Affichage des articles dont le libellé est invention. Afficher tous les articles
Affichage des articles dont le libellé est invention. Afficher tous les articles

dimanche 6 août 2023

Une invention ancienne : les grahams (de l'huile gélifiée).


Nous sommes bien d'accord : la gastronomie moléculaire, activité scientifique (une discipline qui fait partie du champ des sciences de la nature) n'a pas pour objectif l'invention, mais la découverte. 

Toutefois les sciences de la nature ont des applications d'au moins deux types : techniques, et pédagogique. Les inventions relèvent semble-t-il (je deviens prudent, avec l'âge) du champ technique. 

Je m'aperçois, ainsi, que j'ai oublié de nommer une vieille invention, souvent décrite et enseignée aux cuisiniers : les "gels d'huile", ou "huiles gélifiées". Evidemment, avec de tels noms, c'est peu engageant, car qui voudrait manger de l'huile ? Notre mauvaise foi gourmande veut travestir la chose (alors que le chocolat, c'est en gros 50 pour cent de matière grasse et 50 pour cent de sucre, sans que cela gêne personne), et c'est facile : il suffit de donner un plus beau nom. Un "chevreul", puisqu'il est question de matière grasse et que le chimiste français Michel Eugène Chevreul découvrit la structure des triglycérides ? Le nom a été précédemment donné à des mets qui mettent en oeuvre la transposition du "contraste simultané" en cuisine. Un de gennes, puisque Pierre-Gilles de Gennes explora la physique de la matière molle, et notamment des gels ? Le nom a déjà été donné à des perles d'alginate. 

Alors pourquoi pas des "graham", puisque Thomas Graham introduisit le mot "colloïde" en 1861 ? 

Au fait, comment les préparer ? 

Il suffit de repenser aux "gibbs", que j'avais proposés il y a des décennies : ce sont des émulsions piégées dans des gels chimiques, que l'on obtient de la façon suivante : à de l'eau, on ajoute un composé tensioactif (par exemple, des protéines), puis on émulsionne de l'huile, ce qui produit une émulsion ; on chauffe, afin de coaguler les protéines, et l'on obtient les gibbs, du nom du physico-chimiste américain Josiah Willard Gibbs. 

Peu appétissant ? Imaginez que vous infusiez de la vanille dans l'eau, que vous la sucriez, et que votre huile soit une belle huile d'olive vierge : si vous produisez le met dans une jolie tasse, avec un objet un peu croustillant, bien doré, vous aurez un dessert remarquable. Ou si vous émulsionnez du chocolat fondu dans un blanc d'oeuf, avant de cuire votre émulsion, vous aurez un gibbs de chocolat délicieux (à servir chaud). Bref, plein de possibilités : je passe les gibbs au fromage, au fois gras, au beurre noisette...

 

Passons maintenant aux graham : c'est tout simple, puisqu'il s'agit de faire sécher les gibbs : si l'eau s'évapore, le réseau reste intouché, et l'huile demeure. Finalement, on récupère une huile dans un solide, un gel d'huile, un "graham". 

Quel goût lui donner ? Celui du chocolat ? Du foie gras ? De l'huile d'olive ? Du beurre noisette ? La question est artistique, de sorte que c'est aux artistes (les cuisiniers) de répondre !

lundi 19 juin 2023

L'origine des mets

Il est amusant d'observer que l'on s'interroge rarement sur  l'origine des mets actuels. Pourtant il a bien fallu que   ceux-ci surviennent un jour. Pas nécessairement d'un coup,  mais peut-être progressivement.
 

Ce fut le cas, je crois, pour la mayonnaise, qui nous semble être apparue comme un dérivé d'une très vieille sauce française nommée rémoulade. Mais c'est là  une autre histoire, pour une autre fois.
 

 

La crêpe ? Il existe un tableau célèbre de Brueghel qui représente une noce paysanne. On voit des assiettes pleines de bouillie, et une hypothèse court, selon laquelle une bouillie épaisse  (je ne parle pas de la viscosité, mais de l'épaisseur de la couche déposée dans l'ustensile de cuisson) qui aurait séché aurait ainsi engendré une crêpe, une galette.
 

Evidemment, il sera bien difficile d'établir une telle hypothèse, et il vaut mieux ne pas avoir trop d'espoir. Pas trop d'espoir, mais de l'espoir quand même, sans quoi nous resterions paresseusement les bras croisés, à ne pas chercher. Or c'est la recherche qui nous pousse à trouver, pas nécessairement ce que nous cherchons, mais bien d'autres choses passionnantes. C'est là une attitude philosophique : pour être heureux, on peut se fixer comme but d'aller vers le sommet d'une montagne, mais surtout si cette montagne est très haute, il n'est pas utile d'être malheureux pendant tout le chemin en se disant que le sommet est encore loin ; il vaut peut-être mieux se réjouir de la beauté du paysage, avancer activement, découvrir de nouveaux endroits au cours de cette promenade, qui nous mènera peut-être au sommet, peut-être pas. 

Je disais donc que nous ne saurions peut-être jamais si la galette est un dérivé d'une bouillie, ou si un dieu existe. Mais nous pouvons nous interroger. Sutor non supra crepidam : cuisinier pas plus haut que la casserole, chimiste pas plus haut que la cornue... 

 

Tiens : le soufflé. Des livres de cuisine anciens nous disent que c'est l'oeuf qui fait souffler, ce qui semble montrer que les cuisiniers du passé ont déjà fait une observation plus générale que pour le soufflé en particulier, et il est vrai que de nombreuses préparations soufflent quand elles contiennent de l'oeuf. En revanche, ce que les cuisiniers du passé n'avaient pas compris, c'est que ce n'est pas l'oeuf qui fait souffler, mais l'eau qui est contenue dans   l'oeuf : 90 % du blanc d'oeuf, c'est de l'eau ; 50 % du jaune, c'est de l'eau. Or un gramme d'eau qui s'évapore fait environ un litre de vapeur. Je vous en ai déjà parlé. Regardons donc maintenant la cuisine actuelle, et traquons les préparations où un gonflement survient  :  les gâteaux, les soufflés... même les crêpes, où se forment parfois de très petits trous, qui servent alors de cheminée pour une vapeur qui s'échappe... Nos aliment étant fait majoritairement d'eau, et la cuisine mettant beaucoup en oeuvre des chauffages, il n'est pas étonnant de la vapeur apparaisse (regardons au-dessus des viandes qui grillent) et que des gonflements surviennent, dans les soufflés par exemple. 

 

Tout cela étant posé, nous pouvons revenir à la question de l'invention des mets, ou de leur découverte. 

Ici, l'évocation de ces deux mots fait penser que l'invention serait  un acte délibéré, conscient, alors que la découverte  serait plus aléatoire, comme quand on observe un joli caillou brillant sur le bord du chemin. Cette discussion particulière nous renvoie à des questions de stratégie scientifique, où la découverte  est l'objectif. La métaphore culinaire doit-elle nous faire penser que  la découverte scientifique  survient un peu par hasard ? 

Je ne suis pas certain, car nombre de très grands scientifiques n'ont pas été l'homme  (ou la femme) d'une seule découverte, mais de plusieurs. Apparemment il y a donc à penser que « la chance sourit aux esprits préparés », comme disait Louis Pasteur ; et il serait peut-être bon, alors, dans cette hypothèse très particulière, de contribuer à l'éducation des jeunes scientifiques en enseignant à ouvrir les yeux, à voir les beautés du monde  que les autres n'avaient pas vues. 

Pour voir, il y a mille façons, et les méthodes modernes d'observation (accélérateurs de particules,  faisceau de neutrons,  rayons X,  spectroscopie de résonance magnétique nucléaire...) s'imposent. S'il s'agit de voir, apprenons à regarder. 

 

Et c'est ainsi que la physico-chimie est belle !

jeudi 27 avril 2023

Mes inventions : les liebigs et les gibbs

Dans un précédent billet,  nous avons considéré une de mes anciennes inventions, que j'avais nommée des liebigs, des émulsions gélifiées. 

Toutefois, il y a gélification et gélification ;  certaines sont réversibles, dites « physiques », tandis que d'autres sont « chimiques ». 

 

Les gélifications chimiques sont des gélifications irréversibles, assurées par la formation de liaisons chimiques plus fortes que dans les gélifications physiques. 

Un type particulier résulte de la formation de liaisons chimiques particulières nommées ponts disulfures, telles qu'il s'en forme lors de la coagulation de l'oeuf. 

De ce fait,  on entrevoit aussitôt  que l'on peut obtenir une émulsion gélifiée chimiquement en émulsifiant de l'huile dans une solution qui contient des protéines capables de coaguler, telles qu'il y en a dans le blanc d'oeuf, puis en faisant coaguler les protéines. 

 

La recette est extrêmement simple : fouetter de l'huile dans du blanc d'oeuf, jusqu'à obtenir  une préparation épaisse comme une mayonnaise, mais blanche, puis cuire quelques secondes cette préparation  au four à micro-ondes, afin d'obtenir la coagulation les protéines restées à la surface des gouttes d'huile. 

