lundi 22 avril 2024

De la mousse de yaourt ? Facile !


Des étudiants me demandent de les aider à faire une mousse de yaourt. Ils sont allés en cuisine, ont fait des essais, et ne sont arrivés à rien. Mais, à l'analyse, ils s'y sont très mal pris... parce qu'ils n'ont que très superficiellement utilisé l'organe qu'ils ont entre les oreilles (j'espère) et, surtout, parce qu'ils manquaient de méthode : pour obtenir un tel résultat, il ne faut surtout pas aller en cuisine, mais faire un travail technologique... qui commence avec un tableau pour travailler de manière systématique. 

 

La question posée  ? Il est facile de remplir le tableau : comment faire une mousse de yaourt ? L'analyse la question : l'objectif est donc de faire une mousse de yaourt, mais, avant de nous demander comment faire, nous aurions intérêt à nous demander ce qu'est une mousse de yaourt, et pourquoi faire une telle mousse ! Dans mon cas, après avoir interrogé mes interlocuteurs, j'ai appris qu'un industriel leur avait posé la question... de sorte que leur répondre revenait à donner gratuitement de l'expertise à cet industriel. Pas d'accord, il n'a qu'à payer ! En réalité, on voit que je réponds... mais c'est parce que, agent de l'Etat, je veux montrer : 

- aux étudiants qu'il faut de la méthode 

- aux industriels, que la science est la base de l'innovation? 

Et je mets l'analyse en ligne afin que les concurrents de l'industriel l'aient également. 

Des mousses ? il y en a d'innombrables, avec des textures différentes, entre le blanc en neige, la crème fouettée, le sabayon, etc. Et s'il y a d'innombrables solutions, il est inutile que nous nous lancions tête baissée dans la construction d'une mousse particulière, sans savoir de précisions sur la "commande". La première chose à faire, pour un "bureau d'études" (puisque c'est bien de technologie dont il s'agit), c'est de bien demader aux commanditaires de préciser leur commande. Maintenant les étudiants des écoles d'ingénieur doivent savoir que le lait, le blé, le sucre, sont des fantasmes, en ce sens que le lait est d'abord fractionné, en eau, matière grasse, protéines sériques, caséines, etc., 

Le yaourt, de ce fait, est aujourd'hui composé à partir de ces fractions, de sorte que l'idée qui consisterait à foisonner un yaourt serait naïve, même si l'on a ajouté de la gélatine ou une des innombrables protéines foisonnantes qui sont à notre disposition. D'abord, le produit ne serait plus exactement une mousse de yaourt, mais une mousse au yaourt, ce qui nous ramène à la question de la mousse au chocolat et de la mousse de chocolat, le chocolat Chantilly, que j'ai discutée dans un autre billet. 

Faire foisonner du yaourt ? Il y a dans le yaourt tout ce qui est nécessaire pour y parvenir, mais le le problème est surtout de stabiliser la mousse formée, pas de la produire, comme on s'en aperçoit en battant de l'eau pure : on voit des bulles d'air s'introduire, mais elles ne tiennent pas, alors que le blanc d'oeuf, lui, accepte également les bulles d'air, mais les ne retient, parce que les protéines viennent entourer les bulles. Dans la crème fouettée, la matière grasse cristallise au froid, et, quand elle est en quantité suffisante, elle stabiliser la mousse. 

Toutefois, on peut aussi imaginer des systèmes où des composés forment un gel "chimique", bien plus stables que des gels physiques. Les possibilités sont innombrables... La question n'est donc pas de foisonner un yaourt, mais plutôt de stabiliser la mousse obtenue. Quels composés du yaourt stabiliseront-ils la mousse ? Et puis ne peut-on pas chercher à obtenir des "mousses de yaourts" à partir des fractions évoquées plus haut, mais en séparant les étapes et en prévoyant immédiatement la stabilisation ? 

Supposons que nous partions du petit lait des yaourts, c'est-à-dire de l'eau et des protéines et, plus précisément, de protéines sériques, qui peuvent coaguler. Alors la mousse obtenue pourra être passé au four à micro-ondes, de sorte que l'on déclenchera la coagulation et que la mousse sera stabilisée. Une autre façon consiste à reprendre l'idée de la crème fouettée, mais avec les composés du yaourt, c'est-à-dire essentiellement l'acide lactique obtenu à partir du lactose. 

