en position de mettre en œuvre les résultats des sciences, et seulement eux ? Après tout, le fil à couper le beurre a été inventé sans que l'inventeur ne fasse usage de résultats des sciences. 

C'est là le sens d'un changement important, que je viens de faire : dans nos rendez-vous, il n'y aura plus ce « Vive les applications des sciences », mais seulement un « Vive la technologie ». Car, au fond, un ingénieur utilise tout aussi bien la langue naturelle que les résultats des sciences, pour ses innovations. 

 

Oui, les connaissances produites par la science peuvent être utilisés, mais ce serait une erreur que la technologie se limite à ces résultats. Bref, vive la technologie ! Cela étant posé, considérons la technologie. Quelle est sa méthode ? Y en a-t-il plusieurs ? 

Pour les sciences quantitatives, j'ai exposé ailleurs la stratégie générale d'observation de phénomène, de quantification, de réunion des données en lois synthétiques, de recherche inductive de mécanismes, de recherche de conséquences de la théorie et de tests de ces conséquences, à la recherche de réfutation. 

Mais pour la technologie ? Le but étant différent, on conçoit que la méthode soit également différente. Quelle est-elle ? La question est essentielle, parce que nous avons à enseigner à des jeunes ingénieurs. Et la technologie (certains disent l’ingénierie) ferait sans doute une erreur en reprenant la méthode des sciences quantitatives, parce qu'elle serait alors conduite sur la voie scientifique, qui n'est pas la sienne . 

 

Bref, je pose la question, en la divisant : - en supposant que la technologie fasse usage de résultats des sciences, comment doit-elle chercher ces résultats ? - dans la même hypothèse, comment la technologie peut-elle choisir, parmi l'ensemble des résultats, ceux qui pourront faire l'objet d'un transfert technologique ? - comment bien faire les transferts technologiques ? 

 

Je crois que le chantier est urgent. Des idées ?

dimanche 2 juillet 2023

Antoine Augustin Parmentier : quel homme merveilleux !

 
L'histoire de Parmentier est souvent racontée avec beaucoup d'erreurs. 

La pire consiste à dire que Parmentier introduisit la pomme de terre en France. Cela n'est pas vrai, car la pomme de terre était cultivée et consommée bien avant qu'il s'y intéresse, dans l'est de la France. 

Une autre erreur consiste à dire que Parmentier fut le premier à séparer l'amidon de la pomme de terre, pour en faire divers usages. Cela était déjà fait depuis longtemps, l'amidon et le gluten ayant été séparés (du blé) dès 1728 par Jacobo Beccari, professeur de chimie à l'Université de Bologne. À ce sujet d'ailleurs, il reste  une incertitude  :  le texte  sur le blé de Beccari date de 1745, mais en 1728 il aurait fait une communication  à l'Académie des sciences de Bologne ;  or, pour l'instant, je n'ai pas trouvé trace de cette communication, pourtant décrite par quelques auteurs  qui ne donnent pas leur source... et l'Académie de Bologne n'a pas répondu à mon courrier où je demandais des précisions attestées, fiables, sûres. 

Parmentier est-il le premier à avoir cuisiné les pommes de terre ? Non plus. Alors qu'a fait Parmentier ? Dans ses Eléments chymiques des pommes de terre, Parmentier effectue diverses expérimentations  de lavage à différentes eaux, de traitements à l'acide, etc. sur des fractions de la pomme de terre,  afin de comprendre plusieurs des mécanismes observés quand on transforme les pommes de terre, et notamment des changements de couleur. 

De ce point de vue, Parmentier était bien dans la position d'explorer les mécanismes de ces phénomènes que sont, par exemple, les changements de couleur, il était bien en position de chercher à « lever un coin du grand voile ». 

Parmentier a donc fait une oeuvre scientifique, à propos de la pomme de terre. Etait-ce une œuvre de chimie ? Dans l'oeuvre « chymique » de   Parmentier, il n'y a guère de réarrangement atomique, de  transformations moléculaires, de réactions chimiques... Il y a surtout des fractionnements, de l'analyse, et si cette analyse vise à ranger dans des catégories différentes des fractions moléculaires différentes, ces molécules ne sont pas modifiées, de sorte que cette analyse est en réalité physique et non chimique. 