Et c'est ainsi que l'on obtient  rapidement une émulsion gélifiée blanche et insipide. J'ai nommé de ce système un « gibbs ». 

Blanche et insipide : est-ce rédhibitoire ? Pas du tout :  il suffit de donner de la couleur et du goût. Pour la couleur, tous les pigments ou colorants comestibles font l'affaire :  les chlorophylles engendrant le vert, jusqu'aux caroténoïdes qui font le jaune, rouge, orange, en passant par les composés phénoliques des fleurs et fruits, qui font aussi du bleu, ou en passant par les bétalaïnes des  betteraves. 

Du goût : cela signifie de la saveur et de l'odeur. Comme il y a de l'huile dans la préparation, on conçoit facilement qu'il soit facile d'y dissoudre des composés odorants, le plus souvent solubles dans l'huile. 

Pour la saveur, les composés sont solubles dans l'eau, ce qui tombe précisément bien, puisque le blanc d'oeuf initialement utilisé est composé de 90 % d'eau. 

 

On le voit :  finalement, il n'est pas difficile de faire des  gibbs au goût merveilleux ! 

 

note : je vous recommande un blanc d'oeuf que vous sucrez, puis vous émulsionnez une huile où vous avez fait macérer des gousses de vanilles, et vous passez au four à micro-ondes dans de jolies tasses. A servir avec un élément croustillant ou croquant, tuile aux amandes ou autre.

samedi 21 août 2021

La cuisson des "oeufs parfaits"

Un ami, excellent scientifique, m'avoue ne pas bien comprendre la cuisson des oeufs à basse température, ce que j'avais jadis inventé sous le nom d'"oeufs parfaits", mais que je propose de nommer plutôt "oeuf à 65 degrés" quand ils sont cuits à 65 degrés, ou "oeufs à 67 degrés" quand ils sont cuits à 67 degrés, etc.


Il me faut lui expliquer le mécanisme de la constitution de ces oeufs, puisque si lui ne comprend pas, bien d'autres, aussi, risquent de ne pas comprendre.


1. Commençons simplement par considérer le blanc d'oeuf, parce qu'il est plus simple chimiquement que le jaune.
Ce blanc d'oeuf, c'est 90 % d'eau et 10 % de protéines. Ce qui correspond à 20 000 fois plus de molécules d'eau que de molécules de protéines.

2. Pour comprendre l'effet de la cuisson, il faut savoir que quand on chauffe un matériau,  les molécules du matériau s'agitent plus vite.
Or les molécules de protéines sont comme des pelote repliées sur elles-mêmes, dispersés parmi les molécules d'eau.

3. Quand on chauffe au-delà d'une certaine température, alors les protéines se déroulent, exposant la partie centrale qui, pour les protéines du blanc d'oeuf,  contient un atome de soufre lié à un atome d'hydrogène.

4. Et quand deux molécules de protéines voisines sont ainsi déroulées, alors les atome de soufre peuvent se lier et former des liaisons que l'on nomme des "ponts disulfures". 


5. L'ensemble des protéines attachées  les unes aux autres forme une sorte d'échafaudage dans toute la masse du blanc d'oeuf, une sorte de filet où les molécules d'eau sont piégées, comme des poissons dans un filet.
Et comme l'eau est piégée, elle ne coule plus, de sorte que l'on obtient un solide mou, qui est ce que l'on nomme un gel.

6. À ce point , on ne comprends pas pourquoi la coagulation de l'œuf peut être différente à différentes température, mais c'est cela que j'ai découvert, proposant la théorie améliorée suivante : dans la précédente description, j'ai évoqué des "protéines" sans plus de précisions, mais, en réalité, dans le blanc d'oeuf, il y a plusieurs sortes de protéines, et ces dernières coagulent à des températures différentes.

7. Vers 62 degrés, il y a une sorte de protéines qui coagule et qui forme donc un réseau, le filet dont je parlais.
Avec un seul filet et beaucoup de choses à l'intérieur, on comprend que le gel formé soit très délicat, très fragile. Cela correspond d'ailleurs à la cuisson que l'on observe entre 62 et 65 degrés : le blanc devient à peine laiteux et encore presque liquide ; plus ou moins fragile en tout cas.

8. Puis, si l'on chauffe à 65 degrés, alors un deuxième filet se forme, avec une autre sorte de protéines. Ce deuxième filet s'ajoute au premier, et l'ensemble est mieux tenu  : le gel est  un peu plus opaque et un peu plus solide.

9. Et si l'on porte maintenant la température à 68 degrés, alors c'est un troisième gel qui s'ajoute et le blanc devient un peu plus ferme et un peu plus blanc.

10. Et ainsi de suite jusqu'à 100 degrés où l'on a un empilement de réseaux qui fait le blanc que l'on reconnaît comme être caoutchouteux dans les oeufs durs.

11. Il faut ajouter que tout cela se fait "immédiatement" : dès qu'une température de coagulation est atteinte, la coagulation se fait. Et une fois une coagulation faite, elle ne bouge plus. Autrement dit, si l'on a porté l'oeuf à une certaine température, on peut le refroidir et le réchauffer sans avoir de changement... tant que la température ne dépasse pas celle qui avait été atteinte.

jeudi 18 mars 2021

Mon invention de l'oeuf parfait ?

 Alors que je reçois ceci  :https://www.europe1.fr/emissions/delice-in-extremiste/loeuf-parfait-4032122

 il faut que j'évoque mon invention de l' "oeuf parfait". 

L'invention de l' œuf parfait ? Je vois encore le jour où je l'ai faite :  c'était dans mon laboratoire au Collège de France et je discutais au téléphone avec un ami à qui j'expliquais mon expérience de décuisson des oeufs. Lui parlant, j'évoquais le fait que les oeux durs cuits plus de dix minutes sont caoutchoutexu. Je lui disais donc, dans mon quasi soliloque, que la théorie ancienne de la coagulation était insuffisante... parce que les théories scientifiques sont toujours insuffisantes par principe.

J'imaginais alors, dans mon discours, ce schéma où l'on voyait les protéines coaguler les unes à la suite des autres, ce qui correspondait à des réseaux de protéines de plus en plus nombreux, donc à une consistance de plus en plus ferme.
Et je lui disais, que, sans avoir fait l'expérience, j'étais quasi certain que si cuisait un œuf à 65 degrés, alors on devrait obtenir un œuf très tendre.

Le lendemain, je reprenais cette analyse et je cherchais dans les  bibliographies les températures de coagulation, confirmant que c'était à 65 degrés que l'on devrait avoir un bon résultat.

Mais je croisais cette analyse avec celle d'un très mauvais oeuf dur :  un blanc caoutchouteux, une odeur de soufre, un jaune sableux, et cetera.

A contrario, cette analyse du pire permettait de viser le meilleur. Et c'est ainsi que j'ai donné le nom de parfait pour l'oeuf à  65 degrés.

Ultérieurement, j'ai bien vu que l'on obtient des résultats différents à des températures différentes, et mieux, j'ai observé que j'aime beaucoup l'oeuf à  67 degrés, qui n'a pas démérité par rapport à l'oeuf à 65 degrés.

Hélas, j'avais déjà fait le mal puisque mon expression "œuf parfait" avait été diffusée, notamment quand j'avais fait une conférence à la Cité des sciences.

L'expression a été retenue,  et j'ai pourtant essayé d'introduire l'expression œuf à 6X degrés, mais rien n'y a fait : aujourd'hui encore on parle d'eux parfait.


vendredi 17 avril 2020

Un priestley, c'est quoi ?

Depuis quelques jours, la culinosphère bruit d'un terme mystérieux "priestley", depuis que mon ami Pierre Gagnaire en a parlé sur Top Chef.

De quoi s'agit-il : qu'est-ce qu'un priestley ? C'est une de mes inventions, qui date d'avant 2008.

Tout d'abord,  expliquons le nom : Joseph Priestley (1733 - 1804) était un chimiste et théologien anglais qui isola de nombreux gaz, tel l’oxygène. Il fut ainsi un des pionniers de la « chimie pneumatique », et fut élu à la Royal Society en 1772, l'année où il publia ses Observations sur différentes espèces d'air. Au moyen d'une cuve à mercure, Priestley isola des gaz, comme l'ammoniac, l'oxyde d'azote, le dioxyde de soufre et le monoxyde de carbone.
C'est en 1774 qu'il produisit pour la première fois de l'oxygène et comprit également son rôle dans la combustion, ainsi que dans la respiration des végétaux (1775). Cependant, partisan de la théorie erronée du phlogistique, il nomma ce nouveau gaz l'air déphlogistiqué et ne comprit l'importance de sa découverte.

Pourquoi avoir donné ce nom ? Parce que j'avais inventé une sorte de généralisation des crèmes anglaise : or Priestley était anglais.