On n'oublie pas que, historiquement, le yaourt a sans doute été une découverte de nos lointains ancêtres qui, n'ayant pas les gènes du métabolisme du lactose à l'âge adulte, étaient privés de la possibilité de consommer le lait, donc ont produit des yaourt, des fromages, etc. 

Ajoutons (en vrac : on se souvient que je ne suis pas là pour répondre à la question de l'industriel qui n'a rien payé) que l'acide lactique donne un petit goût acidulé et frais, qui est intéressant, mais évidemment ce n'est pas le seul composé à faire le goût des yaourts, car la fermentation par les deux micro-organismes essentiels utilisés pour faire les yaourts conduit à une série de produits, qui sont soit solubles dans l'eau, soit solubles dans l''huile, de sorte que l'on peut récupérer les deux fractions pour les ajouter à la préparation finale. 

Finalement on voit que l'on pourra faire mille mousses de yaourts, avec mille consistances différentes, et mille goût différents. Rien de tout cela n'est difficile, à condition d'avoir bien analysé la chose. Passons donc maintenant à la troisième ligne du tableau : la proposition de solution. Comme on a vu qu'une infinité de solutions étaient envisageables, nous sommes bien en peine de remplir cette ligne, sans indications supplémentaires. 

D'ailleurs, voici un conseil à mes jeunes amis : ne répondons pas aux questions mal posées. Au minimum, reformulons les questions pour les poser mieux, et répondons à des questions bien formulées. Vient enfin l'évaluation de la proposition trouvée. Pour ce qui me concerne, elle est faite : j'ai dénoncé un commanditaire qui a passé une mauvaise commande, ce qui est le cas dans nombre de discussions technologiques, et, surtout, j'ai montré le bon exemple à des étudiants. 

Mais il manque quand même de leur avoir signalé que la cuisine, c'est de la technique, de l'art, du lien social. En cuisine, le "bon", c'est le beau à manger... de sorte que nos jeunes amis devraient se rapprocher d'artistes, pour leur projet. Le pire serait qu'ils s'imaginent qu'ils vont être capables de faire "un bon goût" ! En architecture, rien n'est pire que les ingénieurs qui se prennent pour des architectes : il faut des artistes pour dessiner... et les ingénieurs seront là pour rendre les dessins possibles, comme cela a été le cas pour la Philharmonie, à Paris, récemment ! Moralité : avant de nous lancer, analysons correctement, méthodiquement, les questions qui nous sont adressées, et ayons suffisamment de culture (scientifique) pour y répondre. Sans quoi, nous ferons comme les étudiants qui m'avaient interrogé, à savoir produire un travail technique qui n'aboutit même pas, et qui, au mieux, est minable gustativement. Bref, j'invite tous mes jeunes amis à utiliser le tableau précédent avec excès !

Répéter ? Là n'est pas la question

Alors que je regarde classe de maître de musique, je tombe sur un professeur qui répète tant les choses que je me lasse, ayant le sentiment que l'on me prend pour un imbécile. Quand on m'a  dit quelque chose une fois et que l'on me l'a dite correctement, j'ai compris et je trouve pénible qu'on répète, car on me fait alors perdre mon temps. 

Je croise cette observation avec ma propre pratique de professorat, qui fait l'hypothèse qu'il faut apprendre sept fois pour savoir puisque, comme nous apprenons trop vite et que nous sautons un mot sur sept, il nous faut sept lectures pour arriver à avoir tous les mots.
 

Un dilemme ? En réalité non, car il doit toujours y avoir d'abord la question de savoir à qui l'on s'adresse. Si on s'adresse à ceux qui apprennent vite, alors il faut parler vite. Si l'on s'adresse à ceux qui apprennent lentement, il faut parler lentement. 

Un problème résulte évidemment de l'hétérogénéité des classes... mais c'est une erreur des professeurs de vouloir enseigner de la même manière à des personnes très différentes et il serait temps, au 21e siècle,  de trouver des moyens de faire plus intelligemment qu'on a fait par le passé. Il a été dit mille fois que le tutorat était une meilleure solution et notamment parce que c'est l'étudiant qui apprend, le professeur se limitant à proposer un cadrage des étude, un déblogage éventuel, à indiquer des pistes, à proposer des évaluations qui visent surtout à dépister des incompréhensions qui seraient passé inaperçues. 


