Des questions, des réponses. En l'occurrence, il s'agit d'une étudiante qui fait un travail personnel encadré. Je l'avais renvoyé sur mon site... où figurent mille informations. D'ailleurs, elle écrit :
Que d’informations ! Mille mercis.
Les liens sont super et votre espace sur les TPE m’a effectivement bien éclairée. J’ai pu aussi trouver énormément de livres à la bibliothèque. Dommage, la tome 1 de gastronomie moléculaire n’est pas empruntable, seulement à consulter sur place !
Mon commentaire : on peut sans doute acheter le livre chez Quae ou chez Belin.
Finalement, après réflexion et tous les conseils que vous donnez pour le TPE, je pense donc me focaliser sur la gélification de l’œuf , et l’explication de la modification de la structure protéique ainsi que la réalisation de l’œuf parfait. C’est mieux, non ?
Oui, c'est bien mieux... à cela près que je n'utilise plus la terminologie d'oeuf parfait, mais d'oeuf à XX°C, parce que la perfection n'est pas de ce monde.
Aujourd’hui, j’ai voulu tester « à l’aveugle » votre cuisson de l’œuf parfait avec la boite d’œufs mise directement dans le four (sans mes 2 camarades car c’est les vacances !). Cependant, le four de ma mère n’étant pas précis, la température a oscillé entre 61 et 72°C, et disons que le blanc était encore gluant et translucide, et le jaune liquide !
Apparemment, l'oeuf obtenu est un oeuf à 65°C, car si le blanc est opaque et qu'il se tient bien, avec un jaune liquide, c'est le critère, comme on le voit sur l'image suivante :
Aussi, je vais tenter la réalisation au lave-vaisselle, j’ai regardé la notice de mon lave-vaisselle, qui a bien un programme à 65°C mais de 58mn seulement !
Il faudra faire attention à ne certainement pas croire ce qui est indiqué dans la notice : pour connaître la température, il faut un thermocouple dans la machine... ou un oeuf ;-)
Comment avez-vous déterminé la durée de 60mn ? est-ce par un calcul ou en expérimentant par tâtonnement ?
Les deux. D'une part, l'application de la seconde loi de Fourier, et, d'autre part, la mesure avec un thermocouple planté dans le jaune.
Du coup, je vais peut-être lancer 2 fois de suite le prg et arrêter le deuxième lavage au bout de 20mn… Sachant que je compte mettre 2 œufs, un qui aura subi un cycle, et l’autre 1cycle et ½. Pensez-vous que c’est ainsi que je dois expérimenter ?
Tout dépend de l'objectif. Mais surtout, dans mon groupe de recherche, je ne réponds pas aux étudiants, sans quoi je leur vole le plaisir d'avoir fait eux-mêmes, et je leur demande de construire leur propre chemin à partir d'un objectif clair. Pour les aider, toutefois, à trouver la réponse à leurs questions, je leur enseigne la méthode du "soliloque (que l'on trouvera dans certains de mes "cours en ligne", notamment sur https://tice.agroparistech.fr/coursenligne/main/document/document.php?cidReq=PHYSICOCHIMIEPOURLAF&curdirpath=/Des%20elements%20de%20cours/Methodes%20-en%20francais-)
Sinon, j’ai trouvé un article sur internet, qui explique comment faire facilement un œuf à 65°C, disant la chose suivante :
« Nous savons que la température au centre d'un œuf mis dans de l'eau à 100°C a besoin d'une dizaine de minutes pour dépasser 60°C, qui est la température à laquelle le jaune devient solide. Par un petit calcul que les lecteurs intéressés trouveront en annexe, nous en concluons qu'il faut environ ¾ d'heure pour atteindre au centre de l'œuf le 95% de la température de l'eau dans laquelle il est plongé. D'autre part si la température de 65°C doit être tenue de manière assez précise pour obtenir le jaune malléable typique, le blanc d'œuf supporte sans dommage quelques degrés supplémentaires. Nous voyons donc que nous pouvons obtenir un œuf presque parfait en le plongeant environ 1 heure dans une eau dont la température est légèrement plus élevée que 65C. Comme nous ne disposons pas d'eau à température parfaitement constante, nous pouvons démarrer un peu plus chaud et laisser refroidir, pourvu que la température ne diminue pas trop vite… »…
Ensuite, cet article donne le protocole pas à pas afin de réaliser facilement l’œuf parfait.
Cependant, je ne sais pas comment a été calculé le temps de « ¾ d'heure pour atteindre au centre de l'œuf le 95% de la température de l'eau dans laquelle il est plongé ». (il n’y a pas d’annexe).