Pour comprendre ce qu'est un priestley, partons de la crème anglaise. C'est une sauce un peu épaisse que l'on obtient classiquement en battant du jaune d’œuf avec du sucre, jusqu’à ce que la préparation prenne une consistance lisse, plus blanche : on dit que la préparation doit « faire le ruban ». Puis on ajoute du lait et toutes sortes de produits qui contribuent au goût de la préparation, et l’on cuit, en faisant des huit au fond de la casserole jusqu’à ce que la crème épaississe.
Longtemps, la crème anglaise a été fautivement décrite comme une émulsion chaude… alors qu’il s’agit d’une « suspension ».  Suspension ? C’est le nom que les physico-chimistes donnent à des systèmes physiques faits d’une phase liquide, où sont dispersés des solides de très petites tailles, ce que l’on nommait naguère des dispersions « colloïdales » (de kolla, la colle). Bref, ce sont nombre de pâtes, par exemple, mais aussi des systèmes plus fluides, comme la classique crème anglaise. Parce que l’œuf coagule quand on le chauffe : la raison pour laquelle la crème « prend », c’est précisément que l’œuf coagule, et l’on voit d’ailleurs, au microscope, une myriade de petits agrégats solides, dans le liquide. Autrement dit, une crème anglaise réussie est pleine de grumeaux microscopiques. Le grumeau n’est dérangeant que lorsqu’il est perceptible.

De la crème anglaise aux priestleys

Que faire de cette connaissance ? De nouveaux mets, bien sûr. Pour faire une crème anglaise, il faut de l’œuf (le sucre est là pour donner une consistance sucrée, mais guère plus) et du liquide (le lait, classiquement, mais tout autre liquide convient.
Des protéines ? Les viandes en sont plein ! Les poissons aussi. Apprenons à broyer finement ces tissus musculaires, et nous récupérerons des protéines en solution. Plus exactement, la quantité de protéines récupérables dans un tissu musculaire broyé sera six à huit fois plus concentrée que dans un blanc ou que dans un jaune d’œuf. A cette chair broyée, ajoutons un liquide : celui que l'on veut convient, en salé ou en sucré. Puis un peu de matière grasse que l'on émulsionne pour retrouver celle de la crème anglaise, qu’elle soit apportée par l’œuf ou par le lait. Puis chauffons, doucement : les protéines coaguleront et la crème prendra.

C'est cela, mon invention que j'ai nommée "priestley", et que Pierre Gagnaire a été le premier à servir en cuisine, puisque je lui donne mes inventions en priorité.

samedi 6 avril 2019

A propos de chocolat Chantilly



J'ai inventé le chocolat Chantilly en 1995, et il est maintenant partout. De nombreux étudiants s'y intéressent, et certains ont plus de formation scientifique que d'autres. Aujourd'hui, avec le message que je reçois, je ne suis pas certain de la représentation mentale que s'est fait mon interlocuteur, de sorte que j'utilise sa question pour donner des explications.

Pour le chocolat chantilly, vous écrivez la courbe de fusion du chocolat est assez raide, pouvez vous me donner des explications ...les AG saturés solidifient entre 20 et 50 degrés. si je regarde la courbe du beurre. Comment cela intervient-il sur les bulles d'air ?

Commençons par décrire la production du  chocolat chantilly. On part d'eau (ou d'une solution aqueuse qui peut avoir du goût, tels le thé, le café, le jus de fruits, etc., mais qui reste essentiellement composée d'eau. On y chauffe du chocolat : cette matière, qui est principalement faite de graisse et de sucre, s'émulsionne, car le chauffage fond la matière grasse, qui vient former des gouttelettes qui se dispersent dans l'eau, tandis que les petits cristaux de sucre libérés par la fonte des graisses viennent se dissoudre dans l'eau ; le chocolat contenant également des particules végétales, ces dernières sont également libérées, et viennent se disperser dans l'eau.
# Quand cette émulsion est obtenue, on pose la casserole sur de la glace ou de l'eau froide (pour aller plus vite), et l'on fouette : le fouet introduit des bulles d'air, ce qui produit une émulsion foisonnée. Toutefois, vient le moment où la matière grasse cristallise ("fige"), ce qui augmente la viscosité de l'émulsion, et piège durablement les bulles d'air. La mousse obtenue est le chocolat Chantilly.

Que cela signifie-t-il que "la courbe de fusion du chocolat est assez raide" ? 

Cela signifie que si l'on regarde la quantité de liquide dans du chocolat, on voit que, tant que la température est inférieure à 30 degrés environ, presque toute la matière grasse  est à l'état solide ; puis quand on augmente la température de quelques degrés seulement (vers 37 °C), alors toute la matière grasse du chocolat devient liquide. Ce comportement diffère de celui du beurre, dont la matière commence à fondre dès - 10 °C, et dont la fusion s'achève vers 55 °C. En pratique, cela signifie que, pendant que l'on prépare le chocolat Chantilly, rien ne se passe au début du battage, mais tout d'un coup, on voit la préparation blanchir, en même temps que sa consistance change. Avec du beurre Chantilly, au contraire, on aurait plus de temps pour poursuivre le battage, et la transformation serait plus progressive.

Comment cela intervient-il sur les bulles d'air ? 

Je crois que c'est clair : des bulles dans un liquide remontent vers la surface, sont donc peu stables, alors que, dans une matrice solide, ces bulles sont piégées.

lundi 18 février 2019

Création créativité invention innovation

Il y a des 'intellectuels de pacotille qui mélangent tout et notamment ces mots qui font florès dans l'industrie : création, créativité invention, innovation.

Pourtant il suffit presque d'écouter les mots pour comprendre qu'ils ne désignent pas la même chose !

La création, c'est... la création, à savoir l'acte de produire quelque chose.
La créativité c'est la capacité de produire quelque chose et, plus exactement, de produire plusieurs choses.
L'invention, c'est le fait d'inventer ou encore l'objet inventé lui-même, mais dans l'acception que je retiens ici, c'est donc cetacte qui consiste à produire quelque chose de nouveau.
Et la capacité de produire des inventions, c'est l'inventivité.
L'innovation, c'est, en dépit de tous les débats qui ont eu lieu, souvent avec des acceptions idiosyncratiques retenues par chacun des protagonistes, la mise en œuvre des inventions.

 On le voit, tout cela est bien différent et il suffit donc en réalité d'écouter les mots pour comprendre ce dont on parle. On comprend en particulier que, si l'objectif est clair, alors le chemin qui peut mener l'est aussi.

Par exemple, pour la création, il suffit de créer,  c'est-à-dire en gros de travailler.

Pour la créativité, il y a là une autre question, puisque il s'agit de trouver une  méthode pour arriver à des créations, et sous-entendu avec réactions différentes. D'ailleurs j'ai dit "une méthode", mais, en réalité, pourquoi n'y en aurait-il pas plusieurs ? La première des choses à faire semble donc de colliger ces méthodes avant d'apprendre à les mettre en œuvre. Il y a donc là beaucoup de travail ce qui nous ramène à peu près au cas précédent. En tout cas,  je ne crois pas aux langues de feu qui tombent du ciel et nous confèrent des "dons". Le travail, vous dis-je.

Pour l'invention, il y a encore beaucoup de façons de faire, et j'ai écris dans un de mes livres comment des typologies, des formalismes, permettent d'y parvenir. Je ne veux pas répéter ici ce qui a fait l'objet de cet ouvrage, mais qu'il me suffise de dire que ces méthodes sont parallèles, et parfois convergentes, mais pas toujours. Je vous  invite à les découvrir    :
 




Enfin l'innovation est un mot très débattu, avec des chapelles qui s'étripent, et je propose que l'on évite les formules à l'emporte-pièce comme celle qui consiste à dire que l'innovation est une invention qui réussit. En réalité l'innovation, c'est la mise en œuvre de l'invention. On comprend alors pourquoi le sens à glisser vers la réussite, mais je propose de rester à cette dernière acception, plus juste.

samedi 19 janvier 2019

A propos de mousses et de cuisson

Aujourd'hui, deux questions que je n'avais jamais eues, de sorte que je réponds sans attendre :

1. J'ai lu que vous aviez fait l’expérience des blancs en neige avec la pompe à vélo, mais pourquoi ? Le batteur est plus pratique


Oui, il y a environ 40 ans (déjà !), je m'étais interrogé sur la production des blancs en neige, et j'avais compris qu'il s'agissait de simples mousses, avec des bulles d'air dans un liquide fait de 90 pour cent d'eau et de 10 pour cent de protéines. Pour montrer que le fouet n'était rien qu'une des milles possibilités d'obtenir une telle mousse, j'avais utilisé une pompe à vélo... mais n'oubliez quand même pas que j'ai une forte tendance à la "rigolade sérieuse".

Bref, dans la foulée, j'avais montré qu'une pompe d'aquarium soufflant de l'air dans les blancs faisait des mousses aux bulles bien plus grosse que pour du blanc d'oeuf. Et, surtout, j'avais proposé de faire mousser des mélanges variés : pensons par exemple à du jus de framboise additionné de protéines.

Là, c'était plus pratique que la pompe à vélo, parce que l'on appuie sur un bouton, et tout se fait automatiquement. Mais il ne s'agissait que de deux exemples, et j'avais montré également l'utilisation de siphons... qui sont aujourd'hui partout en vente dans les grandes surfaces, et là, c'est bien plus pratique de fouetter au fouet !