Bref, c'est seulement dans une vision périmée du professeur que se posent des problèmes qui n'ont pas lieu d'être et l'on ne répétera jamais assez que la question n'est pas pour les professeurs d'enseigner ou de professer (mieux). La question est, pour les étudiants, d'étudier ! 

dimanche 21 avril 2024

La question des questions scientifique


Lors d'évaluations des travaux scientifiques, qu'il s'agisse de juger des rapports écrits ou des présentations orales, il y a souvent la question des questions scientifiques : lesquelles ont-elles été retenues pour les travaux effectués ? 

Les évaluateurs, s'ils font bien leur métier, doivent distinguer les questions scientifiques des questions technologiques. Les unes ne sont pas mieux que les autres, ou les autres que les unes, mais il y a des différences de nature : dans un cas (les sciences de la nature), on cherche à repousser les frontières de l'inconnu, mais, dans l'autre, on veut perfectionner des techniques, introduire des méthodes nouvelles, inventer et non pas découvrir. 

Ici, je m'interroge sur les questions scientifiques, et non pas sur les questions technologiques, faisant l'hypothèse (bien exagérée, hélas) que nos évaluateurs sauront faire la différence. Comment sélectionner nos questions (scientifiques, donc) ? 

Pourquoi avons- nous choisi les questions que nous explorons ? Cette... question est évidemment très difficile, et si l'on se reporte à d'autre billets, on verra que je propose moins d'y répondre que de s'être interrogé, en vue de pouvoir y répondre un jour de façon claire. Oui, je propose que nous sachions répondre clairement à : 

1. quelles questions scientifiques explorons-nous ? 

2. pourquoi avons-nous choisi ces questions plutôt que d'autres ? 

Etre capable de dire quelle est la question que nous explorons, c'est la clé de voûte de l'ensemble du travail, car la réponse à cette question conditionne le choix des méthodes que nous mettons en œuvre. Si l'objectif est connu, alors le chemin qui y mène pourra être choisi, mais l'inverse est plus hasardeux. Certes, il se peut fort bien qu'une question soit inaccessible et moins intéressante que le chemin que l'on empruntera, chemin au cours duquel nous ferons mille découvertes, et peut-être même des découvertes importantes, si l'esprit est préparé, mais on conviendra que la méthode est quand même hasardeuse, et manque de réflexion. Pour ce qui concerne les raisons pour lesquelles nous choisissons une question plutôt qu'une autre, c'est là, à nouveau, un sujet de discussion que je propose d'avoir, car les scientifiques savent bien que certaines questions sont plus "porteuses" que d'autres, en termes de frontières de l'inconnu repoussées. 

Certaines études trouvent une réponse à une question, et font faire des progrès très locaux, ce qui n'est pas mal, mais sans plus. En revanche, dans d'autres cas, les études ouvrent des champs, et l'on ne peut s'empêcher de penser que le travail est alors bien supérieur. On aura compris que, évaluateur (des autres ou de moi-même), je préfère les questions qui ouvrent des champs aux questions qui se limitent à apporter des réponses ponctuelles. Bien sûr, il y a toujours le risque qu'une ambition démesurée conduise à des travaux stériles, et il est sans doute de bonne stratégie d'avoir des travaux à des échelles de temps différentes : petites questions, moyennes questions, grandes questions. 

Pour autant, peut-on faire une carrière sur de petites questions ? C'est peut-être dommage, sauf si l'accumulation de petites questions finit par faire un champ de grande ampleur, une belle construction. Mais on se souvient surtout que, pour les question aussi difficile que celle qui est traitée par ce billet, je n'ai aucune certitude… et surtout des questions. Je demande essentiellement que nos communautés aient des discussions claires à ce propos, afin d'aider les jeunes scientifiques à forger leurs stratégie.

samedi 20 avril 2024

Les Ateliers Science et Cuisine

 
En 2001, nous introduisions les Ateliers Expérimentaux du Goût dans les écoles primaires, sous la houlette du Ministre de l'Education nationale. Rapidement des extensions furent trouvées pour les collèges et les lycées. 

