vendredi 14 septembre 2018

La science des aliments n'est pas la technologie des aliments

Il y a toujours eu une confusion entre science et technologie, au point que Louis Pasteur le déplorait déjà, avec des phrases d'une énergie terrible.



Pourtant, c'est tout simple, en principe :
D'une part, les sciences de la nature cherchent  à "lever un coin du grand voile", à découvrir les phénomènes inconnus et les mécanismes des phénomènes, à l'aide une méthode aussi certaine que possible, et qui passe par :
(1) l'identification d'un phénomène ;
(2) la caractérisation quantitative de ce phénomène (on en mesure des caractéristiques judicieusement choisies)
(3) le regroupement des résultats de mesure en "lois" synthétiques, c'est-à-dire essentiellement en équations ;
(4) la recherche -par induction, c'est là un point central- de concepts, notions, théories, mécanismes quantitativement compatibles avec les équations dégagées ;
(5) la recherche de conséquences des théories ainsi "induites" ;
(6) les tests expérimentaux de ces conséquences, en vue de réfutations qui permettent de boucler, afin d'améliorer des théories toujours insuffisantes.



D'autre part, la ou les technologies (à discuter), elles, visent l'amélioration des techniques, et elles ont un but pratique, puisque "technique" signifie "faire".



Pour autant, la science n'est pas au-dessus de la technologie, et la technologie n'est pas au-dessus de la science : ce sont deux activités séparées ! Et Pasteur lui-même observait que sa volonté de contribuer au bien-être de l'humanité l'avait détourné de ses travaux scientifiques (par exemple, l'exploration de la chiralité) vers la technologie, mais il l'avait mûrement décidé.



Des collègues évoquent, à côté de ces termes de science et de technologie, celui d'ingéniérie, mais il n'est pas bien clair, et, en tout cas, il tombe clairement du côté de la technologie, puisque le Journal officiel en dit :
"Ensemble des fonctions allant de la conception et des études à la responsabilité de la construction et au contrôle des équipements d'une installation technique ou industrielle (en anglais : engineering)"
 (Arrêté du 12 janv. 1973 ds Lang. fr., Paris, J.O., 1980, p. 21).
Bien sûr, certains peuvent utiliser les termes avec diverses acceptions idiosyncratiques... mais ils risquent de n'être compris que par eux-mêmes.



Ajoutons enfin  :
 - que le mot « science », utilisé dans une expression telle que « science du coordonnier » n'a rien à voir avec les sciences de la nature, puisque, ici, le mot « science » signifie seulement savoir ; or comment refuser à un corps professionnel d'avoir un savoir ? Ce serait idiot… tout comme il serait idiot de confondre ce savoir empirique avec les sciences de la nature
- que  les mathématiques ne sont pas des sciences de la nature, mais des "mathématiques", et elles ne se confondent pas avec le calcul, qui est, comme on l'a vu, le quotidien des sciences de la nature
- qu'il ne peut en aucun cas exister des "sciences appliquées", puisque des science ne sont précisément pas appliquées ; une expression comme "sciences appliquées" est un oxymore fautif, tout comme carré rond.






Tout cela étant dit, puisque la confusion règne (c'est un fait) beaucoup en "sciences et technologies des aliments", et que les étudiants notamment sont perdus, je me suis amusé à recopier la table des matières d'une revue de la discipline pour essayer d'y voir plus clair. A noter que le mot "chimie" figure dans son titre, et que ce mot, déjà, prête à confusion, comme je l'ai expliqué dans d'autres billets, puisque l'on a tendance à confondre dans ce mot... de la science, de la technologie, et même de la technique.
Pourtant, un examen attentif de l'histoire de la chimie montre que la chimie est une science de la nature, et que les travaux techniques (industries) ou technologiques ne sont pas de la chimie proprement dite, mais de la technologie ou de la technique, des applications de la chimie qui ne devraient pas être nommées "chimie".
On est proche de la confusion qui règne en médecine, si bien dénoncée par Claude Bernard, qui observe justement que la médecine est une technique, que la recherche clinique est une technologie, et que la science de la médecine est la physiologie !






Mais lançons nous... même si, on va le voir, l'exercice finit par être lancinant.
 

Bioactive compounds of beetroot and utilization in food processing industry: A critical review : ici, au moins, on commence facilement, car il est question d'utiliser des composés des betteraves dans l'industrie. C'est clairement de la technologie. Certes, il aura fallu identifier les composés "bioactifs" avant de les étudier, mais l'intention est claire. Intention ! Le mot est essentiel, parce que l'on peut fort bien imaginer que des ingénieurs ou des technologues, voire des techniciens, s'intéressant à leur travail, fassent une découverte, mais il faudra l'intention, pour aller plus loin, et c'est à ce titre que l'on a parfois dit que Rumford avait découvert la convection.
Je reviens une seconde sur mon "Certes, il aura fallu identifier les composés bioactifs" : on voit qu'un travail technologique peut conduire à explorer le monde, à "lever un [petit, ici] coin du grand voile", ce qui correspond à une activité scientifique.
Et  s'impose une observation : de même que l'on ne fait pas de chimie quand on respire, on ne fait pas de science quand on effectue certaines des tâches qui relève de sa méthode ; de même, une partie du public confond science et rigueur, mais il ne suffit pas d'être rigoureux pour faire une recherche scientifique. L'intention est essentielle, et les technologues qui auront ici identifié des composés bioactifs dans les betteraves, s'ils ont contribué à l'augmentation des connaissances, n'auront pas notablement contribué à la science. D'ailleurs, des composés "bioactifs" : on pressent qu'il s'agit seulement d'observer si des composés ont une action sur le corps humain... ce qui est une application.
J'ajoute aussi que je crois les étapes 4, 5 et 6  essentielles dans la recherche scientifique. Trop souvent, le travail n'est que technique, quand il s'arrête à la caractérisation quantitative des phénomènes.