J'ajoute que l'histoire n'est pas finie : je n'aime pas beaucoup les siphons actuels, parce que les recharges sont un peu du gaspillage... et aussi que des jeunes se droguent au protoxyde d'azote qui est dedans. Je préfère des compresseurs qui font le même travail, avec de l'air.


2. Je ne doute pas que la cuisson au lave vaisselle soit intéressante, mais pourquoi pas à la vapeur directement ?

Je vois que mon interlocutrice ne connait pas la "cuisson à basse température", qui est un progrès considérable pour l'économie familiale ! Transformer des viandes dures, qui coûtent 4 euros le kilogramme, en viandes fondantes, telles qu'on les paierait plus de 20 euros, c'est quand même quelque chose d'essentiel !
Sans compter que le résultat est constant, que le bouillon a beaucoup de goût... et que l'on perd moins de masse à la cuisson. Imaginez un rôti de un kilogramme : si vous le cuisez à 180 degrés ou même à 100 degrés, il perd entre 20 et 30 pour cent de sa masse : en pratique, on achète un kilogramme, et l'on ne sert que 700 grammes ! En revanche, à basse température, la perte est très faible.  Mais, surtout, avec oeufs, poissons, volaille, le résultat est absolument merveilleux. Et c'est plus facile à régler qu'à la vapeur (laquelle, d'ailleurs ?).
Mais, ayant expliqué l'intérêt de la cuisson à basse température, il faut en venir au lave-vaisselle : cette fois, c'est de l'économie sur l'énergie dépensée pour la cuisson, puisque les aliments (protégés dans des plastiques de qualité "alimentaire") cuisent sans utiliser d'autre énergie que celle qui serait déjà dépensée pour faire la vaisselle !
Cela dit, il y a mille façons de faire, mais, j'y repense, pourquoi un attachement particulier à la vapeur ? Et nous pourrions-nous pas penser à encore d'autres méthodes encore plus modernes ? D'ailleurs, pour la "cuisine note à note", comment cuire au mieux ?

A noter que les questions technologiques et techniques sont notamment abordées dans

samedi 1 septembre 2018

De l'eau dans le beurre

Je raconte là des choses très anciennes, puisqu'elles figurent même dans les Ateliers expérimentaux du goût, introduits dans l'Education nationale par le Ministre d'alors, en 2001. Et les expériences correspondantes datent sans doute des années 1992-1993. On trouvera des répercussions de tout cela dans des travaux proposés à Pierre Gagnaire, qu'il s'agisse de pâte feuilletée ou de ce que j'ai introduit sous le nom de beurre chantilly
Mais répétons-nous pour que tous aient facilement les informations. La question, c'est celle de l'eau et du beurre. Mais présentons les protagonistes.


Le beurre

Le beurre, c'est du beurre, et l'on comprend mieux sa constitution quand on part du lait. Le lait, c'est de l'eau avec, dedans, des composés variés dissous, et des gouttes de matière grasse dispersées. C'est donc une "émulsion".
Comme la matière grasse est moins dense que l'eau et, a fortiori, que l'eau où sont dissous des composés (on parle de "solution aqueuse"), les gouttelettes de matière grasse montent s'accumuler en surface quand le lait repose. Et c'est ainsi que la crème est une émulsion, comme le lait, mais plus concentrée en gouttelettes de matière grasse.
Si l'on bat la crème, alors les gouttelettes de matière grasse fusionnent, formant un réseau de graisse dans lequel l'eau et ses composés dissous reste un peu dispersée : c'est le beurre, dont la formation s'accompagne de la libération d'une partie de l'eau, et cette partie  aqueuse qui n'est pas dans le beurre est le babeurre.
Une précision pour terminer  : selon la loi, qui veut éviter que des fabricants ne vendent pour du beurre qu'une matière contenant trop peu de matière grasse, le beurre ne peut pas contenir plus de 18 pour cent d'eau (environ un cinquième, donc)...  mais je dis cela pour vous laisser pressentir la suite.


L'"eau"

Bien sûr, l'eau, c'est l'eau : une matière dont toutes les molécules sont identiques, dont toutes les molécules sont faites d'un atome d'oxygène et de deux atomes d'hydrogène. L'eau est liquide, parce que les molécules bougent en tous sens, comme des billes agitées, et l'on comprend que si l'on incline le récipient, les billes qui bougent puissent passer par dessus le bord. Enfin l'eau à la température ambiante est inodore, insipide, incolore, et bien sûr liquide, donc.
Les solutions aqueuses sont de l'eau où d'autres composés sont dissous. Par exemple, si l'on dissout du sel dans l'eau, ou du sucre, on obtient respectivement des solutions salées ou sucrées. Mais il y a d'infinies façons de faire des solutions aqueuses, et c'est ainsi que le vin, le thé, le café, les infusions, les bouillons (de viande, de légumes), les jus de fruits, les fumets, les essences, et jusqu'aux glaces et demi glaces sont des solutions aqueuses. Plus ou moins concentrées, mais toujours des solutions aqueuses.


Et les deux ensemble

Partons maintenant de beurre, et battons-le en ajoutant une solution aqueuse, tel du café : on voit le café s'intégrer au beurre... et voilà pourquoi j'évoquais la législation. Lors de la production, on peut mettre dans le beurre bien plus que 18 pour cent d'eau ou de solutions aqueuses. Combien ? Je suis allé jusqu'à plus de deux fois la masse de beurre en solution aqueuse intégrée progressivement, en battant.
Bien sûr, la matière produite est bien plus molle, mais elle a l'avantage que l'on peut lui donner beaucoup de goût. Je vous recommande l'ajout de jus de citron, d'orange, une infusion de verveine, du persil broyé avec de l'ail... Et, en version sucrée, du jus d'abricot, de framboise, etc.

Mais il y a une autre façon de faire, à savoir de partir du beurre, de produire du beurre clarifié, sans eau, donc.
Partons du beurre clarifié, que nous ajoutons à un liquide, en chauffant : par exemple, nous avons un bouillon concentré, et nous ajoutons le beurre clarifié en fouettant comme pour une mayonnaise. On obtient une émulsion, préparation qui a la consistance d'une mayonnaise, et qui est faite de gouttelettes d'eau dispersées dans du beurre.
Mais on peut aussi partir du beurre clarifié refroidi, où l 'on ajoute l'"eau" en battant comme pour la "crème au beurre" précédente. Et on a cette fois un système physique différent. On dit que l'on a dans le premier cas une émulsion de type huile dans eau, et dans le second une émulsion de type eau dans l'huile.
Une précision utile : ici, puisqu'il est question d'émulsion, il n'y a pas de bulle d'air, pas de mousse, pas de foisonnement. Je répète qu'une émulsion, c'est le lait, la crème, la mayonnaise... alors que la mousse, c'est... la mousse, à savoir des bulles d'air dispersées dans une matière, liquide ou solide. Et pas de place pour de prétendues "espumas" : les mousses se nomment des mousses, en français.

 Pour terminer

 Oui, pas d'air dans les émulsions... mais on peut faire des émulsions foisonnées, et c'est ainsi que je vous propose mon "beurre chantilly". Ce n'est pas de la crème chantilly avec du beurre, non. C'est une préparation qui a la consistance d'une chantilly, et que l'on obtient de la façon suivante :
 - on part d'une solution aqueuse, dans une casserole (parfois, il faut avoir dissous de la gélatine)
- on ajoute du beurre en chauffant et en fouettant
 - on pose la casserole sur des glaçons ou dans de l'eau froide et l'on fouette pour foisonner, comme pour une chantilly
Et hop, on obtient une préparation comme une chantilly, mais au goût de la solution aqueuse : par exemple, du jus de citron, d'orange, etc.
C'est cela, le beurre chantilly, que j'ai inventé vers 1995. 





jeudi 8 février 2018

Pourquoi Gibbs ?

Il y a déjà très longtemps, j'avais proposé une recette de "gibbs", une préparation que l'on obtient en fouettant de l'huile dans du blanc d'oeuf, afin de former une émulsion que j'ai nommée un "geoffroy", puis en chauffant cette émulsion au four à micro-ondes : en quelques secondes à dizaines de secondes, selon la puissance du four, on obtient un soufflé.

Pour le goût, il est évident qu'on aura assaisonné le blanc d'oeuf, et, de même, que l'on aura donné du goût à l'huile. Par exemple, on pourra avoir ajouté du sucre, une pincée de sel, un colorant, et l'huile pourra être une belle huile d'olive où l'on aura macéré de la vanille ou du café.  Et cette recette est encore plus facile à faire en version "note à note" : on part d'eau, on dissout divers composés, on ajoute des protéines thermocoagulables (par exemple, de la poudre de blanc d'oeuf), puis on termine la recette comme indiqué précédemment.