Puis, en 2004, furent créés les Ateliers Science & Cuisine, en relation avec les programmes scolaires, pour les collèges et les lycées. Un groupe de professeurs a alors travaillé, sous la houlette de l'Inspection de l'Académie de Paris, pour préparer des activités sur ce thème, fournissant des documents pédagogiques utilisables par les collègues. 

Les "fiches" de ces Ateliers, aujourd'hui souvent préparéees par Marie-Claude Feore et Laure Fort, dans le cadre du Centre international de gastronomie moléculaire AgroParisTech-Inra, sont en ligne, soit sur le site de l'Académie de Paris, soit (c'est plus complet) sur le site du Centre International de gastronomie moléculaire AgroParisTech-Inra : http://www.agroparistech.fr/-Les-Ateliers-Science-Cuisine-colleges-lycees-.html 

Le succès de ces ateliers ne se dément pas : environ 30 demandes pour des TIPE ou des TPE arrivent chaque jour au Centre (icmg@agroparistech.fr). N'hésitez pas à utiliser les fiches, ou bien à les faire utiliser, en diffusant l'information dans votre entourage !

vendredi 19 avril 2024

Mousse au chocolat : ancien. Chocolat Chantilly : nouveau !

 
De nombreuses personnes m'interrogent sur la "mousse au chocolat", sans doute parce que mon nom est associé à une invention que j'avais faite en 1995, à savoir le "chocolat chantilly", lequel n'est pas une mousse "au" chocolat, mais une mousse "de" chocolat. 

Expliquons... en utilisant un système utile : le "formalisme des systèmes dispersés", ou DSF (l'acronyme de "disperse systems formalism"). Pour cette description, c'est tout simple : il considérer que les matières sont faites de gaz (G), de liquides (L), de solides (S), et que les phases sont organisées les unes par rapport aux autres. Par exemple, une mousse de savon, ou un blanc d'oeuf battu en neige) est faite de bulles de gaz (l'air, G) dispersées dans un liquide (l'eau savonneuse, le blanc d'oeuf). Pour décrire une dispersion "aléatoire" (au hasard) des bulles, on utilise un symbole qui est "/". Ajoutons, aussi, que les liquides peuvent être des solutions aqueuses (jus de fruit, bouillon, thé, café, vin...), ce que l'on note W (pour water, en anglais), ou des matières grasses liquides (huile, chocolat fondu, fromage fondu...). 

Pour décrire une mousse de blanc en neige, on notera donc G/W. # De même, un gel de gélatine est fait d'un liquide (une solution aqueuse) dispersées dans un réseau solide : leas protéines de la gélatine forment une sorte d'architecture qui inclut l'eau. Toutefois, ici, l'eau n'est pas sous la forme de gouttes isolées, mais forme une phase liquide, interpénétrée avec le réseau solide, d'où l'usage d'un autre symbole : x. 

 

Tout d'abord, la mousse au chocolat classique

Ayant vu un début de formalisme, revenons à la mousse au chocolat, et, tout d'abord, à une recette classique. Pour faire une mousse au chocolat, on commence par fondre du chocolat... lequel est principalement fait de cristaux de sucre (très petits, solides) dispersés dans une matière grasse, liquide quand le chocolat est fondu. Eventuellement (mais ce n'est pas obligatoire), on ajoute du beurre ou du jaune d'oeuf, mais cela ne change pas grand chose : le chocolat fondu est décrit par S/O, où S représente les cristaux de sucre, et O la matière grasse liquide. Puis, à part, on bat des blancs d'oeufs en neige, et l'on fait donc une mousse : G/W. Ayant ces deux matières, on ajoute le chocolat fondu à la mousse, et l'on obtient donc une mousse "au" chocolat. 

 

Ensuite, le chocolat chantilly

Tout le monde faisait ainsi des mousses au chocolat, jusqu'à ce que, en 1995, j'invente le "chocolat chantilly". De quoi s'agit-il ? En 1995, donc, j'ai analysé la fabrication de la crème fouettée, laquelle est obtenue par foisonnement (on bat) de la crème (on verra qu'il n'y a pas de crème dans le chocolat chantilly) . La crème est obtenue à partir du lait, lequel est une "émulsion", parce que des gouttelettes de matière grasse sont dispersées dans de l'eau ; la formule est donc O/W. 