Oui, c'est un article bizarre. Que signifie que "le blanc d'oeuf supporte quelques degrés supplémentaires", par exemple ? Et puis, il y a des tas d'erreurs dans ce texte. Et puis, pourquoi n'ont-ils pas une température constante ? Après tout, ce n'est pas difficile d'avoir une grande quantité d'eau (pour avoir plus d'inertie) que l'on chauffe par moments pour la garder à 65, à un ou deux degrés près ? Evidemment, si l'on a un thermoplongeur, c'est quand même plus simple !
Ce blog contient: - des réflexions scientifiques - des mécanismes, des phénomènes, à partir de la cuisine - des idées sur les "études" (ce qui est fautivement nommé "enseignement" - des idées "politiques" : pour une vie en collectivité plus rationnelle et plus harmonieuse ; des relents des Lumières ! Pour me joindre par email : herve.this@inrae.fr
vendredi 2 novembre 2018
jeudi 1 novembre 2018
Un peu technique, celui-ci
I am asked about the definition of the "allomerization", and here is it :
The term “allomerization” was transferred into chlorophyll chemistry by Willstätter, who used it to describe then unknown reactions of chlorophylls occurring when they were standing in alcoholic solutions in contact with air . Indeed allomerization is identical to auto-oxidation , including several reactions that yield a complex mixture of allomers and other alterations products such as solvolysis of the isocycle ring, demetallation, dephytylation and photooxidation .
Concerning the mechanism, it was assumed that allomerization involves as a primary step the auto-oxidation of the Chl enolate anion, formed in small amounts in methanol containing traces of bases and/or metal impurities.
The term “allomerization” was transferred into chlorophyll chemistry by Willstätter, who used it to describe then unknown reactions of chlorophylls occurring when they were standing in alcoholic solutions in contact with air . Indeed allomerization is identical to auto-oxidation , including several reactions that yield a complex mixture of allomers and other alterations products such as solvolysis of the isocycle ring, demetallation, dephytylation and photooxidation .
Concerning the mechanism, it was assumed that allomerization involves as a primary step the auto-oxidation of the Chl enolate anion, formed in small amounts in methanol containing traces of bases and/or metal impurities.
Il faut le dire à tous les étudiants !
Il faut absolument dire à tous les étudiants que
(1) l'objectif des sciences de la nature est de chercher les mécanismes des phénomènes,
et que
(2) la méthode de ces sciences est donnée sur l'image, à savoir
(1) l'identification d'un phénomène ;
(2) la caractérisation quantitative de ce phénomène (on en mesure des caractéristiques judicieusement choisies)
(3) le regroupement des résultats de mesure en "lois" synthétiques, c'est-à-dire essentiellement en équations ;
(4) la recherche -par induction, c'est là un point central- de concepts, notions, théories, mécanismes quantitativement compatibles avec les équations dégagées ;
(5) la recherche de conséquences des théories ainsi "induites" ;
(6) les tests expérimentaux de ces conséquences, en vue de réfutations qui permettent de boucler, afin d'améliorer des théories toujours insuffisantes.
(1) l'objectif des sciences de la nature est de chercher les mécanismes des phénomènes,
et que
(2) la méthode de ces sciences est donnée sur l'image, à savoir
(1) l'identification d'un phénomène ;
(2) la caractérisation quantitative de ce phénomène (on en mesure des caractéristiques judicieusement choisies)
(3) le regroupement des résultats de mesure en "lois" synthétiques, c'est-à-dire essentiellement en équations ;
(4) la recherche -par induction, c'est là un point central- de concepts, notions, théories, mécanismes quantitativement compatibles avec les équations dégagées ;
(5) la recherche de conséquences des théories ainsi "induites" ;
(6) les tests expérimentaux de ces conséquences, en vue de réfutations qui permettent de boucler, afin d'améliorer des théories toujours insuffisantes.
mercredi 31 octobre 2018
Pourquoi les pâtes alimentaires refroidiraient-elles si vite ?
Ce matin, un ami m'interroge : "Pourquoi les pâtes alimentaires refroidissent-elles si vite ?"
Et mon réflexe est de ne pas répondre, tout d'abord, mais de me demander si c'est vrai. Car quelle honte ce serait que d'expliquer un phénomène inexistant, n'est ce pas ?
Mais je n'ai pas tellement besoin de faire l'expérience, en réalité, car je sais le phénomène inexistant, en toute généralité, comme on va le voir avec l'analyse suivante.