Le mécanisme physico-chimique ? D'abord les protéines stabilisent (relativement, toujours relativement, pour les émulsions) les gouttes d'huile dans la phase aqueuse, en se "dénaturant" : leurs parties hydrophobes viennent au contact de l'huile, et les parties hydrophiles restent dans la phase aqueuse. Puis la cuisson permet que les protéines "coagulent", qu'elles se lient par des liaisons disulfure, ce qui forme une matrice solide où l'émulsion est piégée : c'est cela, le gibbs, à savoir une émulsion gélifiée chimiquement.

Pourquoi le nom de Josiah Willard Gibbs ? 

Je l'ai donné quand j'ai commencé à donner des noms de chimistes ou de physiciens à des préparations que j'inventais : le personnage a été si important pour la physico-chimie qu'il fallait absolument qu'il ait un plat à son nom, mais il est vrai que l'attribution de son nom à ce plat particulier est un peu arbitraire. Non pas qu'elle soit usurpée : par exemple, Gibbs a effectivement publié un texte intitulé On the equilibrium of heterogeneous substances, dans les Transactions of the Connecticut Academy of Art and Sciences (vol 3, New Haven, 1874). Or l'émulsion nommée "geoffroy" prend de la stabilité (évolue vers l'équilibre, donc) quand elle est chauffée, formant manifestement un système hétérogène.

Et c'est ainsi que la chimie est belle !











Vient de paraître aux Editions de la Nuée Bleue : Le terroir à toutes les sauces (un traité de la jovialité sous forme de roman, agrémenté de recettes de cuisine et de réflexions sur ce bonheur que nous construit la cuisine)   

mardi 6 février 2018

Mes inventions mensuelles

Je m'y perdais avec mes inventions données chaque mois (depuis 17 ans) à mon ami Pierre Gagnaire.

J'ai donc récapitulé ici celles qui ont des noms de chimistes (plus quelques unes qui sont souvent confondues) :



avogadro : royale dont on change le liquide
baumés : œuf stocké dans un alcool
berzélius : crème anglaise où l'on remplace le jaune d'oeuf par des protéines
chantillys : généralisation de la crème fouettée
braconnot : confiture à froid ou tomate mixée
cailletets : glace à l'azote liquide
caventous : vert de légume vertueux
chaptals : mousse de blanc d'oeuf foisonnée à l'extrême
chevreul : avec contraste simultané des goûts
cristaux de vent : chaptal cuit en meringue
debye : suspensions de microgels (dans O ou W)
degennes : perles d'alginate à coeur liquide
descartes : garniture de grosse pièce composée de cailles aux truffes à la sauce allemande, et servie dans des croustades
dirac : steak de protéines
faraday : ((G+S1+H) / E) / S2
ficks : petites boules de liquide dans une pâte à nouilles
fischers : gel d'un liquide additionné de caséines
florys : spaghetti gélifiés en tuyau
gauss : généralisation des millefeuilles
gay lussac : velouté foisonné
geoffroy : émulsion de blanc d'oeuf
gerhardts : systèmes feuilletés généralisant les pâtes feuilletées
gibbs : émulsion gélifiée chimiquement
grahams : des gibbs séchés
kesselmeyer : farine, eau, matière grasse, travailler, levure, travailler, fermentation, cuisson à la vapeur comme un Dampfnudeln
laplace : comme une omelette souflée, mais eau et protéines
lavoisier : royales extrèmes
lechatelier : végétal artificiel fait d'un matériau gélifié divisé, puis solidarisé avec un gélifiant
liebig : émulsion gélifiée physiquement
maillards : demi glaces de légumes
mendeleiv : infusions généralisées (huile, alcool…)
nollet : salade artificielle
onnes : flocons givrés
paré : émulsion dans une chair broyée
parmentier : avec farine sans gluten plus gluten de blé
pasteur : avec acide tartrique
peligot : caramels de glucose, fructose, etc
poiseuilles : les fibrés
pravaz : avec intrasauce
priestley : crème anglaise de viande ou poisson
quesnay : gougères ou choux dont l'oeuf a été remplacé par des protéines
thenard : coction à l'alcool
vauquelin : appareil de cristal de vent (chaptal) cruit aux micro-ondes
wöhler : sauce aux polyphénols
würtz : eau gélatine foisonnée

Une émulsion sucrée

Ce matin, une question :


"Je vous écris au sujet d’une question concernant une émulsion H/E  (huile dans l’eau) dont la phase continue est partiellement sucrée.

Dans le cas d’une préparation contenant 70% d’huile, 30% d’eau, 10% de saccharose, et d’un tensioactif  est-ce que le l’huile va s’émulsionner avec les 30% d’eau ou  avec 20% à 25% d’eau  puisque le saccharose est reconnu pour retenir une partie de l’eau (retenir je ne sais pas si c’est le meilleur terme pour traduire le côté hygroscopique du saccharose)".

Ma réponse n'est au fond qu'une sorte de légende du schéma suivant :



Ce que j'ai d'abord représenté, c'est une émulsion de type huile (en jaune) dans eau (en bleu). En  pratique, faisons un "geoffroy", en fouettant de l'huile dans du blanc d'oeuf, par exemple : les protéines et les autres molécules sont  trop petites pour être représentées à cette échelle, où la taille des gouttes d'huile est entre 0,001 et 0,1 millimètres. 
Le schéma inférieur représente un fort grossissement du petit cercle : 
- le fond est noir, parce que, entre les molécules, il n'y a rien, du vide
- à gauche, les peignes à trois dents sont les molécules de triglycérides ; pour mieux faire, j'aurais dû les orienter dans toutes les directions, mais c'est un détail
- à droite, on voit les molécules de saccharose (en bleu) dispersées au milieu des molécules d'eau (une boule rouge avec deux boules blanches)
- je n'ai pas réprésenté les molécules de tensioactifs, mais elles seraient sur le trait jaune, sous la forme de "cheveux" (pour les protéines).

Reste à commenter  le : "le saccharose est reconnu pour retenir une partie de l'eau".  Cette phrase est à la fois discutable et peu claire.
Le "est reconnu" invite à demander  : par qui ? Et à rappeler que, en sciences, l'argument d'autorité ne joue pas. Les faits expérimentaux ont toujours raison.
D'autre part, le saccharose "retient" l'eau : que cela signifie-t-il ?
Ce qui est un fait, c'est que les molécules de saccharose sont "hérissées" (ce n'est pas représenté sur mon schéma) de groupes "hydroxyle", avec les atomes carbone du squelette liés à un atome d'oxygène lui-même lié à un atome d'hydrogène. Cela  donne au  saccharose une structure chimique très semblable à celle des molécules d'eau, au moins pour ce qui concerne les interactions avec les molécules voisines.
De ce fait, quand le sucre est dans l'air humide, il s'entoure de molécules d'eau de l'atmosphère, parce que les forces sont donc notables entre les molécules de saccharose et les molécules d'eau.
Dans de l'eau  liquide, les forces (nommées "liaisons hydrogène") permettent la solubilisation du sucre dans l'eau, à des concentrations considérables.
Finalement, on pourrait tout aussi bien dire que l'eau "retient" le sucre, ou que le sucre "retient" l'eau, mais je crois que le  mot "retient" est mal choisi. Il suffit de dire qu'il y a des liaisons entre les molécules de sucre et les molécules d'eau.

Et, finalement, je reviens à l'expérience : si vous faites un geoffroy, en fouettant de l'huile dans du blanc d'oeuf, vous pouvez ajouter autant de sucre que vous voulez jusqu'à atteindre la limite de solubilité dans la petite quantité d'eau (30 grammes pour un blanc environ) du blanc. Si l'on compte un litre de sucre par kilogramme d'eau, on voit qu'on peut facilement mettre 30 grammes de sucre pour un blanc émulsionné (soit un volume d'huile maximal de 600 grammes d'huile environ). Si l'on ajoute plus  de sucre, ce dernier restera sous la forme de cristaux non dissous. 







Vient de paraître aux Editions de la Nuée Bleue : Le terroir à toutes les sauces (un traité de la jovialité sous forme de roman, agrémenté de recettes de cuisine et de réflexions sur ce bonheur que nous construit la cuisine)

jeudi 1 février 2018

Inventer ? Rien de plus facile... à condition de soliloquer

La question de la créativité ou de l'innovation est lancinante, mais je m'en suis largement expliqué dans mon livre Cours de gastronomie moléculaire N°1 : Science, technologie, technique (culinaires) : quelles relations ? (Quae/Belin)  : ce livre est un manuel pratique d'innovation, en ceci qu'il introduit une méthode quasi automatique pour y parvenir.
Plus généralement, les "méthodes" sont des méthodes qui nous portent : il nous suffit de les mettre en oeuvre. Et voilà pourquoi, pour les étudiants, je propose que les parties "Informations" des cours soient sans intérêt, alors que les notions, concepts, méthodes sont les outils qu'ils doivent apprendre à utiliser. 

En science, aussi, cette question de la "créativité" est sans cesse discutée, et de très nombreux collègues ont souvent évoqué devant moi la difficulté d'avoir des questions de recherche, à moi qui, hélas, en déborde, au point que je propose de penser que le principal problème  n'est pas de trouver une question de recherche, mais plutôt de savoir sélectionner (voir des billets précédents, notamment à propos de bonnes pratiques en sciences de la nature, et tout particulièrement à propos de la première étape du travail) quelle question de recherche a un potentiel suffisant pour conduire à la découverte.

