dimanche 20 janvier 2019

A propos de pesticides : je ne réponds donc pas, puisque je me suis engagé ;-)

On se souvient que j'ai pris l'engagement de ne plus parler de nutrition ou de toxicologie, mais hélas, on me prête des talents que je n'ai pas. Ici, je profite de l'occasion pour montrer comment on se comporte en scientifique.

Voici la question :

Voici le conseil que je reçois sur mon blog, après avoir raconté qu’un ami avait épluché ses radis chez moi (il craignait les pesticides) : 
« Mettre à tremper 20 minutes vos légumes dans 1, ou 2, ou 3 litres d'eau selon la quantité à rendre bio, avec 1cs pour 1 litre, 2 cs pour 2 litres, etc etc de bicarbonate de soude, il n'y aura plus de pesticides, le bicarbonate est un pesticivore de première, et en plus ça gardera la couleur primale des légumes, et voili voilou, pas plus compliqué, on peut rincer après si on veut... pour les maniaques… »
C’est un point bien intéressant, et ce n’est pas la première fois que j’en entends parler : mais d’après vous, est-ce vrai ?
Une matière X, ici le bicarbonate, peut-elle vraiment manger (en 20 mn qui plus est) des pesticides peut-être multiples ? Comment fait le bicarbonate ? Quel est le principe de son action ?


Pour répondre  sans répondre, j'analyse, donc (et on verra que cela suffit à répondre)

Et je commence par observer qu'un ami de ma correspondante épluchait les radis pour éviter les "pesticides".
Mais au fait, cet ami savait-il que les végétaux se protègent spontanément contre les "pestes" (micro-organismes, rongeurs, etc.) par des composés que l'on nomme donc des "pesticides" ? Et le toxicologue mondialement connu Bruce Ames a mesuré que 99,99 pour cent des pesticides de notre alimentation sont d'origine naturelle. Et ces pesticides sont dans les parties externes : par exemple, les glycoalcaloïdes des peaux de pomme de terre. Enfin, ajoutons que ces pesticides naturels ne sont pas moins dangereux que les pesticides de synthèse !
Donc faut-il peler les radis ? Face aux peurs de ce type, j'ai toujours tendance à demander à mes interlocuteurs s'ils fument, boivent (trop) d'alcool, font (trop) peu de sport, et mangent beaucoup (trop) ? Si oui, qu'ils ne s'inquiètent que très modérément des pesticides, car les études montreront qu'ils mourront de tous leurs comportement précédemment évoqués.
Mais là, je suis sur un terrain où je ne veux pas aller, et, même j'ai les bons arguments, je n'entre pas dans la discussion.

J'arrive maintenant à cette partie de phrase "1, ou 2, ou 3 litres d'eau selon la quantité à rendre bio" : là, l'ami de ma correspondante a parfaitement tort, car le trempage des végétaux dans de l'eau ne suffit pas pour rendre les végétaux bio ! Le "bio", c'est un ensemble de règles de production... et ce serait trop simple si tous les agriculteurs pouvaient se contenter de tremper leurs produits pour faire payer bien plus cher !

Le bicarbonate suffit-il, lui ? Pas plus. Mais l'ami en question dit en outre autre chose, à savoir que le bicarbonate supprimerait les pesticides des végétaux.
Il y a plusieurs commentaires à faire. Le premier est que les pesticides, s'ils sont lessivables, auront été lessivés sur les plantes. D'autre part, j'ai évoqué les glycoalcaloïdes toxiques des pommes de terre, dans les trois premiers millimètres sous la surface, et aucun bicarbonate ne supprimera ces pesticides naturels.