Exploring the impacts of postharvest processing on the aroma formation of coffee beans – A review :  ce deuxième travail semble annoncer clairement la couleur : il s'agit d'explorer un champ technique, à savoir ce qui se passe quand on a recueilli les fruits du caféier. Toutefois le titre n'est plus suffisant, ici, parce que l'on pourrait imaginer que les « chercheurs » ont tenté d'élucider des mécanismes à des fins de savoir, ou bien à des fins d'amélioration des procédés. On retrouve ici la question de l'intention, de l'ambition particulière de ce « chercheur » qui, selon les cas, est un chercheur scientifique ou un chercheur technologique.
En tout cas, ici, il faut y aller plus avant pour se déterminer... en se doutant que si l'on parle d'arôme, c'est bien que l'on pense à un effet sur l'humain... et donc à de la technologie, en vue de modifier le café pour qu'il soit mieux apprécié : si ce n'est pas de la technologie, cela !



Phenolic compounds and antioxidant activities of tea-type infusions processed from sea buckthorn (Hippophaë rhamnoides) leaves : ici, le mot "proccessed" fait penser à de la technologie, mais nous arrivons à un cas plus subtil, même si l'argousier est utilisé de façon technique. Ce qui est en cause, plus précisément, c'est cette exploration des activités antioxydantes des composés phénoliques de la plante. Vise-t-elle une simple caractérisation, pour une utilisation (technologique), ou la recherche de mécanismes ? Il faut lire en détail l'article... et l'on opte alors pour la seconde option.
Mais là encore, une observation, à propos de ce "processed" : le fait que des composés phénoliques soient différents avant ou après transformation de feuilles d'argousier est un phénomène dont l'exploration pourrait révéler des mécanismes inédits du monde... à condition d'être dans l'état d'esprit de les chercher. C'est  sans doute dans cette idée que l'un de mes amis qui est un très bon scientifique évoque, parmi les stratégies scientifiques, le "abstraire et généraliser".



Chloroplast-rich material from the physical fractionation of pea vine (Pisum sativum) postharvest field residue (Haulm) : là, c'est facile, puisque c'est une valorisation de résidus de transformation. Technologie.
Bien sûr, avec beaucoup de mauvaise foi, on pourrait dire que l'on s'intéresse aux mécanismes particuliers qui permettent à des résidus du pois de contenir beaucoup de matériaux chloroplastiques, mais... la lecture de l'article montre que tel n'est pas le cas, puisque, au contraire, il s'agissait d'analyser technologiquement les nutriments des fractions isolées, par une technique un peu améliorée.



Characteristics of flavonol glycosides in bean (Phaseolus vulgaris L.) seed coats : ici, il s'agit donc de caractériser une classe particulière de composés dans les haricots, et l'on peut imaginer que l'objectif est de lever un coin du grand voile. D'ailleurs, la "science des aliments" n'est en réalité une science de la nature, et non une activité technologique, que dans la mesure où elle a cet objectif. On observera que nous avions eu le besoin d'introduire la gastronomie moléculaire comme une discipline scientifique, parce que avions vu que les "sciences et technologies des aliments", dans les années 1980, se résumaient presque à de la science des ingrédients, et à des études des procédés ; or il nous apparaissait clairement que nous pourrions identifier des phénomènes et mécanismes nouveaux si nous explorions des phénomènes peu considérés, avec l'objectif clair d'identifier des mécanismes et phénomènes nouveaux.
Bref, ici, il pourrait s'agir de science des aliments, et bien de science... sauf que la consultation de l'article révèle un "Results suggest seed coats of Windbreaker and Eclipse may have potential as functional food ingredients, though benefits may not be simply due to flavonols"... qui montre que le travail était technologique. 



Wine production using free and immobilized kefir culture on natural supports : hopla, facile, non ? Mais c'est aussi l'occasion de voir que, jusque ici, nous n'avons pas eu un seul cas de science !



Variations in chlorophyll and carotenoid contents and expression of genes involved in pigment metabolism response to oleocellosis in citrus fruits: ouf, voilà enfin de la science ! Ici, de la science qui caractérise non pas les aliments, mais bien plutôt les ingrédients alimentaires, car c'est là une subtilité que je gardais en réserve, et qui agravait l'état des années 1980  : non seulement la science des aliments n'était le plus souvent que de la science des ingrédients, mais pire, ce n'était pas de la science des aliments, puisque c'était de la science des ingrédients ! Or je maintiens que les ingrédients ne sont pas des aliments, puisque manque l'étape de "cuisine". Un exemple : un sanglier vivant n'est pas un aliment ; pour faire un aliment à partir de ce sanglier, il aura fallu tuer l'animal, le dépecer, le préparer, le "cuisiner"... Ce qui n'est pas une mince affaire, et ce qui change du tout au tout la chair de l'animal.



Use of a smartphone for visual detection of melamine in milk based on Au@Carbon quantum dots nanocomposites : et là, c'est facile, puisque c'est de la caractérisation technique. N'épiloguons pas



Physicochemical properties and phenolic content of honey from different floral origins and from rural versus urban landscapes : à la lecture du seul titre, les deux possibilités scientifique et technologique se présentent, à savoir que l'on pourrait explorer les compositions et des caractéristiques des miels de différentes origines, en vue de comprendre comment ils sont formés, par exemple, ou bien l'on pourrait chercher  à attribuer des propriétés à partir de l'environnement de production, mais je propose surtout de conserver cet exemple observer que certains travaux publiés s'arrêtent à la caractérisation : si l'on est charitable, on peut admettre qu'il s'agisse de science, avec une ou deux étapes préliminaires... mais la caractérisation n'a de sens que si l'on identifie des mécanismes !