Quand on laisse le lait reposer, les gouttes de matière grasse viennent flotter en surface, ce qui fait la crème, et la crème est donc une émulsion concentrée : encore O/W. Puis, si l'on bat, on introduit des bulles d'air, de sorte que l'on obtient (G+O)/W. Mais, comme on fait cela à froid, une partie de la graisse fige, et forme un réseau qui stabilise la crème fouettée. 

Terminons en signalant que la différence entre crème fouettée et crème chantilly tient seulement à la présence de sucre dans la crème chantilly : le sucre se dissout dans l'eau de l'émulsion. 

Mon idée a été de généraliser le procédé : d'une émulsion, on passe à une émulsion foisonnée qui est "figée" par le froid. Comment cela fonctionne-t-il ? Partons d'une casserole, où nous mettons 200 g d'eau : W. Puis déposons dans la casserole un morceau de chocolat (250 grammes), puis chauffons : le chocolat fond, et libère les cristaux de sucre, qui viennent se dissoudre dans l'eau, tandis que la matière grasse vient s' "émulsionner" : des gouttes de matière grasse se dispersent dans l'eau sucrée. Si l'on fouette, on voit que le fouet pousse des bulles d'air dans l'émulsion, de sorte que l'on obtient le système (G+O)/W... mais on voit bien que les bulles d'air remontent à la surface, ne sont pas bien piégées dans l'émulsion. En revanche, si l'on pose la casserole sur des glaçons, la matière grasse liquide solidifie, cristallise, et les bulles sont piégées... et l'on obtient une mousse "de" chocolat : c'est cela, le chocolat chantilly ! 

Bref, il n'est pas nécessaire d'oeuf pour faire une mousse chocolatée (je n'utilise ni "de", ni "au"). C'est même un gâchis, du point de de l'économie familiale. Et puis, si l'on est gourmand, pensons que l'eau utilisée peut être thé, infusion de menthe, jus d'orange, vin... <strong>Et une question</strong> Tout cela étant posé, venons en finalement à une question reçue ce matin d'une élève de Première S, qui fait un "travail personnel encadré" (TPE) : # Bonjour Monsieur, je me permets de vous contacter pour des questions à propos de la mousse au chocolat pour notre tpe. Est ce que vous pourriez m'indiquer où se passe l'émulsion dans la mousse au chocolat, à quel moment ? Auriez vous une explication scientifique à me donner quand le chocolat fond au bain marie, ce qui se passe au niveau moléculaire par exemple. Que se passe-t-il quand nous mélangeons le chocolat avec les blancs en neige ? Je détaille chaque étape de la mousse au chocolat au niveau moléculaire mais je bloque. Je suppose que notre jeune amie s'intéressait plutôt au chocolat chantilly plutôt qu' à la mousse au chocolat. A quel moment se fait l'émulsion ? Je l'ai indiqué : quand le chocolat fond dans l'eau. Que se passe-t-il au niveau moléculaire quand on fond du chocolat, au bain-marie ? Dans le chocolat, la matière grasse est sous la forme de cristaux, avec les molécules empilées régulièrement les unes sur les autres. Les molécules ? Ce sont majoritairement des "triglycérides", des molécules analogues à des "peignes à trois dents". Le manche du peigne, c'est trois atomes de carbone ; les dents sont des "résidus d'acides gras" (et non pas des acides gras), avec principalement des atomes de carbone attachés en une chaine, avec des atomes d'hydrogène liés aux atomes de carbone. La chaleur, c'est de l'agitation des molécules : les molécules qui étaient tranquillement empilées se détachent, et vont flotter dans le liquide, sans rester associées. Que se passe-t-il quand on mélange du chocolat fondu avec des blancs en neige ? Cette fois, notre jeune amie ne discute plus le chocolat chantilly, mais la mousse au chocolat. D'un côté, une graisse liquide (comme l'huile) et, d'autre part, une mousse. En pratique, la mousse vient dans la matière grasse liquide, et l'on a des "blocs" de mousse dans la graisse liquide. Au refroidissement, la matière grasse du chocolat recristallise... et les blocs de mousse sont piégés.

jeudi 18 avril 2024

Vulgarisation et enseignement

 
Je me demande finalement si la vulgarisation ne nuit pas un peu à l'enseignement. La question est ancienne de savoir quelle est la différence entre la vulgarisation scientifique et l'enseignement des sciences. 