Soit une de pâte qui serait cubique, avec un côté de 10 centimètres. Il perdrait de la surface par ses six faces, soit 600 centimètres carrés.
Dans ce cube, coupons des feuilles carrées de 1 millimètre d'épaisseur, comme pour des lasagnes.
Alors chaque feuille aurait une surface de 200 centimètres carrés, mais il y aurait 100 feuilles, soit une surface de 20000 centimètres carrés, sans compter les bords, et donc au total la pâte perdrait de la chaleur par un total de 20400 centimètres carrés : 34 fois plus que précédemment.
Coupons maintenant des spaghettis, qui auront donc 1 millimètre carré de section. A partir de notre cube initial, nous pouvons en faire 10 000, soit une aire 67 supérieure à la surface du cube. Autrement dit, les spaghettis refroidiraient environ 67 fois plus vite que le cube initial !
Sortons la tête de ces calculs, pour nos amis qui ne les aiment pas, et reprenons les conclusions : des spaghettis refroidissent plus vite que des feuilles de lasagne, et plus vite qu'un lourdaud cube de pâte. Mais le mot "lasagne" est un peu fautif, parce que, avec des lasagnes, seule la partie supérieure est exposée... et les lasagnes ne refroidissent pas plus vite qu'un bloc, puisqu'elles ne perdent de la chaleur que comme un bloc.
Plus généralement, on voit que c'est le degré de division des pâtes qui détermine leur vitesse de refroidissement, ainsi que la surface exposée à l'air.
Sans compter que la sauce, aussi, peut jouer : si elle est froide, elle refroidira les pâtes en s'adsorbant à leur surface... mais si elle est chaude, alors elle réchauffera d'autant mieux les pâtes que celles-ci seront divisées.
Bref, pas besoin d'expérience... mais il fallait interpréter la question de notre ami, pour arriver à des conclusions que je vous invite à tester expérimentalement, sans que j'ai beaucoup de doute.
Et c'est ainsi que l'Art culinaire peut être encore plus beau : fondé sur une saine technique, mais avec un travail artistique soigneux, sans compter l'amour que l'on donne à ses convives.
Et mon réflexe est de ne pas répondre, tout d'abord, mais de me demander si c'est vrai. Car quelle honte ce serait que d'expliquer un phénomène inexistant, n'est ce pas ?
Mais je n'ai pas tellement besoin de faire l'expérience, en réalité, car je sais le phénomène inexistant, en toute généralité, comme on va le voir avec l'analyse suivante.
Soit une de pâte qui serait cubique, avec un côté de 10 centimètres. Il perdrait de la surface par ses six faces, soit 600 centimètres carrés.
Dans ce cube, coupons des feuilles carrées de 1 millimètre d'épaisseur, comme pour des lasagnes.
Alors chaque feuille aurait une surface de 200 centimètres carrés, mais il y aurait 100 feuilles, soit une surface de 20000 centimètres carrés, sans compter les bords, et donc au total la pâte perdrait de la chaleur par un total de 20400 centimètres carrés : 34 fois plus que précédemment.
Coupons maintenant des spaghettis, qui auront donc 1 millimètre carré de section. A partir de notre cube initial, nous pouvons en faire 10 000, soit une aire 67 supérieure à la surface du cube. Autrement dit, les spaghettis refroidiraient environ 67 fois plus vite que le cube initial !
Sortons la tête de ces calculs, pour nos amis qui ne les aiment pas, et reprenons les conclusions : des spaghettis refroidissent plus vite que des feuilles de lasagne, et plus vite qu'un lourdaud cube de pâte. Mais le mot "lasagne" est un peu fautif, parce que, avec des lasagnes, seule la partie supérieure est exposée... et les lasagnes ne refroidissent pas plus vite qu'un bloc, puisqu'elles ne perdent de la chaleur que comme un bloc.
Plus généralement, on voit que c'est le degré de division des pâtes qui détermine leur vitesse de refroidissement, ainsi que la surface exposée à l'air.
Sans compter que la sauce, aussi, peut jouer : si elle est froide, elle refroidira les pâtes en s'adsorbant à leur surface... mais si elle est chaude, alors elle réchauffera d'autant mieux les pâtes que celles-ci seront divisées.
Bref, pas besoin d'expérience... mais il fallait interpréter la question de notre ami, pour arriver à des conclusions que je vous invite à tester expérimentalement, sans que j'ai beaucoup de doute.
Et c'est ainsi que l'Art culinaire peut être encore plus beau : fondé sur une saine technique, mais avec un travail artistique soigneux, sans compter l'amour que l'on donne à ses convives.
Inscription à :
Articles (Atom)