Effect of interesterified blend-based fast-frozen special fat on the physical properties and microstructure of frozen dough  : bon, de la technologie. Là encore, on pourrait faire de la science si l'on était vraiment scientifique... mais
Effect of phosphates on gelling characteristics and water mobility of myofibrillar protein from grass carp (Ctenopharyngodon idellus) : on se trouve dans l'avant dernier cas, et l'on pose la question de l'objectif, avant de trancher. L'article, lui, nous dit qu'il s'agit de technologie : dommage pour la science, tant mieux pour la technologie.



Hydrolysis and oxidation of lipids in mussel Mytilus edulis during cold storage : je pressens un travail technologique. Car même si l'on caractérise l'évolution des lipides lors du stockage au froid, l'étude s'arrête là.

Particulate organohalogens in edible brown seaweeds : de la science des ingrédients ou de la toxicologie ? Cette fois, il faut aller voir l'article, dont le résumé est le suivant :



Brown algae, rich in antioxidants and other bioactive compounds, are important dietary seaweeds in many cultures. Like other marine macroalgae, brown seaweeds are known to accumulate the halogens iodine and bromine. Comparatively little is known about the chemistry of chlorine in seaweeds. We used synchrotron-based X-ray absorption spectroscopy to measure total non-volatile organochlorine and -bromine in five edible brown seaweeds: Laminaria digitata, Fucus vesiculosus, Pelvetia canaliculata, Saccharina latissima, and Undaria pinnatifida. Organochlorine concentrations range from 120 to 630 mg·kg-1 dry weight and organobromine from 150 to 360 mg·kg-1, comprising mainly aromatic organohalogens in both cases. Aliphatic organochlorine exceeds aliphatic organobromine but is positively correlated with it among the seaweeds. Higher organochlorine levels appear in samples with more lipid moieties, suggesting lipid chlorination as a possible formation pathway. Particulate organohalogens are not correlated with antioxidant activity or polyphenolic content in seaweed extracts. Such compounds likely contribute to organohalogen body burden in humans and other organisms.
On voit que le résumé commence par vendre la salade, en termes d'application technique. Cela dit, le métabolisme du chlore ou du brome est une question passionnante. On n'oublie pas que l'iode fut découvert à partir des algues par Bernard Courtois.



Comparative studies on the yield and characteristics of myofibrillar proteins from catfish heads and frames extracted by two methods for making surimi-like protein gel products : bon, l'intention technologique est claire.



Point-of-use detection of ascorbic acid using a spectrometric smartphone-based system : idem.



Development and validation of a method for simultaneous determination of trace levels of five macrocyclic lactones in cheese by HPLC-fluorescence after solid–liquid extraction with low temperature partitioning : de l'analyse, donc de la technologie.



Rapid quantification of the adulteration of fresh coconut water by dilution and sugars using Raman spectroscopy and chemometrics : de la caractérisation, en vue de dépister des fraudes, c'est donc de la technologie.



Effect of pH and holding time on the characteristics of protein isolates from Chenopodium seeds and study of their amino acid profile and scoring : en réalité, il faut lire l'article pour voir que l'on est dans une caractérisation technologique.



Antioxidant activity of a winterized, acetonic rye bran extract containing alkylresorcinols in oil-in-water emulsions : là encore, on trouve le cas évoqué. Mais là, je commence à me lasser, et sans doute vous aussi.



Chemical profiles and antioxidant properties of roasted rice hull extracts in bulk oil and oil-in-water emulsion : il s'agit donc de caractérisation, et c'est l'occasion de signaler à nos jeunes amis qu'une caractérisation n'est qu'une caractérisation. Le contenu conceptuel est faible si l'on ne va pas jusqu'aux mécanismes. Mais, au fait, trouver le mécanisme d'un phénomène, c'est bien... mais est-ce une grande découverte ?



Distribution and effects of natural selenium in soybean proteins and its protective role in soybean β-conglycinin (7S globulins) under AAPH-induced oxidative stress: on sent la technologie à plein nez... Mais je propose que nous arrêtions ici, parce que c'est vraiment trop long, en observant seulement que les travaux scientifiques sont vraiment rares ! N'est-ce pas désolant ? N'est-ce pas un scandale que la revue en question évoque les sciences aliments.



Mais je dis assez souvent que se lamenter est inutile, et je vois surtout, là, la possibilité de développer véritablement des sciences des aliments, et pas seulement des ingrédients alimentaires ! Cela, ce me semble être précisément la gastronomie moléculaire !!!!!!!!!!!!!!!!!!!!!!!!!!!




