Pourquoi le blanc d'un œuf qui cuit devient-il opaque ? Pourquoi, initialement liquide, devient-il un solide mou ?
L'œuf qui cuit se transforme ? Le blanc, qui est initialement jaune tirant vers le vert, visqueux avec différentes zones de viscosités différentes, devient solide, opaque et blanc (en lumière blanche) ; le jaune, qui est initialement orange, également liquide et visqueux, prends une couleur jaune plus claire et solidifie également, devenant un peu sableux... en tout cas quand on cuit l'oeuf dans l'eau, comme un oeuf dur.
Pour un tel traitement thermique (et pour les autres traitements que nous ne considérerons pas ici), il y a de quoi s'émerveiller, notamment quand on sait que le blanc est fait de 90 % d'eau et le jaune de 50 % d'eau (pour le jaune, 35 % étant majoritairement des lipides, également liquides, donc).
Pourquoi donc les transformations de l'œuf, lors d'un traitement thermique ? Pourquoi la coagulation ? Avec les "oeufs à 6X°C", que j'ai proposés dans les années 1990, on voit que l'oeuf dur est loin d'être le cas général, mais je renvoie vers mon livre Mon histoire de cuisine pour cela.
Ici, je me veux me limiter à considérer la coagulation la plus simple du blanc d'oeuf, qui de liquide devient un solide mou, et de transparent et jaune devient blanc... quand il est éclairé en lumière blanche.
Le blanc d'oeuf, c'est 90 % d'eau et 10 % de protéines : on en connaît aujourd'hui plus de 300, dont les principales sont les ovalbumines. Supposons donc un "modèle simplifié" de blanc d'oeuf, avec 10 % d'une protéine particulière, globulaire, dans 90 % d'eau. Pour les besoins de la comparaison, nous supposons que la séquence de la protéine comporte plus de deux résidus de cystéine, avec, par conséquent, plus de deux groupes thiols -SH, qui partent latéralement de la chaîne protéique (les autres groupes latéraux sont également intéressants, mais restons-en là).
Si l'on chauffe une telle solution, les molécules d'eau gagnent en vitesse moyenne, tandis que les protéines sont plus ou moins "dénaturées", ce qui correspond à un changement de leur forme et, donc, de leur surface, avec des possibilités différentes d'interagir avec des molécules voisines par des forces de van der Waals, des liaisons hydrogène, des ponts disulfure, des interactions électrostatiques... Je n'évoque pas de liaisons covalentes, parce que l'expérience que j'ai présentée ailleurs et que j'ai publiée pour la première fois en 1987, à propos de "décuisson" des œufs, avait établi que les ponts disulfure sont les liaisons les plus fortes qui lient les protéines, par les résidus de cystéine, donc. Il faut imaginer que les protéines dénaturées, dans des conditions oxydantes, forment des ponts de sulfures, ce qui engendre un réseau continu et l'emprisonnement des molécules d'eau dans le réseau continu formé, ce qui correspond donc à la formation d'un gel.
Mais on observera qu'une telle description est un peu simpliste, car un gel dont le réseau serait fait de "fils moléculaires" que sont les protéines serait transparent, et non opaque. C'est bien ce que l'on observe pour des blancs d'œufs cuits à 62, 63, 64 ou 65 degrés : ils sont encore légèrement laiteux et translucides, alors des œufs cuits à plus de 65 ou 66 degrés deviennent opaques, l'opacité augmentant avec la température de cuisson.
Pour interpréter ce phénomène, il faut se souvenir de l'idée suivante : un poteau planté verticalement ne perturbe que très peu la houle, alors qu'une vaguelette rebondirait contre le poteau. Toute la différence tient dans la comparaison du diamètre du poteau et de la longueur d'onde de l'onde qui interagit avec lui. Pour la lumière, les tailles à considérer sont les longueurs d'onde de la lumière, et l'épaisseur des éléments de maille du réseau coagulé. Avec une protéine unique faisant la maille, le diamètre des éléments de réseau serait de quelques liaisons covalentes (disons 5 nanomètres), à comparer avec plusieurs de centaines de nanomètres pour la lumière visible : un gel dont l'élément de réseau serait un unique "fil protéique" serait donc transparent.
Ainsi, si le blanc d'oeuf devient opaque, c'est les protéines forment un réseau plus épais. Une piste : calculer quel volume de gel on peut obtenir si les protéines s'étendent complètement pour former un réseau cubique, par exemple (pour un ordre de grandeur), en supposant l'eau suffisante pour emplir tout le gel : on voit que c'est bien plus que les quelque 40 centimètres cubes d'un blanc d'oeuf coagulé !
Avec cette analyse, nous sommes rapidement passés sur la solidification du blanc d'oeuf (la "coagulation"), en signalant que les protéines s'enchaînaient en un réseau continu. S'il y a un réseau continu, il n'y a plus d'écoulement, et c'est donc un solide que l'on obtient. Mais évidemment un solide mou, puisqu'il est faite 90 % d'eau. Un tel solide peut se déformer car la maille se déforme aussi tandis que les molécules d'eau peuvent bouger.
Aucun commentaire:
Enregistrer un commentaire
Un commentaire? N'hésitez pas!
Et si vous souhaitez une réponse, n'oubliez pas d'indiquer votre adresse de courriel !