La couleur des légumes ? Ce que dit l'ami est parfaitement faux, car les pigments des végétaux, en toute généralité, changent de couleur avec le "pH", disons l'acidité ou la basicité. C'était d'ailleurs ainsi que l'on distinguait les produits végétaux des produits animaux, dans le temps. Pensons au chou rouge, qui  vire au rouge ou au bleu selon qu'on ajoute un peu de vinaigre ou de bicarbonate. Pensons au thé au citron, qui change de couleur quand on ajoute du bicarbonate !
Et puis, il y a des questions de langue : couleur "primale" ? Je suppose que notre ami veut parler de couleur... naturelle, par exemple. J'insiste un peu, parce que, dans ces questions, la pensée (juste) repose sur des mots justes ! Et les confusions qui engendrent ces débats interminables et sans intérêt sur les réseaux sociaux naissent souvent de l'emploi inconsidéré des mots. Un chat n'est pas un chien, un tournevis n'est pas un marteau. De quoi parle-t-on ? Bien sûr, nos amis peuvent dire n'importe quoi au café du commerce numérique, mais je n'ai pas de temps à perdre pour aller à ce bistrot : il y a des urgences plus grandes, à savoir s'interroger sur l'alimentation de tous ceux qui ont fait, et des dix milliards de personne qu'il faudra nourrir en 2050... sans compter mes travaux scientifiques.
Mais, en restant dans ce domaine, je profite de la faute de langue qui est faite pour discuter le mot "naturel" : je rappelle que le dictionnaire définit ce mot comme "ce qui n'a pas fait l'intervention d'un être humain". Or la cuisine, c'est bien l'intervention d'un être humain. Oui, il faut le dire et le répéter, la cuisine produits des mets, qui sont parfaitement "artificiels", au sens du dictionnaire, et non au sens de nos fantasmes. Et artificiels a la même racine qu'art, artiste.

Passons maintenant aux commentaires de ma correspondante. Le bicarbonate peut-il éliminer des pesticides qui seraient à la surface des végétaux ?
C'est là la partie qui m'intéresse  : face à une telle question, le ou la scientifique commence par faire une "bibliographie", à savoir que l'on va sur des sites scientifiques, pour chercher des articles scientifiques faisant état d'études rigoureuses sur la question. J'observe d'ailleurs qu'il ne s'agit pas que le bicarbonate "mange" les pesticides, mais soit qu'il les dégrade chimiquement, soit qu'il les lessive mieux que l'eau pure, par exemple.

Mais ici, le billet serait trop long s'il donnait le résultat de l'étude, et je me mettrais dans la position de répondre à des questions de toxicologie ou de nutrition, ce que je me suis engagé à ne pas faire. Je me contente donc d'observer que "les pesticides", c'est une catégorie bien trop vaste, et les panacées n'existent pas ! Une panacée, c'est par définition une drogue qui guérit tout : un fantasme, donc. De même, un composé qui aurait toutes les propriétés, vis à vis de tous les pesticides différents, cela n'est pas possible.
Reste que, même si je ne donne pas ici le résultat de mon étude bibliographique, il est intéressant de savoir que le mécanisme d'action du bicarbonate... est encore très mal connu, au point que vient d'être publié un article scientifique de belle qualité qui examine la question : cela date de moins d'un mois !
Et voilà pourquoi nous avons besoin de bien plus de science !


Mais je pressens que mes interlocuteurs ne seront pas content de moi, et il faut que je revienne à leur question. 

Je propose de répondre : mes amis, n'ayons pas peur, et faisons confiance aux experts beaucoup trop nombreux (qui veillent sur notre alimentation) ! N'ayons pas peur de tout ce que nous mangeons, ne cédons pas à l'orthorexie qui conduit à des déviances alimentaires et sociales délétères !
Craignons plus l'hygiénisme que l'empoisonnement par des "traces de composés potentiellement dangereux" (une expression que je vous invite à méditer).



PS. Un petit début de la longue liste d'articles que j'ai consultés (je ne dis pas que tous ces articles sont bons) :


Graziela C. R. M. Andrade,* ,a Sérgio H. Monteiro, b Jeane G. Francisco, a
Leila A. Figueiredo, a Aderbal A. Rocha c and Valdemar L. Tornisielo a, Effects of Types of Washing and Peeling in Relation to Pesticide Residues in
Tomatoes, J. Braz. Chem. Soc., Vol. 26, No. 10, 1994-2002, 2015.


Y. Liang a,b , W. Wang a , Y. Shen b , Y. Liu b , X.J. Liu a, Effects of home preparation on organophosphorus pesticide residues in
raw cucumber, Food Chemistry 133 (2012) 636–640


AM FADAEI 1 , MH DEHGHANI *1 , AH MAHVI 1 , S. NASSERI 1 ,
N. RASTKARI 2 , AND M. SHAYEGHI 3, Degradation of Organophosphorus Pesticides in
Water during UV/H 2 O 2 Treatment: Role of Sulphate
and Bicarbonate Ions, E-Journal of Chemistry 2012, 9(4), 2015-2022

T. E. ARCHER and J. D. STOKES, REMOVAL O F CARBOFURAN RESIDUES FROM STRAWBERRIES
BY VARIOUS WASHES AND JAM PRODUCTION ,University
of California, Toxicology Davis, CA 95616,