Annexe: le reste des titres, pour que vous puissiez vous exercer

# Peels of tucumã (Astrocaryum vulgare) and peach palm (Bactris gasipaes) are by-products classified as very high carotenoid sources
# Diffuse light affects the contents of vitamin C, phenolic compounds and free amino acids in lettuce plants
# Solid-state fermentation of black rice bran with Aspergillus awamori and Aspergillus oryzae: Effects on phenolic acid composition and antioxidant activity of bran extracts
# Modifying Robusta coffee aroma by green bean chemical pre-treatment
# Microwave and ultrasound pre-treatments to enhance anthocyanins extraction from different wine lees
# Effect of sex on the nutritional value of house cricket, Acheta domestica L.
# Effect of anthocyanins on lipid oxidation and microbial spoilage in value-added emulsions with bilberry seed oil, anthocyanins and cold set whey protein hydrogels
# Comparison of real-time PCR methods for quantification of European hake (Merluccius merluccius) in processed food samples
# A unified approach for high-throughput quantitative analysis of the residues of multi-class veterinary drugs and pesticides in bovine milk using LC-MS/MS and GC–MS/MS
# Novel insight into the role of withering process in characteristic flavor formation of teas using transcriptome analysis and metabolite profiling
# High-sensitivity determination of cadmium and lead in rice using laser-induced breakdown spectroscopy
# Characterization and storage stability of chlorophylls microencapsulated in different combination of gum Arabic and maltodextrin
# Determination of serotonin in nuts and nut containing products by liquid chromatography tandem mass spectrometry
# Development of a DNA metabarcoding method for the identification of fifteen mammalian and six poultry species in food
# Comparisons of nutritional constituents in soybeans during solid state fermentation times and screening for their glucosidase enzymes and antioxidant properties
# Characterization of three different types of extracellular vesicles and their impact on bacterial growth
# Taste-guided isolation of sweet-tasting compounds from grape seeds, structural elucidation and identification in wines
# A value-added approach to improve the nutritional quality of soybean meal byproduct: Enhancing its antioxidant activity through fermentation by Bacillus amyloliquefaciens SWJS22
# UV and storage stability of retinol contained in oil-in-water nanoemulsions
# Screening of antimicrobials in animal-derived foods with desorption corona beam ionization (DCBI) mass spectrometry
# Effect of hulling methods and roasting treatment on phenolic compounds and physicochemical properties of cultivars ‘Ohadi’ and ‘Uzun’ pistachios (Pistacia vera L.)
# Traditional rose liqueur – A pink delight rich in phenolics
# In vivo anti-hyperuricemic and xanthine oxidase inhibitory properties of tuna protein hydrolysates and its isolated fractions
# Sensory descriptive and comprehensive GC–MS as suitable tools to characterize the effects of alternative winemaking procedures on wine aroma. Part I: BRS Carmem and BRS Violeta
# Kinetics of lipid oxidation in omega fatty acids rich blends of sunflower and sesame oils using Rancimat
# Encapsulation of grape seed phenolic-rich extract within W/O/W emulsions stabilized with complexed biopolymers: Evaluation of their stability and release
# Evaluation of near-infrared (NIR) and Fourier transform mid-infrared (ATR-FT/MIR) spectroscopy techniques combined with chemometrics for the determination of crude protein and intestinal protein digestibility of wheat
# Impact of consumer behavior on furan and furan-derivative exposure during coffee consumption. A comparison between brewing methods and drinking preferences
# Effects of heat-moisture treatment after citric acid esterification on structural properties and digestibility of wheat starch, A- and B-type starch granules
# Glycine betaine reduces chilling injury in peach fruit by enhancing phenolic and sugar metabolisms
# Effects of skim milk pre-acidification and retentate pH-restoration on spray-drying performance, physico-chemical and functional properties of milk protein concentrates
# Simultaneous determination and risk assessment of fipronil and its metabolites in sugarcane, using GC-ECD and confirmation by GC-MS/MS
# Extraction of lycopene using a lecithin-based olive oil microemulsion
# Discrimination of geographical origins of Chinese acacia honey using complex 13C/12C, oligosaccharides and polyphenols
# β-Agarase immobilized on tannic acid-modified Fe3O4 nanoparticles for efficient preparation of bioactive neoagaro-oligosaccharide
# Influence of fried food and oil type on the distribution of polar compounds in discarded oil during restaurant deep frying
# Structural elucidation of fucoidan from Cladosiphon okamuranus (Okinawa mozuku)
# Determination of lipophilic marine toxins in fresh and processed shellfish using modified QuEChERS and ultra-high-performance liquid chromatography–tandem mass spectrometry
# Discrimination of Brazilian lager beer by 1H NMR spectroscopy combined with chemometrics 
# Synergistic effect of mixture of two proline-rich-protein salivary families (aPRP and bPRP) on the interaction with wine flavanols
# Impact of a post-fermentative maceration with overripe seeds on the color stability of red wines
# Inhibitory effects of dietary soy isoflavone and gut microbiota on contact hypersensitivity in mice
# Metabolite characterization of powdered fruits and leaves from Adansonia digitata L. (baobab): A multi-methodological approach
# Isolation of antioxidative compounds from Micromelum minutum guided by preparative thin layer chromatography-2,2-diphenyl-1-picrylhydrazyl (PTLC-DPPH) bioautography method
# Effect of guar gum on the physicochemical properties and in vitro digestibility of lotus seed starch
# Preparation of an intelligent pH film based on biodegradable polymers and roselle anthocyanins for monitoring pork freshness
# Extraction, structural characterization and stability of polyhydroxylated naphthoquinones from shell and spine of New Zealand sea urchin (Evechinus chloroticus)
# A review of microencapsulation methods for food antioxidants: Principles, advantages, drawbacks and applications
# Transcriptome and proteome analyses of the molecular mechanisms associated with coix seed nutritional quality in the process of breeding
# The synthesis and characterization of a xanthan gum-acrylamide-trimethylolpropane triglycidyl ether hydrogel



Vous avez vu beaucoup de science, vous ?

jeudi 13 septembre 2018

Qu'est-ce qu'un intellectuel ?

Il y a d'abord le mot, le simple mot, qui reconnaît une activité de l'esprit... mais existe-t-il des activités humaines qui ne soient pas des activités de l'esprit ?

Existe-t-il vraiment des activités purement manuelles, où la tête ne pense plus ? Je ne le crois pas, et, que nous soyons attentifs à des questions de l'ordre de la pensée ou à des gestes, notre tête fonctionne.
Puis il y a le mot avec ses connotations, ses définitions idiosyncratiques qui furent données par des Mirbeau, Zola, Aron, Sartre, Camus, Bourdieu,  Chomsky, Foucault et tant d'autres. Là, chacun y met sa patte, de sorte que, aucun n'ayant de légitimité suffisante pour imposer une définition, aucune définition proposée n'est légitime, et nous perdons notre temps à suivre ces propositions.