Pour la vulgarisation, une règle communément admise (mais que je propose de questionner ici) est d'éviter les équations, au point même que le physicien britannique Stephen Hawkings, dans l'introduction d'un livre de vulgarisation qui date d'il y a quelques années, raconte que son éditeur lui avait recommandé d'éviter les équations sous peine de perdre tous ses lecteurs. 

On sait, d'autre part, combien les scientifiques tels que Richard Feynman ou Pierre-Gilles de Gennes ont promu ce que l'on a nommé la physique avec les mains, c'est-à-dire un discours de vulgarisation qui évite complètement les équations et donne l'idée des phénomènes, leur compréhension. Leurs interlocuteurs comprennent alors, certes, les mécanismes des phénomènes, mais, je ne sais pourquoi, j'étais gêné quand je trouvais dans des devoirs d'étudiants des discours analogues, tout faits de mots. 

A la réflexion je comprends que ces discours sont des discours, et que leur validité n'est jamais assurée. Je veux dire par là que l'on peut me dire tout et son contraire, sans que je sois en mesure de savoir sir le discours proposé est juste. Pour être fixé, il n'existe qu'un seul recours, à savoir les équations, le formalisme, le calcul, ce qui est, d'ailleurs, la "marque de fabrique" des sciences de la nature. 

Et voilà pourquoi je commence à me demander si l'on ne devrait pas éviter, dans l'enseignement scientifique, ce type de descriptions, de procédés, pour revenir de façon bien plus certaine au maniement des équations. Certes nos étudiants en sciences des aliments ne seront pas plus ignorants à chaque nouvelle connaissance générale qu'ils auront. Par exemple, ce sera bien s'ils savent que le blanc d'oeuf est fait de 90 pour cent d'eau et de 10 pour cent de protéines, mais cela sera bien mieux s'ils savent qu'il existe des protéines de deux sortes au moins, globulaires ou fibrillaires, et s'ils connaissent la constitution chimique de ces dernières, les distances de liaison, leurs énergies, non pas pour faire une collection de papillons, mais plutôt pour être capables d'envisager des réactivités. 

La prétendue réaction de Maillard est un exemple éclairant, car nombre de personnes évoquent cette réaction, en mélangeant tout. Dès qu'un aliment brunit quand il est chauffé, on invoque la réaction de Maillard, et le tour est joué. Ce vernis n'est ni une connaissance, ni une compétence. De même pour la partie physique de l'affaire, par exemple quand, à propos de systèmes colloïdaux, telles les glaces, on met un nom tel "maturation d'Ostwald" sur le phénomène, et hop, à nouveau, le tour est joué : les cristaux de glace grossissent. En réalité, la seule vraie question, c'est "combien ?". Oui une maturation d'Ostwald peut faire grossir des cristaux de glace, mais de combien ? A quelle vitesse ? Et là, la connaissance du nom du phénomène ne suffit pas : il faut savoir manipuler les équations, savoir calculer... de sorte que c'est cela qu'il nous faut donner à nos étudiants. 

Si l'on distingue maintenant la science des aliments et la technologie des aliments, cela revient à faire une différence entre la production de connaissances scientifiques et leur utilisation. Les ingénieurs n'ont pas besoin d'être capables de produire des connaissances, mais ils ont besoin de savoir les utiliser et, de ce point de vue, on comprend que c'est l'utilisation des équations qui s'impose. A la limite, le maniement des équations est la seule chose qui compte, et ils n'auront pas besoin de savoir comment ces équations ont été établies. Pour autant, bien sûr, ils ne deviendraient pas plus bêtes à le savoir, à l'avoir vu une fois. 

Il en va de même pour la chimie et, là, si l'on reprend le cas des réactions fautivement dite de Maillard (il faut dire "amino-carbonyle"), on peut s'interroger sur ce que serait ce maniement. Le versant scientifique de l'affaire serait certainement, d'un côté la compréhension des mécanismes détaillés, avec ses modulations, c'est-à-dire savoir comment les réactions amino-carbonyle changent selon la nature des composés particuliers mis en œuvre, et, d'autre part, l'utilisation consiste à connaître ce fait que des sucres réducteurs et des acides aminés peuvent réagir pour former des composés d'Amadori ou de Heyns, lesquels se modifieront ensuite par une foule de réactions qui ne sont plus des réactions amino-carbonyle, mais des dégradations de Strecker, des hydrolyses, des condensation, etc. 