Tianxi Yang, † Jeffery Doherty, ‡,§ Bin Zhao, † Amanda J. Kinchla, † John M. Clark, ‡,§ and Lili He* ,† Effectiveness of Commercial and Homemade Washing Agents in Removing Pesticide Residues on and in ApplesJ. Agric. Food Chem. 2017, 65, 9744-9752

samedi 19 janvier 2019

A propos de mousses et de cuisson

Aujourd'hui, deux questions que je n'avais jamais eues, de sorte que je réponds sans attendre :

1. J'ai lu que vous aviez fait l’expérience des blancs en neige avec la pompe à vélo, mais pourquoi ? Le batteur est plus pratique


Oui, il y a environ 40 ans (déjà !), je m'étais interrogé sur la production des blancs en neige, et j'avais compris qu'il s'agissait de simples mousses, avec des bulles d'air dans un liquide fait de 90 pour cent d'eau et de 10 pour cent de protéines. Pour montrer que le fouet n'était rien qu'une des milles possibilités d'obtenir une telle mousse, j'avais utilisé une pompe à vélo... mais n'oubliez quand même pas que j'ai une forte tendance à la "rigolade sérieuse".

Bref, dans la foulée, j'avais montré qu'une pompe d'aquarium soufflant de l'air dans les blancs faisait des mousses aux bulles bien plus grosse que pour du blanc d'oeuf. Et, surtout, j'avais proposé de faire mousser des mélanges variés : pensons par exemple à du jus de framboise additionné de protéines.

Là, c'était plus pratique que la pompe à vélo, parce que l'on appuie sur un bouton, et tout se fait automatiquement. Mais il ne s'agissait que de deux exemples, et j'avais montré également l'utilisation de siphons... qui sont aujourd'hui partout en vente dans les grandes surfaces, et là, c'est bien plus pratique de fouetter au fouet !

J'ajoute que l'histoire n'est pas finie : je n'aime pas beaucoup les siphons actuels, parce que les recharges sont un peu du gaspillage... et aussi que des jeunes se droguent au protoxyde d'azote qui est dedans. Je préfère des compresseurs qui font le même travail, avec de l'air.


2. Je ne doute pas que la cuisson au lave vaisselle soit intéressante, mais pourquoi pas à la vapeur directement ?

Je vois que mon interlocutrice ne connait pas la "cuisson à basse température", qui est un progrès considérable pour l'économie familiale ! Transformer des viandes dures, qui coûtent 4 euros le kilogramme, en viandes fondantes, telles qu'on les paierait plus de 20 euros, c'est quand même quelque chose d'essentiel !
Sans compter que le résultat est constant, que le bouillon a beaucoup de goût... et que l'on perd moins de masse à la cuisson. Imaginez un rôti de un kilogramme : si vous le cuisez à 180 degrés ou même à 100 degrés, il perd entre 20 et 30 pour cent de sa masse : en pratique, on achète un kilogramme, et l'on ne sert que 700 grammes ! En revanche, à basse température, la perte est très faible.  Mais, surtout, avec oeufs, poissons, volaille, le résultat est absolument merveilleux. Et c'est plus facile à régler qu'à la vapeur (laquelle, d'ailleurs ?).
Mais, ayant expliqué l'intérêt de la cuisson à basse température, il faut en venir au lave-vaisselle : cette fois, c'est de l'économie sur l'énergie dépensée pour la cuisson, puisque les aliments (protégés dans des plastiques de qualité "alimentaire") cuisent sans utiliser d'autre énergie que celle qui serait déjà dépensée pour faire la vaisselle !
Cela dit, il y a mille façons de faire, mais, j'y repense, pourquoi un attachement particulier à la vapeur ? Et nous pourrions-nous pas penser à encore d'autres méthodes encore plus modernes ? D'ailleurs, pour la "cuisine note à note", comment cuire au mieux ?

A noter que les questions technologiques et techniques sont notamment abordées dans

Les notes, les mesures, les phrases, les carrures

On se souvient que les jésuites recommandent de se comporter en chrétien plutôt qu'en tant que chrétien : il ne s'agit pas de paraître, mais d'être.
# De même, en science, Louis Pasteur recommandait d'y penser toujours... mais peut-on se forcer à y penser toujours ? En réalité, un ou une scientifique véritable se comporte évidemment en scientifique, et il n'a pas besoin du conseil : il y  pense toujours !