Plus intéressante est l'idée de Georges Dumézil, qui considérait que les mythes mettaient constamment en scène trois types d'humains : les agriculteurs, les soldats et les prêtres. Les premiers produisent des biens matériels, les deuxièmes protègent cette production, et les prêtres se chargent des travaux de l'esprit. Manifestement, les intellectuels d'aujourd'hui seraient les prêtres d'antan.

Les scientifiques ? On n'oublie pas que la science était nommée jadis "philosophie naturelle", mais on aurait dû traduire "philosophie de la nature".
Bref, les scientifiques  ne sont certainement pas des soldats, mais sont-ils des agriculteurs ou des prêtres ? Car après tout, ils produisent du savoir, et n'agitent pas seulement des questions morales ou politiques.
La question étant posée, on observera que je me suis éloigné de tous ces "intellectuels" auto-proclamés, dans des champs tels que la philosophie ou la politique. Non que certains ne puissent bien faire, mais, surtout, que toutes les idées sont à prendre, et pas seulement celles de ceux qui sont embarrassés de leurs mains.

Dans ma "collection d'idées pour rendre plus intelligent", je veux tout aussi bien l'apport des scientifiques, des philosophes, des historiens, des géographes... que des maçons, des cuisiniers, des électriciens, des agriculteurs.

mardi 11 septembre 2018

La science, ce n'est pas l'administration de la science

Qu'est-ce qu'un "directeur scientifique" ? La question est doublement difficile, parce qu'elle inclut le mot "directeur", qui n'est pas toujours clair, et dépend du contexte, et celui de scientifique, qui, comme dit souvent, est également mis à toutes les sauces.

Un directeur, tout d'abord, c'est quelqu'un qui indique une direction... Pourquoi pas, s'il en a les capacités et la légitimité ! La légitimité ? Le propriétaire d'une société est légitime pour la diriger. Le directeur d'un institut de recherche est légitime s'il a été dûment nommé. Le directeur "scientifique" d'une société (on a vu dans un autre billet pourquoi je mets des guillements à "scientifique") est dans le second cas : il est légitime quand il a contracté pour ce poste avec la société qui l'emploie.


Mais directeur scientifique ?

On se souvient que j'ai discuté de la question du "directeur de thèse"  (ou bien on peut aller le consulter d'un autre billet à : https://hervethis.blogspot.com/2017/01/la-direction-de-these.html), en faisant observer qu'il me semble devoir logiquement être un "discutant" des travaux effectués par ce jeune scientifique qu'est le doctorant. Pas plus, sans quoi il risque de devenir juge et partie !
Directeur de recherche dans une institution comme l'Inra ou le CNRS ? En réalité, l'expression a pris le sens d'un grade de la fonction publique, et pas celui de directeur. Bien sûr, nos institutions reconnaissent par ce grade des individus qui ont des activités de "direction", mais le libellé de ces activités montre que, souvent, c'est une capacité d'animer une équipe qui est en jeu. Et c'est d'ailleurs la raison pour laquelle ces "directeurs de recherche" ne sont pas nécessairement superposés aux directeurs de ce que l'on nommait naguère des laboratoire, et que l'on nomme aujourd'hui des "unités". Bon, très bien, mais ces derniers sont des administrateurs, en réalité.
Et les directeurs scientifiques des institutions ? Certes, ils reçoivent des moyens, et, par des arbitrages de postes, de matériel, etc., ils ont la capacité de diriger (un peu) la recherche, mais j'espère qu'ils sont prudents dans leur choix... et je m'étonne qu'ils ne soient jamais sanctionnés de leurs erreurs ! Par exemple, si les récipiendaires du prix Nobel (c'est évidemment la représentation de reconnaissances de la communauté, pas à considérer particulièrement comme le nec plus ultra), par exemple, n'ont pas été favorisés avant de recevoir leur prix, c'est une faute (j'ai bien dit "faute", et pas "erreur"). Tout comme c'est une faute quand l'Académie des sciences ou l'Académie d'agriculture n'a pas élu des scientifiques qui sont récompensés par de tels grands prix (je pense surtout à la Médaille Fields !).


Une proposition

De fait, j'ai bien peur de ne pas toujours avoir vu à des postes de directeurs scientifiques des individus qui sont capables de guider d'autres scientifiques meilleurs qu'eux. Par exemple, comment peut-on être le directeur scientifique du CNRS quand on a dans ses ouailles des Pierre-Gilles de Gennes ou des Jean-Marie Lehn? Ce qui me conduit à penser qu'une qualité essentielle des directeurs scientifiques doit être la modestie scientifique, le plus souvent.
Et même les membres des "conseils scientifiques", qui, en réalité, en relation avec les directeurs scientifiques, définissent les politique des instituts de recherche. Ces collègues qui n'ont pas le prix Nobel et en sont parfois bien loin ne doivent-ils pas, aussi, faire preuve de la plus grande prudence et d'une modestie inversement proportionnelle à leurs compétences ? 

Indiquer à des scientifiques la direction qu'ils doivent prendre ? Cela est bien impossible ! Ou, plus clairement : quel scientifique accepterait-il de suivre une voie dont il n'est pas assuré qu'elle conduise à des découvertes ?
Or c'est cela, sa mission et son objectif !

lundi 10 septembre 2018

Un émerveillement partagé

Les sciences de la nature sont merveilleuses, dans leur objectif comme dans le moindre pas que l'on fait vers cet objectif. Et puisqu'il est impossible d'enseigner (alors que, je le répète, il est possible pour les étudiants d'apprendre), j'ai proposé que ceux qui accompagnent les étudiants sur le chemin de leurs études soient soit des tuteurs, soit des professeurs. Les tuteurs veillent, protègent, guident. Les professeurs, eux, professent, à savoir que, étymologiquement, ils "parlent devant". Pour dire quoi ? Tout ce qui donnera de l'énergie, de l'envie, de l'enthousiasme, mais aussi, pourquoi pas, tout ce qui éclairera les études. Dans mon cas, je limite les "informations" (que l'on trouve n'importe où) pour me concentrer sur les notions et concepts, les méthodes, les valeurs et des anecdotes. Et c'est à ce titre que je discute souvent le calcul  de l'aire de la gaussienne.