 

Revenons à notre question de la vulgarisation. Quel est l'objectif ? Produire un discours ? Ce serait bien limité. Combattre la pensée magique ? Là, l'enjeu est absolument merveilleux, et c'était en tout cas l'engagement qui était le mien quand je travaillais à la revue Pour la science. Au lieu de dire "la fusée à décollé", l'objectif était de rendre nos amis lecteurs capables de faire décoller la fusée, en expliquant bien le principe du moteur. 

Mieux, un des plus beaux articles produits par la revue fut signé par Kenneth Wilson, prix Nobel de physique, qui avait expliqué la théorie de la renormalisation : il n'y avait pas d'équation, dans ce texte, mais les équations étaient dites avec des mots, et, dans ce cas particulier, on aurait pu en traduire les mots de l'article en équations que l'on aurait ensuite été en mesure de juger du point de vue du calcul. C'était une vulgarisation d'excellente qualité, bien qu'un peu difficile pour un public non averti, non pas en raison d'une difficulté intrinsèque, mais surtout parce que l'article était très long : il avait fallu une vingtaine de pages de journal imprimé pour arriver à débobiner la totalité de l'explication. Mais quel bonheur ! 

Finalement la différence entre vulgarisation et enseignement scientifiques ou technologiques paraît claire : dans un cas, on lutte contre la pensée magique, et l'on donne des clés pour montrer que le monde n'est pas fait de lutins, fées, diables, etc. Dans l'autre, il faut soit communiquer des connaissances mobilisables dans une usine par un ingénieur, soit mettre sur la piste de la recherche scientifique, laquelle est du maniement d'équations, et non pas de discours vaguement poétique. 

Et ici j'utilise le mot "poésie" à bon escient, car, je crois qu'une partie de la vulgarisation est de cette nature, à savoir qu'il y a des sons, des évocations, des couleurs, qui sont transmises par une certaine vulgarisation. Une sorte de ronronnement rassurant qui s'apparente à la poésie, puisque l'on est dans l'ordre de l'émotion. Certes c'est ainsi que l'on vend des livres, mais ce n'est pas ainsi que l'on fait tourner une usine ou que l'on produit des connaissances nouvelles. 

Finalement, sur les copies d'étudiants en sciences des aliments ou en technologies des aliments, je ne demande qu'une chose : des équations. Pour les ingénieurs, il faudra savoir s'en servir. Pour les scientifiques, il faudra savoir comment les produire. Voilà les compétences exigibles dans nos enseignements de science et technologie des aliments, je crois. Qu'en pensez-vous ?

mercredi 17 avril 2024

Eloge de la technique... faite avec la tête


Certains croient que la technique est une activité mécanique, où l'être humain pourrait être remplacé par une machine, un robot... Les idées de ce genre méritent d'être réfutées, et notamment en considérant qu'il y a souvent une composante artistique et une composante sociale dans l'acte technique. 

Pour la cuisine, le soin, par exemple, est essentiel, parce que c'est une façon de se préoccuper du bonheur de ceux que l'on nourrit. En outre, le technicien culinaire qui ne se préoccuperait pas de faire bon serait vite ramené dans le droit chemin, ce qui prouve, à nouveau, que la question technique est merveilleuse : vive la technique intelligente ! 

Ce matin, je reçois une question, par des élèves en classe de Première S, qui me fournit un merveilleux exemple à l'appui de la thèse précédente. Voici :  

Au cours de nos expériences où nous utilisons seulement les matières premières ( oeuf, sucre et huile), nous avons remarqué que la sphérification avec l'oeuf et l'huile n'était pas possible. Nous avons utilisé la sphérification basique, inversée et aussi avec l'agar agar. Nous voudrions savoir si c'est un problème de technique ou de dosage, ou si effectivement c'est impossible avec ces matières ? Alors la sphérification ne serait pas possible avec toutes sortes d'aliments ?