Ce point devrait nous ouvrir les yeux sur  la réalité de l'analyse chimique, et de ce que l'on nomme parfois abusivement la « chimie analytique ». 

 

Pour en revenir à Parmentier, il a donc fait un travail scientifique, mais il est également juste de lui reconnaître une activité  propagande soutenue, fondée sur une stratégie intelligente dont la composante  essentielle  semble avoir été précisément... cette activité soutenue, qui a conduit un nombre croissant de Français de l'époque à survivre aux famines qui affligeaient le pays, en consommant des pommes de terre. 

Ayant précisé les conditions de la culture et de l' utilisation, Parmentier fit une oeuvre remarquablement utile : une œuvre également technologique. 

Un point de détail amusant : pour introduire la pomme de terre en France, disons plutôt pour en augmenter l'usage, Parmentier dut combattre des préjugés sur la toxicité de ces solanacées, famille de plantes qui comprend  la belladone ou la mandragore, toxiques. 

Dans ces écrits, Parmentier ne cesse de dire combien de dire que la pomme de terre est saine... mais il est intéressant de savoir que des articles scientifiques récents montrent que la cuisine de rue, au Pakistan, qui utilise des pommes de terre non pelées, conduit à des accidents, en raison de la présence abondante des alcaloïdes présents dans les trois premiers millimètres sous la surface. Les tubercules de la pomme de terre contiennent, on l'a oublié, des alcaloïdes toxiques, et ce n'est pas une bonne pratique culinaire que de manger les pommes de terre avec leur peau. Ajoutons que pour la bonne bouche que les alcaloïdes de la pommes de terre résistent à des températures élevées, jusqu'à 285° C. 

 

Pelons donc les pommes de terre, et ayons une activité culinaire raisonnée, en mémoire de Parmentier !

Cela me frappe d'un coup, en relisant la biographie de Justus von Liebig, par Brock (Justus von Liebig, the chemical gatekeeper).

 

Liebig était parti à Paris, faire ses études avec Louis Joseph Gay-Lussac, notamment, et sa thèse en Allemagne lui avait été donnée sans qu'il la passe vraiment, sur la base de ses travaux parisiens, afin de lui permettre d'enseigner la chimie, de former le corps technique et scientifique dont le Duché de Hesse-Darmstadt avait besoin. 

Brock écrit que Paris avait mis Liebig en relation avec les vraies racines de la chimie moderne :  les élèves de Lavoisier. Liebig resta toujours attaché à Gay-Lussac, et son premier élève étranger à Giessen, en 1833, fut le fils Jules de Gay-Lussac. Quand Gay-Lussac publia ses méthodes titrimétriques ou volumétriques pour l'analyse de l'argent, Liebig traduisit les textes en allemand. 

Paris donna aussi à Liebig la possibilité de fréquenter des scientifiques européens parmi les plus grands, et la thèse qui lui fut donné par l'universiité d'Erlangen, anisi que la présentation qu'il fit à son retour, devant l'Académie des sciences, le firent connaître d'autres personnages célèbres tel que Berzelius, Oersted, Döbereiner... Grace à Humbolt et à Kastner, le fils d'un commercant, âgé de 21 ans, fut transformé en professeur de chimie. 

Le coût, pour ses parents et l'état (plus de 5000 gulden) fut au bénéfice de la chimie européenne, et éleva Liebig de la classe laborieuse respectable à une intelligentsia bourgeoise. 

 

Nous y sommes : pour Brock, comme pour beaucoup dans ce monde, on s'élève par l'argent. 

Et si l'on considérait enfin, au contraire, que l'argent n'achète jamais le talent ? Laurent de Médicis pourra payer tous les artistes qu'il voudra, il ne saura jamais peindre ! Et Bill Gates pourra dépenser des millions de dollars qu'il ne maitrisera jamais la méthode des développements asymptotiques de Wong, au voisinage du point singulier d'un col ! 

Je propose de considérer que le talent soit la véritable échelle sociale. Cela nous évitera beaucoup de vulgarité !