Expliquons.

 La "gaussienne" est une courbe en forme de cloche, et le calcul de son aire, disons de l'aire de la surface entre elle et une ligne droite horizontale sur laquelle reposerait la cloche, est quelque chose qui s'impose de façon assez élémentaire, quand on marche sur le chemin de la science ou de la technologie.


Il y a bien des précisions à donner, pour qui ne connaît pas beaucoup de mathématiques. Et tout d'abord la forme particulière de la "cloche" : on peut en produire plein de différentes, mais la gaussienne est particulière, parce qu'elle est définie par la "courbe de Gauss", du nom de ce génie des mathématiques (on l'a surnommé : le prince des mathématiciens) que fut le mathématicien allemand Carl Friedrich Gauss (1777-1855).


C'est une fonction "exponentielle", qui croit et décroit très vite, et que l'on rencontre sans cesse en mathématiques, et aussi en statistique. Par exemple, quand on examine un phénomène "bruité", elle survient aussitôt. Un phénomène bruité ? Peser une masse sur une balance, alors qu'il y a des courants d'air.
Bref, se pose la question de calculer la surface sur la courbe, et ce qui est passionnant, dans cette affaire, c'est que les méthodes élémentaires de calcul des "primitives" utilisées pour ce type de travail ne fonctionnent pas.
En réalité, il a fallu l'acharnement et l'intelligence du mathématicien Pierre Simon de Laplace  (1749-1827) pour trouver la première solution au problème... et cette solution est merveilleuse : il s'agit non pas de calculer directement la primitive, mais le carré de la primitive (la primitive multipliée par elle-même). Alors des manipulations permettent de se ramener à un calcul possible de façon élémentaire ; puis on prend la racine carrée du résultat.


Cette façon de contourner un mur est déjà merveilleuse, mais, surtout, c'est le détail de la seconde transformation qui est merveilleux, parce que l'on comprend alors, quand on fait les calculs, que la méthode proposée se fondait sur une bonne connaissance des "symétries" : en gros, si l'on fait tourner la courbe autour de son axe central de symétrie, on obtient une cloche de symétrie cylindrique. Et alors il y un rayon et un angle par rapport à une direction. Mais j'aurais du mal à en dire plus pour qui n'entre pas dans le détail du calcul. Ce n'est pas bien difficile... et voici une invitation à apprendre.

Bref, il y a lieu de s'émerveiller... et une invitation à découvrir les beautés du calcul.

dimanche 9 septembre 2018

À propos de science et de technologie


La distinction entre les sciences de la nature et la technologie est subtile, et c'est d'ailleurs un exercice merveilleux que de bien les distinguer.
Ainsi un ami qui a beaucoup d'enthousiasme pour les sciences de la nature me dit être intéressé à l'interaction de la lumière et des tissus vivants. A priori, les mécanismes sont quand même classiques, et la probabilité identifier des phénomènes nouveaux n'est pas considérable... car il y a tous les jours des interactions de la lumière et des tissus vivants, sauf peut-être quand la longueur d'onde est telle qu'elle peut promouvoir des réactions, ou quand l'intensité est telle que du chauffage a lieu. Stratégiquement je ne suis pas certain (mais il faut que j'y pense mieux, en connaissant mieux le champ) que cette partie du monde soit la plus féconde... car c'est quand même la question : il s'agit d'aller dans une direction où l'on ait quelques chances de faire une belle découverte.

Surtout, mon ami voudrait utiliser de la lumière pour agir sur les cellules, ce qui est bien le propre de la technologie. Le champ de base peut être le même que celui de la science, mais la finalité est bien différente, raison pour laquelle certaines institutions scientifques (je dis bien "scientifiques", puisque c'est leur affichage) me semblent avoir tort d'insister auprès de leurs chercheurs pour que ces derniers se préoccupent des applications de leurs travaux : c'est vouloir faire faire aux scientifiques un autre travail que celui qui leur est dévolu.
On comprend bien la motivation : montrer aux citoyens contribuables que l'on fait quelque chose d'"utile"... mais n'est-ce pas suffisamment utile de découvrir l'induction électromagnétique, la relativité, le boson de Higgs? On rappelle utilement la réponse de Michael Faraday à l'homme politique venu visiter son laboratoire après la découverte de l'induction électromagnétique et lui demandant à quoi cet effet servait, et Faraday de lui répondre : "Je ne sais pas, mais je peux vous assurer que, un jour, vous le taxerez".

Bref, la science part d'un champ avec l'espoir que les explorations nous mèreront à tout autre chose, alors que, pour la technologie, on n'a pas l'ambition de s'écarter, mais de bien comprendre en vue de bien utiliser... ou de permettre à d'autres de bien utiliser, selon que l'on est plus ou moins proche des applications.
Et la différence est si subtile - mais si importante pour notre fonctionnement social- que j'invite la plupart des étudiants qui me font l'honneur de venir à mes côtés à s'orienter vers la technologie, l'industrie, qui a des postes à pourvoir, pour des individus de talents qui contribueront à l'amélioration matérielle de notre monde : médicaments, peintures, aliments, détergents...

samedi 8 septembre 2018

Vous avez dit "participatif" ?