 

Analysons tout d'abord en reprenant les termes de la question

 

Nos jeunes amis ont voulu faire des objets avec un coeur liquide et une peau gélifiée, en mettant au coeur du système soit de l'oeuf, soit du sucre, soit de l'huile (leur message n'est pas clair), soit un mélange des trois. L'oeuf est un liquide, de sorte qu'il faut interpréter : ils ont voulu faire soit du blanc d'oeuf, dans une peau gélifiée, soit du jaune dans une peau gélifiée, soit un mélange des deux. 

Pour le sucre, je suppose que ce n'est pas du sucre qu'ils ont voulu inclure, car le sucre n'est pas liquide. Pour l'huile, je comprends la question. 

Puis nos amis nous disent que la sphérification d'oeuf ou d'huile n'est pas possible. Là, ils vont trop loin : ils auraient dû seulement dire qu'ils n'ont pas réussi ! 

Ils parlent de "sphérification basique et inversée", mais ils font sans doute état de la méthode directe et de la méthode inverse. Dans la méthode directe, on met du calcium dans un bain d'eau, et l'on fait tomber dans ce bain des gouttes d'une solution qui dissout de l'alginate de sodium. Dans la méthode inverse, on dissout l'alginate de sodium dans de l'eau (qui ne doit pas contenir de calcium, sans quoi la gélification se fait avant qu'on ait pu faire la manipulation), puis on y dépose un liquide qui contient du calcium. 

Avec l'agar-agar, rien de tout cela n'est possible, sauf par des méthodes différentes, telles celles que j'avais introduites il y a longtemps (voir http://www.pierre-gagnaire.com/#/pg/pierre_et_herve/travaux_precedents/55). 

Enfin, il y a cette question : la sphérification serait-elle impossible avec toutes sortes d'aliments ? Pour laquelle je propose de répondre que, avec une voiture dont la vitesse maximale est de 150 kilomètres à l'heure, il n'est pas possible de faire du 200 ! 

 

Puis analysons plus avant. 

 

Soit du blanc d'oeuf (auquel on aura donné du goût, sans quoi c'est peu intéressant), que l'on veut mettre dans une couche gélifiée. Ne suffit-il pas de faire un oeuf poché ? On a bien un coeur liquide dans une peau gélifiée, puisque c'est cela que fait l'oeuf qui cuit : un gel. 

OK, nos amis voudraient une peau transparente. Alors la méthode inverse fonctionne très bien : en mettant du calcium dans le blanc, et en le faisant tomber dans une solution d'alginate, on obtient ce qu'ils souhaitent... Ce qui m'alertent, d'ailleurs, c'est la brièveté de leur description : j'ai souvent vu des personnes s'étonner de ne pas obtenir la gélification de l'alginate... alors qu'ils n'utilisaient pas d'alginate, ou pas de calcium. Il faut les deux ! 

Soit maintenant du jaune, que l'on veut mettre en sphères liquide : là encore, tout va bien par la méthode inverse... ou en déposant un jaune d'oeuf quelques secondes dans de l'azote liquide : une coque gélifiée se forme, avec le jaune liquide au centre. Pour le sucre, on a vu plus haut que l'on ne peut pas obtenir un liquide avec un solide... sauf bien sur si l'on dissout le sucre dans l'eau, pour faire un sirop. Et là, rien de plus facile que de faire des perles de sirop, qui remplacement avantageusement le sucre que l'on met dans le café. La méthode directe fonctionne très bien, tout comme la méthode inverse, d'ailleurs. 

Avec l'huile, enfin ? On se souvient que, si l'on emploi de l'alginate de sodium et des ions calcium (souvent sous forme de lactate de calcium ou de chlorure de calcium), il faut dissoudre un des deux partenaires dans le produit que l'on veut mettre en perles à coeur liquide, et l'autre partenaire dans le bain où on dépose le premier liquide. Et là, il y a effectivement un problème... car les ions calcium ne sont pas solubles dans l'huile, ni l'alginate de sodium. 

Pour autant, il y a de nombreuses façons de faire, comme je l'ai indiqué dans ma rubrique "Science &amp; gastronomie" de la revue Pour la Science (http://www.pourlascience.fr/ewb_pages/a/article-de-l-huile-en-perles-31124.php).