Et en cuisine ? Il y a un étrange paradoxe, à savoir que les cuisiniers suivent les recettes... alors que ces dernières sont bien impossibles à suivre, comme je l'avais largement montré dans mon livre Révélations gastronomiques (Belin) : les quantités font tout, mais impossible de décrire la quantité de cannelle, tant cette dernière est "concentrée" ; impossible de décrire même la quantité de farine, puisque ces dernières absorbent l'eau très différemment selon leur teneur exacte en "gluten", par exemple ; impossible de prescrire un goût, quand une asperge de début de saison ne ressemble pas à une asperge de fin de saison, quand la qualité des produits est si essentielle et si variable. De cette variabilité résulte souvent l'échec des recettes. 



Pour en revenir à la créativité, je propose aujourd'hui de partir d'une déclaration qui m'a été "offerte" par quelqu'un que j'invitais à participer au Septième Concours international de cuisine note à note :

"En cuisine je ne sais pas inventer. J'ai besoin d'avoir une recette toute faite que je suis à la lettre. Je ne m'y connais pas assez pour me permettre d'inventer."

Merveilleuse déclaration, qui me conduit aussitôt à inviter tous mes amis à lire ou à relire l'extraordinaire Thééthète de Platon (je n'en dis pas plus : ce qui ont lu le dialogue savent ce qu'il y a dedans, en substance, et les autres auront le plaisir de le découvrir). 

Repartons de l'observation : "En cuisine, je ne sais pas inventer". J'ai bien peur que cette déclaration ressemble à l'observation que je me faisais alors que je finissais mes études de chimie physique, et que je me disais : "Nos prédécesseurs ont découvert la relativité générale, la mécanique quantique... Que nous reste-t-il à faire ?
Dans un billet précédent, j'ai bien expliqué que chaque déclaration théorique peut être réfutée, de sorte que la science n'aura jamais de fin, et que les questions scientifiques fourmillent, de sorte que mon sentiment de fin d'études était tout à fait déplacé, et faisait surtout état de mon insuffisance épistémologique (mais, aussi, de celle de mes enseignants, puisque nous étions quasiment toute la promotion à partager mon sentiment).
Oui, si, étudiant, nous avons le sentiment de ne pas savoir "inventer", c'est bien que nos études ne nous ont pas donné le sentiment que, au contraire, nous avons tout en main pour le faire. Et voilà aussi pourquoi les TPE et le TIPE sont d'essentiels outils pédagogiques, qui doivent contribuer à éviter aux étudiants d'avoir ce sentiment. 

Bref,  en cuisine, comment inventer ? La question est vaste, et je propose de ne pas traiter la question de deux façons : 

- d'abord, en partant d'un lot d'ingrédients classiques

- ensuite, en partant des composés donnés aux concurrants du Concours de cuisine note à note. 



A partir d'ingrédients classique, nous pourrions nous donner de la viande de boeuf et des carottes. Qu'en faire ? De la viande de boeuf peut être divisée et servie crue (pas besoin de connaissances particulières pour savoir que les tartares existent) ou être cuite entière ou divisée. Cuite ? Elle peut être  bouillie, pochée, sautée, braisée, rôtie...
Tout dépend en réalité de quelle viande il s'agit : tendre (à griller, donc) ou dure (à braiser) ?
Pour les carottes, même question, mêmes réponses. Puis se pose la question de savoir si nous voulons cuire ensemble carottes et viande, ou si nous préférons les cuire séparément et les réunir ensuite. Les deux options sont possibles, mais on comprend que la cuisson simultanée est plus "paresseuse", ou "économe", selon le point de vue. Reste la question de savoir quels autres ingrédients ajouter... si nous en avons l'envie. Du  sel, poivre, bouquet garni ? Cela est presque un catéchisme, mais, au fond, pourquoi ?

Je propose plutôt de penser que tout est possible et que seul notre goût compte ! Le sel est effectivement utile, sensoriellement, parce qu'il interagit avec les autres récepteurs de la saveur, rehausse les sucrés (dans la carotte, il y a les trois sucres glucose, fructose, saccharose) et affaiblit les éventuelles amertumes, mais aussi parce qu'il conduit au relargage plus intense des composés odorants, de sorte que les plats prennent du "goût".
Le poivre ? Il a sa raison d'être, notamment parce qu'il stimule les récepteurs trigéminaux (les piquants, les frais), et le cuisinier alsacien dit bien que, pour un plat, il faut une partie de violence, trois parties de force, neuf parties de douceur.
Le poivre apporte de la violence, et l'on devra sans doute recourir à un brunissement des viandes ou des carottes pour faire de la force, si l'on n'ajoute pas d'autres ingrédients.
Mais au fait, pourquoi ne pas ajouter, ail, oignons, échalotes, poireaux, etc.? Aucune loi ne nous l'interdit.
D'ailleurs, aucune loi n'interdit d'ajouter du sucre dans le plat qui semble condamné à être salé... alors que nous pourrions faire un dessert. Oui, un dessert avec de la viande...

Pour "inventer", pour être créatif, on voit donc une règle : ne jamais supporter les règles, et les utiliser, même, pour les prendre à rebours. 

Dépassons le cas particulier de la viande de boeuf et des carottes. Plus généralement, soit des ingrédients I1, I2... In ; qu'en faire ? Chaque ingrédient peut être divisé et transformé individuellement. Ce qui conduirait à des Ii,1, Ii,2... Ii,k, et donc à des assemblages de la forme I1,α, I2,β... In,ξ.
Les transformations ? Nous les avons évoquées. Les ingrédients ? Soit nous regardons ce que nous avons dans le réfrigérateur et le garde manger, soit nous allons au marché, et nous établissons une liste.  Ce n'est pas le choix qui manque, bien au contraire : c'est l'abondance, l'excès de choix. Il nous faut un critère pour choisir, et tout critère convient, entre le lancer de dé, ou l'analyse physiologique, ou l'analyse de modes...



Passons maintenant aux ingrédients de la cuisine note à note, en restant sur les ingrédients dont disposaient les concurrents du Troisième Concours international de cuisine note à note.
Il y avait des protéines, des polyphénols, de l'octénol. Les protéines ? Elles coagulent quand elles sont chauffées en présence d'eau, mais on sait que  leur pyrolyse conduit à des goûts puissants. Les polyphénols ? Ajoutés à de l'eau, on dirait un début de sauce au vin. L'octénol ? Un puissant goût de sous-bois, de champignons.
Je ne sais pas pourquoi, mais cela me fait penser à de la viande avec une sauce au vin et des champignons.
Par exemple, grillons quelques protéines pour  leur donner un goût de viande grillée. Puis ajoutons ces protéines pyrolysées à des protéines non transformées et à de l'eau, à  raison de 50  pour cent de chaque ingrédient, histoire de faire comme dans les viande. Faisons une galette épaisse que nous salons, poivrons, et cuisons pour faire coaguler.
Nous obtenons une  galette qui a la consistance d'une viande. Divisons en cubes, puis mettons ces cubes dans une "sauce" faite d'eau, de polyphénols, d'un peu d'octénol, de glucose et de saccharose (puisque les végétaux apportent toujours ces sucres), ajoutons des protéines dans la sauce, comme nous le ferions avec du jaune d'oeuf ou avec la gélatine d'un pied de veau, et cuisons en touillant, afin que la coagulation des protéines dissoutes épaissise la sauce. Ca y est, nous avons un plat. 



La morale de toute cette affaire ? C'est que n'importe qui peut arriver à cette proposition -et à mille autres- avec des connaissances élémentaires, à savoir que les protéines peuvent coaguler, que les végétaux apportent  des saccharides, disons des sucres, que les viandes sont faites d'autant de protéines que d'eau. Rien de difficile. 

Oui, ce qui manque, c'est donc  la méthode, et je propose que  cette méthode soit le "soliloque"... mais c'est là un point que je devrai évoquer plus tard, dans un autre billet. 







Vient de paraître aux Editions de la Nuée Bleue : Le terroir à toutes les sauces (un traité de la jovialité sous forme de roman, agrémenté de recettes de cuisine et de réflexions sur ce bonheur que nous construit la cuisine)

vendredi 29 décembre 2017

Une idée dans un tiroir n'est pas une idée


On a évidemment compris ce dont il s'agit. Bien sûr, une idée, c'est une idée, mais ce que cette phrase signifie, c'est qu'une idée doit être partagée. 

Pourquoi ? Pour de nombreuses raisons, mais tout d'abord parce que la  présentation de nos idées à nos amis nous oblige à des formulations plus claires… pour nous mêmes et pour les autres.
Cela force à satisfaire des conditions particulières de communication, à éviter les coqs à l'âne, à préparer l'exposition,  à utiliser des mots parfaitement clairs...

Tout cela est en réalité un atout et une garantie. Une garantie que l'idée est  parfaitement valide, car il arrive que l'examen soigneux des idées vagues que nous avons conduit finalement à leur réfutation. Un atout, parce que, alors, les idées sont affinées, prennent plus de force.