Discutant avec un ami qui fait profession de vulgarisation scientifique, je suis en désaccord à propos de  "sciences participatives".

Observons : par exemple, des volontaires sont invités à explorer des données astronomiques ; mathématiciens, physiciens sont invités à faire le travail d'exploration dans des données épidémiologiques ;  ou encore des volontaires internautes peuvent cliquer quand, dans un film, ils observent un singe ; ou l'on aide des biologistes à compter des cellules... Je vois aussi d'utiliser les compétences des agriculteurs pour sélectionner des semences, mieux utiliser les ressources en eau, faire du levain et envoyer des échantillons à un réseau de laboratoires, signaler la présence de tiques dans certains territoires...
Les avantages ?  Tout cela est utile, tout cela fait avancer les connaissances. Les inconvénients ? Un peu de démagogie à faire croire que, ainsi, les agriculteurs, les enfants, les amateurs... sont tout comme les professionnels.


Mais allons y voir de plus près

J'observe tout d'abord que, dans la plupart des exemples que mon ami me donne, il s'agit de recueil de données, ou de pallier l'absence de personnel technique. L'ami me répond qu'il faut réconcilier le public avec la science. Comment ne serais-je pas d'accord avec cet objectif :  réconcilier les citoyens (je reformule plus justement) avec les sciences de la nature qu'ils financent est la moindre des choses. Mais la question que je pose est surtout de savoir si la terminologie "science participative" est juste.
Observons tout d'abord que lesdits citoyens, qu'ils soient des enfants, des adultes ou des professionnels, peuvent être heureux de contribuer au travail scientifique. Tout comme le personnel administratif et le personnel technique... Mais, au fait, pourquoi les administrateurs de la science ne sont-ils pas nommés scientifiques ? Et pourquoi fait-on une différence entre des ingénieurs d'étude et des ingénieurs, chargés ou directeurs de recherche ?
Où commence la science ? L'analyse ne vise évidemment pas à exclure quiconque, surtout quand il y a des bonnes volontés pour aider les scientifiques, mais bien de savoir mieux ce qu'est la science, afin de la mieux pratiquer, et de mieux l'enseigner.


Écoutons les mots

Dans l'expression "science participative", il me semble qu'il y a une faute de français. La science est participative... si la science participe. Or la science est une activité, pas une personne. Et hélas, quand les mots ne sont pas justes, les idées sont souvent bien médiocres.
Ce qui est plus grave, c'est la question suivante, relative au mot de "science" : imaginons qu'un ou une  scientifique d'une de nos institutions scientifiques fassent le travail de "science participative" que lesdites au public : comment serait-il ou serait-elle évalué(e) par les instances d'évaluation des institutions scientifiques ? On me contredira peut-être, mais j'ai peur qu'un(e) tel(le) collègue se ferait ramasser lourdement !

Pour éclairer la question,  je rappelle que l'activité scientifique consiste en :
1. identifier un phénomène (pas le cas dans les "sciences participatives" qui me sont décrites)
2. le caractériser quantitativement : oui, il y a là un travail "technique", et cela aidera les scientifiques si le "public" facilite la collecte de données : si l'on signale les cas de maladies de Lyme, si l'on photographie les amas ouverts dans le ciel nocturne, et ainsi de suite... mais aura-t-on vraiment fait de la science pour autant ?
3. réunir les données quantitatives en lois, c'est-à-dire en équations : là, le fameux "public" se réduit comme peau de chagrin, mais, surtout, il y a cette question que l'on ne fait pas des "ajustements" au hasard, sans idée préconçue !
4. induire des notions, concepts, mécanismes : hors de portée du public, sauf de très rares exceptions, tel l'homme qui explora la synthèse organique sur les argiles, pour explorer l'apparition de la vie.
5. chercher des conséquences testables des théories : là, au 21e siècle, la science a tant progressé qu'il faut des heures d'explication pour qu'un non spécialiste comprenne les notions ou concepts ; bien sûr, on peut imaginer quelqu'un qui ferait l'effort... mais il deviendrait sans doute un bon scientifique, et ce ne serait plus du public participant vaguement à des études
6. tester expérimentalement les prévisions : il faut un équipement moderne, pour y parvenir.

Bien sûr, nous ne devons négliger aucune piste, pour lever un coin du grand voile, et tout le monde est convié au grand banquet des sciences. Dans notre laboratoire, les propositions des étudiants et du personnel technique sont particulièrement appréciées, parce que toutes les idées sont bonnes. Mais quand même, au delà de l'idée généreuse, il est bien rare que l'on puisse résoudre des équations aux dérivées partielles compliquées en claquant des doigts à la terrasse d'un bistrot. Or c'est de cela dont il s'agit, dans les sciences modernes. La science n'est pas un discours que l'on prononce négligemment à la terrasse d'un bistrot, ce n'est pas de la vulgarisation, mais un corpus de calcul, d'équations, et les concepts, notions ou mécanismes que l'on vulgarise ensuite sont fondés sur du calcul. La description de vulgarisation que l'on en fait ensuite peut utiliser des mots, parfois, mais ce n'est que de la vulgarisation.
Un exemple? Prenons l'exemple déjà ancien d'entropie. La vulgarisation dira que c'est une mesure du désordre, et ce n'est pas inexact, mais il y a mille façons de mesurer le désordre, et c'est une mesure particulière. Laquelle ? Là est la question, là est toute la question. Ce qui est passionnant, notamment, dans le travail de Ludwig Boltzmann, c'est que cette mesure s'exprime comme le logarithme du nombre de configurations microscopiques associées à un état macroscopique particulier, à une température donnée, donc. Là encore, avec quelques efforts, on pourra l'expliquer... mais on arrive dans le monde du calcul, plus du discours... alors que j'ai considéré une notion introduite il y a plus d'un siècle ! Alors la science d'aujourd'hui...