Toute cette introduction pour observer que le "complémentaire de la science dans le monde", à savoir tout ce qui n'est pas la science (de la nature, bien sûr), est pour les véritables scientifiques une occasion de penser à la science.
# La musique, par exemple, dont des naïfs amateurs de musique diront sans doute qu'il y a une relation "évidente" entre musique et science (tandis que des amateurs de peinture diraient qu'il y a une relation évidente entre science et peinture, etc.). Observons que la musique est faite de notes, organisées en mesures, ces dernières étant groupées en phrases musicales.  Une notion importante, de surcroît, pour un tendance musicale particulière, classique (pour l'Occident), est celle des "carrures" : les phrases musicales sont très souvent organisées de la manière suivante : de durées équivalentes, elles sont en nombre divisible par deux, ou mieux, par quatre. Ce mode de répartition périodique est appelé carrure, par référence aux quatre côtés égaux d'un carré, s'opposant deux par deux.

La question est : l'on voit une belle organisation des travaux des musiciens (classiques occidentaux, je le répète), mais quelle serait l'analogue, en science ? 



 

vendredi 18 janvier 2019

Je vous présente l'actine et la myosine

Cela fait longtemps que j'aurais dû évoquer ces protéines que sont l'actine et la myosine ; d'ailleurs, je devrais dire "les actines et les  myosines", ce qui serait plus juste.


Examinons tout cela dans une perspective historique. 

Il y a environ trois siècles, les chimistes ont identifié l'albumine, principe coagulant du blanc d'oeuf, ou albumen. Cette "matière", cette "substance",  avait des particularités, par rapport aux composés végétaux, à savoir que, comme elle contenait de l'azote (on l'ignorait à l'époque), sa putréfaction engendrait de l'ammoniac, composé basique qui fait virer la couleur d'indicateurs colorés, à savoir, à l'époque, les sirops de violette (on broie des fleurs dans l'eau et l'on filtre).
Puis, progressivement, les chimistes comprirent que les viandes, aussi, avaient cette même propriété, et l'on se mit à parler d'albumine pour l'oeuf, la viande, les poissons.
Soudain, vers 1800, les chimistes découvrirent, dans des plantes des composés qui avaient les mêmes propriétés : des "albumines végétales" ! Ce fut un bouleversement, car la division établie par la religion entre le règne animal et le règne végétal tombait !
Mais, bientôt, les progrès de l'analyse chimique révélèrent l'existence d'entités plus précises que l'albumine, et plus diverses aussi, et l'on identifia les "protéines", mais aussi les acides aminés.
Aujourd'hui, on nomme "albumines" une catégorie très particulière de protéines : de petites protéines solubles dans l'eau et capables de coaguler à la chaleur, notamment.
Et c'est ainsi que, dans le blanc d'oeuf, il y a une vingtaine de sortes de protéines différentes, dont seulement certaines sont des albumines. Pour les viandes ou poissons, il y a aussi des albumines, telle l'albumine sérique, dans le sang.


Aujourd'hui, parlons de protéines

Il y a donc des protéines très différentes, et, notamment, certaines coagulent et d'autres non. Ainsi les viandes sont des assemblages de "fibres musculaires" (des sortes de tuyaux très fins), en faisceaux regroupés eux-mêmes en super-faisceaux. Les fibres musculaires sont comme de tuyaux,  comme dit précédemment, qui contiennent une matière qui a des ressemblances avec le blanc d'oeuf. La "peau" de ces fibres, c'est du "tissu collagénique", une matière faite d'une protéine qui est nommée collagène. Et cette protéine ne coagule pas, mais elle peut former des gels : ce sont les gels de gélatine, qui se forment d'ailleurs spontanément quand on laisse refroidir le bouillon formé par la cuisson d'une viande dans une petite quantité d'eau (ou de vin).
L'intérieur des fibres musculaires, ce sont de l'eau et deux sortes de protéines, qui sont nommées actines et myosines. Ces protéines permettent aux fibres de se raccourcir quand elles reçoivent un ordre du cerveau (un signal électrique transmis par les "nerfs"), et c'est cela qui conduit à la contraction entière du muscle. Et ces protéines, contrairement au collagène, peuvent coaguler : la preuve, c'est que quand on broie une viande, puis que l'on chauffe, on obtient... des terrines, où les protéines que sont actines ou myosines ont coagulé.