En sciences de la nature,  cette phrase « Une idée dans un tiroir n'est pas une idée » fait écho à cette règle que le physico-chimiste  britannique Michael Faraday s'était donnée : Work, finish, publish (travailler, fignoler, publier). Nous  devons effectivement publier les résultats que nous obtenons, qu'ils soient d'ailleurs négatifs  ou positifs. Faire une expérience et obtenir un résultat négatif, c'est d'ailleurs en réalité très positif,  puisque cela nous conduit observer que notre théorie est contredite par les faits.
Ainsi, nous pouvons progresser, chercher en quoi notre théorie est fautive, proposer une théorie améliorée :  tel est  précisément l'objectif des sciences de la nature. Bien sûr, cette réfutation nous conduit à d'autres travaux, et  il faut savoir où s'arrêter pour la  publication, mais quand même, il y a quelque chose de sain dans l'affaire. Et, finalement, ce sera une question de travail que d'arriver à un manuscrit publiable.

Une idée dans un tiroir n'est pas une idée : cela signifie aussi que, dans notre monde, nombre de personnes prétendent avoir beaucoup d'idées, mais ils les montrent peu. 

Je propose de considérer que ces idées cachées n'existent pas.
Il y a notamment, avec l'industrie et son secret industriel, cette incertitude constante à propos de ce qui est su et de ce qui  est ignoré : je déteste cette prétention qui consiste à dire que l'on aurait des idées qu'on n'a pas publiées, et je décide de penser que ces idées n'existent pas.

Je me souviens ainsi d'un épisode amusant : alors que j'avais réussi à « décuire » des œufs, en 1997, un capitaine d'industrie à qui je racontais la chose m'avait dit que cela était connu depuis longtemps de ses services… Mais, deux semaines après, alors que je faisais une conférence où je présentais le résultat, il avait envoyé des ingénieurs pour apprendre comment j'avais fait !  Ce cas n'est pas isolé : je l'ai rencontré souvent, et ma religion est maintenant faite : sauf à voir le fruit d'idées que ces gens prétendent avoir,  je considère qu'ils n'ont pas les idées dont ils ont la prétention.

A l'inverse, on voit parfois des résultats extraordinaires, qui correspondent à des idées qui n'ont pas été présentées. Par exemple,  je me souviens de biscuit d'apéritifs apparemment anodins… qui étaient comme de petits ballons creux.



Des petits ballons ? On peut obtenir de tels soufflement par « cuisson extrusion », avec la brusque détente d'une pâte (farine et eau) que l'on pousse dans un cylindre, à l'aide d'une vis d'Archimède. Mais des ballons percés ? Essayez donc de souffler dans un ballon de baudruche, et vous verrez que c'est très difficile ! Je ne sais absolument pas comment ces biscuits ont été produits, mais je propose d'admirer le tour ce force.

Il y a de nombreuses façons de sortir une idée d'un tiroir, de la publication à la matérialisation, en passant par l'évocation orale, et, tout cela permet  que nos idées ne restent pas dans les tiroirs.






Vient de paraître aux Editions de la Nuée Bleue : Le terroir à toutes les sauces (un traité de la jovialité sous forme de roman, agrémenté de recettes de cuisine et de réflexions sur ce bonheur que nous construit la cuisine) 

jeudi 14 décembre 2017

Une de mes inventions anciennes : les liebig

Une sorte de paradoxe que de faire l'éloge de la technologie le dimanche, alors que la technologie est le métier de l'ingénieur, dont le nom a la même étymologie qu' "engigner" : le diable, raconte-t-on, engigna la mère de Merlin l'enchanteur, en vue de faire un pendant à Jésus Christ, de faire un fils qui perdrait l'humanité (mais un prêtre présent baptisa l'enfant à la naissance, de sorte qu'il perdit sa "malice", ne gardant que des pouvoirs surnaturels.
Vive la technologie ? La technologie permet la réalisation de l'utopie qu'est la science quantitative. D'accord, mais plus précisément ?
La technologie, c'est l'activité  qui cherche à appliquer les sciences quantitatives pour perfectionner les techniques. C'est un métier très particulier, et très extraordinaire puisqu'il transforme des connaissances en objets nouveaux du monde. Ces temps-ci, une partie frileuse du public refuse les avancées technologiques, les innovations techniques (et, même,  frémit à l'idée que la science poursuive son travail). Pourtant ces mêmes frileux utilisent des ordinateurs, des voitures, prennent le train, l'avion,  se brossent les dents avec des dentifrices dont ils ignorent tout de la constitution (pourtant bien perfectionnée par la technologie), portent des lunettes dont les verres sont des chefs-d'œuvre techniques...
Oublions donc ceux-là pour le moment et concentrons-nous sur la technologie. Elle doit être un état d'esprit,  comme je vais essayer de le montrer avec un exemple personnel. Un exemple qui a l'inconvénient d'être personnel (pardon, le moi est haïssable), mais qui, de ce fait, a l'avantage d'être attesté (alors que beaucoup de ce que l'on entend est douteux, de seconde main, etc.).
Cela se passe dans les années 1980 :  ayant compris que les protéines sont d'excellents  tensioactifs, qui permettent donc de faire des émulsions,  je vois une feuille de gélatine sur ma paillasse, au laboratoire. La gélatine ? C'est une matière faite de protéines. Peut-on  donc  faire une émulsion à partir d'eau, de gélatine et d'huile ? L'expérience n'est ni difficile ni longue,  et la réponse est immédiatement donnée : on obtient une émulsion.
Toutefois on n'a pas fait là une grande découverte scientifique, et une saine méthode scientifique doit nous pousser à quantifier les phénomènes, en l'occurrence à caractériser quantitativement l'émulsion. Un microscope fut donc utilisé : apparurent des gouttelettes d'huiles dispersées dans l'eau. Sur de telles images, les molécules de gélatine n'apparaissent pas, évidemment, mais on sait  (pour 1000 raisons chimiques) qu'elles sont soit aux interfaces, soit dissoutes dans l'eau. Où sont-elles ? Il faut passer du temps à cette question, répéter l'expérience, regarder,  regarder encore et... ... soudain, on voit deux gouttelettes d'huile voisines fusionner, puis deux autres, deux autres,  et ainsi de suite, mais contrairement à une coalescence telle qu'il s'en produirait si l'on avait fouetté de l'huile dans l'eau pure, la coalescence particulière des émulsions d'huile dans l'eau stabilisées par de la gélatine cesse de coalescer à partir un certain moment.
Voici l'état final :
2. Mayo gélifiée sans flash
Pourquoi ? Parce que l'émulsion est prise dans un gel physique.
Une émulsion prise dans un gel  physique ? Et si l'on en faisait de la cuisine ? Cela, c'est mon invention des « liebigs » (du nom du chimiste allemand Justus von Liebig, évidemment).
Remplaçons l'eau par un liquide qui a du goût, ajoutons  de la gélatine, ou tout autre composé qui permettra à la fois une émulsification et  une  gélification physique, utilisons de l'huile ou tout  autre corps gras sous forme liquide, et nous pourrons reproduire l'expérience, obtenir une espèce de sauce nommée liebig, un nouveau système, tout comme l'ont été mayonnaise,  crème fouettée,  parmentier, caramel, etc..
Moralité : les liebigs  sont une préparation nouvelle, maintenant bien comprise, fruit d'un transfert technologique. Il résulte de ce moment particulier  où l'on s'est demandé : "et en cuisine, qu'est-ce que cela donnerait ?" Ce moment particulier n'est pas un moment scientifique, mais un moment technologique.
Vive la technologie !




Vient de paraître aux Editions de la Nuée Bleue : Le terroir à toutes les sauces (un traité de la jovialité sous forme de roman, agrémenté de recettes de cuisine et de réflexions sur ce bonheur que nous construit la cuisine)

Une de mes inventions : les gibbs

Dans un précédent billet, nous avons considéré les liebigs, des émulsions gélifiées.
Toutefois, il y a gélification et gélification ; certaines sont réversibles, dites « physiques », tandis que d'autres sont « chimiques ». Les gélifications chimiques sont des gélifications irréversibles, assurées par la formation de liaisons chimiques plus fortes que dans les gélifications physiques.
Un type particulier résulte de la formation de liaisons chimiques particulières nommées ponts disulfures, telles qu'il s'en forme lors de la coagulation de l'oeuf. De ce fait, on entrevoit aussitôt que l'on peut obtenir une émulsion gélifiée chimiquement en émulsifiant de l'huile dans une solution qui contient des protéines capables de coaguler, telles qu'il y en a dans le blanc d'oeuf, puis en faisant coaguler les protéines.

 La recette est extrêmement simple : fouetter de l'huile dans du blanc d'oeuf, jusqu'à obtenir une préparation épaisse comme une mayonnaise, mais blanche, puis cuire quelques secondes cette préparation au four à micro-ondes, afin d'obtenir la coagulation les protéines restées à la surface des gouttes d'huile. Et c'est ainsi que l'on obtient rapidement une émulsion gélifiée blanche et insipide.
J'ai nommé de ce système un « gibbs ». 