J'observe aussi que, dans les exemples "participatifs", il y a beaucoup de  "naturalisme", ce qui est un état embryonnaire de la science : la description a été utile, puisqu'il a bien fallu en passé par Linné pour créer un cadre réfutable par la génétique, mais la description est bien peu insuffisante, en termes de mécanismes.
Finis, les collectionneurs de papillon ! La science a considérablement progressé, et le temps où l'on pouvait se contenter de laisser tomber une pierre du mat d'un navire pour faire progresser la mécanique est bien loin.

C'est d'ailleurs une question pour le système d'études scientifiques : nos étudiants doivent faire un long chemin avant de pouvoir prolonger le chemin scientifique. Comment les y aider mieux ? Certainement en leur expliquant bien ce qu'est l'activité scientifique, et ce qu'elle n'est pas !

jeudi 6 septembre 2018

Pourquoi être précis ??????

Un  collègue me demande notamment pourquoi j'accorde tant d'importance aux mots.

Oui, pourquoi est-ce que je maintiens (avec beaucoup d'intellectuels du passé) que les mots doivent être justes, dans leur  dénotation comme dans leur connotation d'ailleurs ?
 Un exemple : il est vrai que je fais une différence essentielle entre les mots "enseignant", "tuteur", "professeur", "maître"...
 Ce n'est qu'un exemple, mais j'explique, pour commencer, sur cet exemple : en l'occurrence, je récuse le mot "enseignant" pour la double raison que c'est un participe présent jargonnant et qu'il est bien impossible d'enseigner (on peut seulement apprendre, quand on est étudiant) ;  le tuteur, lui, est quelqu'un qui exerce une activité de tutorat, de guide, avec des objectifs bien différents de celui qui voudrait "enseigner" ;  le maître à une activité que je n'ai pas encore analysée et que je ne peux pas donc décrire... mais comment oublier ce "Ni dieu ni maître" ;  et le professeur doit étymologiquement "parler devant", et j'ai analysé qu'il s'agissait de transmettre beaucoup d'envie de connaître et d'apprendre, beaucoup d'enthousiasme, pour que les études se fasse le plus activement possible.

Dans le même ordre d'idée, je distingue le pédagogique,  l'éducatif, l'instructif, le didactique, par exemple. Le pédagogique, par définition, s'adresse à des enfants  ;  l'éducatif et l'instructif n'ont pas la même signification puisque l'un se rapporte à l'éducation, en gros à l'apprentissage des règles de bienséance,  et l'autre à l'instruction, c'est-à-dire aux matières qui relèvent du collège,  de l'école,  du lycée ou de l'université. Mais on trouvera dans un autre billet les analyses plus approfondie de cette question, précisément avec des considérations étymologiques et historiques. Enfin le didactique s'applique à ce qui m'intéresse en réalité,  c'est-à-dire les études.


Mais je reviens maintenant à ma discussion initiale, en observant que je cherche à employer effectivement les mots  avec une signification bien particulière qui ne dépend pas de moi mais d'un fonds commun de la langue donné par le dictionnaire. Je veux des acceptions justes, fondées, répertoriées, partagées...

Et je m'interroge quand même sur la remarque de mon collègue, car si l'on se met idiosyncratiquement à nommer "chat" un animal à quatre pattes et à poils qui fait wouah, wouah, alors on risque d'être mal compris de ses semblables, non ? Or mon collègue se demandait aussi pourquoi je ne faisais pas référence à d'autres collègues ayant étudié la didactique :   ma réponse tiens dans cette observation que beaucoup d'entre eux ont leur propre  terminologie, leurs propres acceptions idiosyncratiques, fondées sur des "systèmes" que je n'apprécie pas toujours ; ils ont leurs propres définitions... mais  je refuse absolument d'être ballotté par des intellectuels parfois un peu faibles, qui  voudraient faire passer des terminologies qui fonderaient leur "compétence".
Et puis, je n'oublie pas  le grand Lavoisier, qui observa avec Condillac que la langue est un outil analytique, et que les mots vont de pair avec la pensée. C'est une hypothèse que j'ai partiellement réfutée, mais qui reste juste en première approximation : il nous faut les bons mots pour bien penser.

Tout cela fait un billet, mais il y a en réalité une réponse beaucoup plus rapide : je ne me résous pas à utiliser d'autres mots que les mots justes... parce que si je me mets à dire n'importe quoi, alors je dis... n'importe quoi ! 
Pour être juste et précis, ou, au moins pour avoir l'espoir de l'être un peu, je dois trouver les bons mots. Ce qui me fait immédiatement penser à cette citation du poète : "L'écrivain est quelqu'un qui ne trouve pas ses mots, alors il cherche, et il trouve mieux". Oui, ce n'est pas en pissant des phrases, sans contrôle,  sans réflexion suffisante, que l'on aura une chance de penser un peu bien. De même que dans un calcul, la moindre lettre compte (on fait des catastrophes si on confond avec  x avec un y), je ne vois pas pourquoi, quand on parle, une précision au moins égale ne serait pas de mise.

Bref, utilisons de bons mots !







PS. Un ami alsacien me signale  :
"Concernant la langue, on oublie que bien des Alsaciens qui ont suivi une scolarité allemande durant la deuxième guerre dans des établissements comme le lycée ou l'université, ont par la suite pour leurs discours notamment (un exemple d'un parent très proche) toujours pensé en premier en allemand puis rédigé en français.
Sans passer par une première rédaction en allemand, leur réflexion sur le contenu et les formulations se faisaient en allemand dans leur tête, et enfin la rédaction en français."