Blanches et insipides : est-ce rédhibitoire ? Pas du tout : il suffit de donner de la couleur et du goût.
Pour la couleur, tous les pigments ou colorants comestibles font l'affaire : les chlorophylles engendrant le vert, jusqu'aux caroténoïdes qui font le jaune, rouge, orange, en passant par les composés phénoliques des fleurs et fruits, qui font aussi du bleu, ou en passant par les bétalaïnes des betteraves.
Du goût : cela signifie de la saveur et de l'odeur. Comme il y a de l'huile dans la préparation, on conçoit facilement qu'il soit facile d'y dissoudre des composés odorants, le plus souvent solubles dans l'huile.
Pour la saveur, les composés sont solubles dans l'eau, ce qui tombe précisément bien, puisque le blanc d'oeuf initialement utilisé est composé de 90 % d'eau.

On le voit : finalement, il n'est pas difficile de fairedes gibbs au goût merveilleux ! note : je vous recommande un blanc d'oeuf que vous sucrez, puis vous émulsionnez une huile où vous avez fait macérer des gousses de vanilles, et vous passez au four à micro-ondes dans de jolies tasses. A servir avec un élément croustillant ou croquant, tuile aux amandes ou autre.




Vient de paraître aux Editions de la Nuée Bleue : Le terroir à toutes les sauces (un traité de la jovialité sous forme de roman, agrémenté de recettes de cuisine et de réflexions sur ce bonheur que nous construit la cuisine)

dimanche 10 décembre 2017

Nous sommes bien d'accord : la gastronomie moléculaire, activité scientifique (une discipline qui fait partie du champ des sciences de la nature) n'a pas pour objectif l'invention, mais la découverte.


Toutefois les sciences de la nature ont des applications d'au moins deux types : techniques, et pédagogique. Les inventions relèvent semble-t-il (je deviens prudent, avec l'âge) du champ technique.


Je m'aperçois, ainsi, que j'ai oublié de nommer une vieille invention, souvent décrite et enseignée aux cuisiniers : les "gels d'huile", ou "huiles gélifiées". Evidemment, avec de tels noms, c'est peu engageant, car qui voudrait manger de l'huile ? Notre mauvaise foi gourmande veut travestir la chose (alors que le chocolat, c'est en gros 50 pour cent de matière grasse et 50 pour cent de sucre, sans que cela gêne personne), et c'est facile : il suffit de donner un plus beau nom. Un "chevreul", puisqu'il est question de matière grasse et que le chimiste français Michel Eugène Chevreul découvrit la structure des triglycérides ? Le nom a été précédemment donné à des mets qui mettent en oeuvre la transposition du "contraste simultané" en cuisine. Un de gennes, puisque Pierre-Gilles de Gennes explora la physique de la matière molle, et notamment des gels ? Le nom a déjà été donné à des perles d'alginate. Alors pourquoi pas des "graham", puisque Thomas Graham introduisit le mot "colloïde" en 1861 ?


Au fait, comment les préparer ?


Il suffit de repenser aux "gibbs", que j'avais proposés il y a des décennies : ce sont des émulsions piégées dans des gels chimiques, que l'on obtient de la façon suivante : à de l'eau, on ajoute un composé tensioactif (par exemple, des protéines), puis on émulsionne de l'huile, ce qui produit une émulsion ; on chauffe, afin de coaguler les protéines, et l'on obtient les gibbs, du nom du physico-chimiste américain Josiah Willard Gibbs.


Peu appétissant ? Imaginez que vous infusiez de la vanille dans l'eau, que vous la sucriez, et que votre huile soit une belle huile d'olive vierge : si vous produisez le met dans une jolie tasse, avec un objet un peu croustillant, bien doré, vous aurez un dessert remarquable. Ou si vous émulsionnez du chocolat fondu dans un blanc d'oeuf, avant de cuire votre émulsion, vous aurez un gibbs de chocolat délicieux (à servir chaud). Bref, plein de possibilités : je passe les gibbs au fromage, au fois gras, au beurre noisette...



Passons maintenant aux graham : c'est tout simple, puisqu'il s'agit de faire sécher les gibbs : si l'eau s'évapore, le réseau reste intouché, et l'huile demeure. Finalement, on récupère une huile dans un solide, un gel d'huile, un "graham".


Quel goût lui donner ? Celui du chocolat ? Du foie gras ? De l'huile d'olive ? Du beurre noisette ? La question est artistique, de sorte que c'est aux artistes (les cuisiniers) de répondre !

 
 
 
 
 
 
Vient de paraître aux Editions de la Nuée Bleue : Le terroir à toutes les sauces (un traité de la jovialité sous forme de roman, agrémenté de recettes de cuisine et de réflexions sur ce bonheur que nous construit la cuisine)

mercredi 1 novembre 2017

A propos du concept de cuisine note à note

C'est amusant, mais il y a des individus qui ont le chic pour chercher à ennuyer les autres, au lieu de vouloir les aider. Jalousie ? Méchanceté ? Je ne sais pas bien, et je ne vais pas passer beaucoup de temps à le chercher, mais seulement discuter ce que l'un d'entre eux m'envoie. Il faut préciser que cette personnalité est de celles qui ont dit que la cuisine note à note était impossible, puis elle a dit que c'était déjà connu... avant, donc, de m'envoyer cet extrait de Sciences et avenir, 1953 :

"Les aliments naturels sont pour la plupart assez mal adaptés à la nutrition humaine. Les excipients qu'ils contiennent sont répartis plus ou moins au hasard. C'est ainsi que certains repas sont exagérérment "bourratifs" et peu nourrissants, d'autres trop riches parce que composés presqu'exclusivement de nutriments. L'appareil digestif est, de ce fait, soumis à des véritables douches écossaises.
"Conséquence : il est infiniment probable que bientôt l'aliment naturel cédera la place à des aliments combinés où des nutriments purs auront été prélevés dans diverses matières premières (céréales, viandes, poissons, etc.) pour être incorporés à des excipients dont la structure physique et la composition chimique auront été scientifiquement établies".

Le message d'envoi était évidemment assorti d'un "tu le connaissais ?", et d'un commentaire qui visait à dire que la cuisine note à note n'était pas mon invention.

Mais notre homme aurait dû mieux lire ce qui est écrit : il est seulement proposé d'ajouter des nutriments dans des "excipients". Ce n'est donc pas ce qui est proposé ! Le but de la cuisine note à note ne se limite pas à ce type de "compléments alimentaires", et l'on lira largement que la cuisine note à note a des objectifs bien supérieurs :
- construire un art nouveau
 - enrichir les agriculteurs
 - proposer un réaménagement de territoires
- nourrir l'humanité
 - lutter contre les gaspillages de matière et d'énergie
- résoudre des problèmes d'allergie ou d'intolérance
 - etc.

La vision de nutriments dans des excipients n'est pas la vision proposée, d'autre part !

vendredi 18 mars 2016

Faisons des tableaux : les cases vides sont une invitation à les remplir, donc à travailler !

 Quand on parle  de tableaux à un physico-chimique, il pense immédiatement à Dimitri Mendeleïev, ce chimiste russe qui fit une classification des éléments dans un tableau dit "périodique" et qui parvint ainsi à prédire l'existence de nouveaux éléments ayant des propriétés qu'il avait calculées, prédites par le calcul. D'autre part, si l'on parle de tableaux  à un Alsacien, il pense à ce psychophysiologiste strasbourgeois, Abraham Moles, qui avait érigé les tableaux en système, ce qu'il nommait des matrices d'inventivité. Si l'on parle de tableaux à une personne un peu systématique, elle réagit immédiatement de façon très positive, parce que l'on sait bien qu'un tableau, c'est une façon d'organiser des données, de mettre de l'ordre, et d'y voir plus clair, là où régnait le chaos, les ténèbres.
Oui, les tableaux ont ceci de merveilleux qu'ils permettent d'organiser les données, et de voir des groupes. Pour commencer, on pose les données les unes au dessous des autres ; puis on transforme chaque entrée en ligne : on obtient ainsi un tableau avec de nombreuses lignes,  mais avec une seule colonne.
Déjà, on peut s'amuser à changer l'ordre des lignes selon des critères structurants, afin de voir apparaître des groupes, des catégories.
Mais on peut aussi ajouter des  colonnes qui seront initialement vides,  et l'on aura ainsi produit des cases vides que l'on pourra chercher à remplir. C'est un principe que nous mettons en oeuvre systématiquement dans notre groupe de gastronomie moléculaire : systématiquement,  nous ajoutons au moins une ligne vide et une colonne vide à tous les tableaux que nous créons,  parce que c'est une façon de nous pousser à travailler, et non pas de découvrir  (par exemple,  des éléments chimiques), mais d'inventer.

Oui, les cases vides sont des invitations à les remplir,  à imaginer, à faire mieux, à faire plus. Et si l'on part du principe que nous sommes ce que nous faisons, cette pratique est merveilleuse :  si nous faisons mieux, c'est que nous sommes mieux.